फायर-ट्यूब बॉयलर: Difference between revisions

From Vigyanwiki
No edit summary
Line 171: Line 171:
[[Category:Created On 18/01/2023]]
[[Category:Created On 18/01/2023]]
[[Category:Engine navigational boxes]]
[[Category:Engine navigational boxes]]
[[Category:Vigyan Ready]]

Revision as of 17:25, 23 January 2023

DRB क्लास 50 लोकोमोटिव से सेक्शन्ड फायर-ट्यूब बॉयलर फायरबॉक्स (लोकोमोटिव) (बाईं ओर) में बनाई गई गर्म फ़्लू गैसें केंद्र बेलनाकार खंड में नलियों से होकर गुजरती हैं, जो पानी से भरी होती हैं, स्मोकबॉक्स तक और दाईं ओर चिमनी (ढेर) से बाहर भाप बॉयलर के शीर्ष के साथ और भाप के गुंबद में शीर्ष के साथ लगभग आधे रास्ते में एकत्रित होती है, जहां यह आगे चल रहे बड़े पाइप में बहती है। इसके बाद इसे प्रत्येक पक्ष में विभाजित किया जाता है और स्टीम चेस्ट (धूम्रपान बॉक्स के पीछे) में नीचे की ओर चलाया जाता है, जहां इसे वाल्व के माध्यम से बेलनाकार में प्रवेश कराया जाता है।

फायर-ट्यूब बायलर एक प्रकार का बॉयलर है जिसमें गर्म गैसें पानी के सीलबंद कंटेनर के माध्यम से चलने वाली एक या एक से अधिक ट्यूबों के माध्यम से आग द्वारा गुजरती हैं। तापीय चालकता के माध्यम से पानी को गर्म करने और अंततः भाप बनाने के द्वारा गैसों की गर्मी को नलियों की दीवारों के माध्यम से स्थानांतरित किया जाता है।

फायर-ट्यूब बॉयलर को चार प्रमुख ऐतिहासिक प्रकार के बॉयलरों में से तीसरे के रूप में विकसित किया गया, निम्न-दबाव टैंक या हेस्टैक बॉयलर एक या दो बड़े फ़्लू के साथ फ़्लूड बॉयलर, कई छोटे ट्यूबों के साथ फायर-ट्यूब बॉयलर, और उच्च-दबाव पानी -ट्यूब बॉयलर द्वारा डिज़ाइन होते हैं।

एक बड़े फ़्लू वाले फ़्ल्यूड बॉयलरों पर उनका लाभ यह है कि कई छोटे ट्यूब एक ही समग्र बॉयलर आयतन के लिए कहीं अधिक ताप सतह क्षेत्र प्रदान करते हैं। सामान्य निर्माण पानी के एक टैंक के रूप में होता है, जो नलियों द्वारा प्रवेश किया जाता है जो आग से गर्म ग्रिप गैसों को ले जाता है। टैंक सामान्यतः अधिकांश भाग के लिए बेलनाकार (ज्यामिति) होता है - एक दबाव पोत के लिए सबसे मजबूत व्यावहारिक आकार का यह बेलनाकार टैंक या तो क्षैतिज या ऊर्ध्वाधर हो सकता है।

क्षैतिज लोकोमोटिव रूप में लगभग सभी भाप इंजनों पर इस प्रकार के बॉयलर का उपयोग किया गया था। इसमें एक बेलनाकार बैरल होता है जिसमें आग की नलियाँ होती हैं, लेकिन इसके एक छोर पर फायरबॉक्स को रखने के लिए एक विस्तार भी होता है। इस फ़ायरबॉक्स के पास एक बड़ा ग्रेट क्षेत्र प्रदान करने के लिए एक खुला आधार होता है और प्रायः एक आयताकार या पतला बाड़े बनाने के लिए बेलनाकार बैरल से बाहर निकलता है। स्कॉच मरीन बॉयलर का उपयोग करते हुए क्षैतिज अग्नि-ट्यूब बॉयलर भी मरीन अनुप्रयोगों के लिए विशिष्ट है; इस प्रकार, इन बॉयलरों को सामान्यतः स्कॉच-मरीन या मरीन प्रकार के बॉयलर कहा जाता है।[1] लंबवत बॉयलर भी कई फायर-ट्यूब प्रकार के बनाए गए हैं, हालांकि ये तुलनात्मक रूप से दुर्लभ हैं; अधिकांश ऊर्ध्वाधर बॉयलरों को या तो प्रवाहित किया गया था, या क्रॉस वॉटर-ट्यूब के साथ उपयोग में लाया गया था।

संचालन

एक लोकोमोटिव प्रकार के फायर-ट्यूब बॉयलर का योजनाबद्ध आरेख

लोकोमोटिव-प्रकार के बॉयलर में, गर्म दहन गैसों का उत्पादन करने के लिए फायरबॉक्स (भाप इंजन) में ईंधन जलाया जाता है। फ़ायरबॉक्स लंबे, बेलनाकार बॉयलर खोल से जुड़े पानी के ठंडा जैकेट से घिरा हुआ है। गर्म गैसों को अग्नि नलियों, या फ़्लूज़ की एक श्रृंखला के साथ निर्देशित किया जाता है, जो बॉयलर में प्रवेश करती हैं और पानी को गर्म करती हैं जिससे संतृप्त (गीली) भाप उत्पन्न होती है। भाप बॉयलर के उच्चतम बिंदु, भाप गुंबद तक जाती है, जहां इसे एकत्र किया जाता है। गुंबद नियामक की साइट है जो बॉयलर से भाप के बाहर निकलने को नियंत्रित करता है।

लोकोमोटिव बॉयलर में, संतृप्त भाप को प्रायः सुपरहिटर्स में पारित किया जाता है, बॉयलर के शीर्ष पर बड़े प्रवाह के माध्यम से, भाप को सुखाने और इसे सुपरहीट भाप का गुंबद गर्म करने के लिए उपयोग में लाया जाता है। अतितापित भाप यांत्रिक कार्यों के उत्पादन के लिए भाप इंजन या बहुत कम ही भाप टरबाइन के लिए निर्देशित होती है। निकास गैसों को चिमनी के माध्यम से बाहर निकाला जाता है, और बॉयलर की दक्षता बढ़ाने के लिए फ़ीड पानी को पहले से गरम करने के लिए उपयोग किया जा सकता है।

फायरट्यूब चिमनी ड्राफ्ट या फायरट्यूब बॉयलरों के लिए ड्राफ्ट, विशेष रूप से मरीन अनुप्रयोगों में, सामान्यतः एक लंबे स्मोकस्टैक द्वारा प्रदान किया जाता है। जॉर्ज स्टीफेंसन के रॉकेट के बाद से सभी भाप इंजनों में, आंशिक वैक्यूम प्रदान करने के लिए ब्लास्टपाइप के माध्यम से बेलनाकारों से निकलने वाली भाप को स्मोकेस्टैक में निर्देशित करके अतिरिक्त ड्राफ्ट की आपूर्ति की जाती है। आधुनिक औद्योगिक बॉयलर, बॉयलर के मजबूर या प्रेरित ड्राफ्टिंग प्रदान करने के लिए प्रशंसकों का उपयोग करते हैं।

स्टीफेंसन के रॉकेट में एक और बड़ी प्रगति एक बड़े फ़्लू के बजाय बड़ी संख्या में छोटे-व्यास वाले फायरट्यूब (एक बहु-ट्यूबलर बॉयलर) थी। इसने गर्मी हस्तांतरण के लिए सतह क्षेत्र को बहुत बढ़ा दिया, जिससे भाप को बहुत अधिक दर पर उत्पादित किया जा सके। इसके बिना, भाप लोकोमोटिव कभी भी शक्तिशाली प्राइम मूवर (लोकोमोटिव) के रूप में प्रभावी ढंग से विकसित नहीं हो सकते थे।

प्रकार

संबंधित पूर्वज प्रकार पर अधिक विवरण के लिए, द्रव बॉयलर देखें।


कॉर्निश बॉयलर

फायर-ट्यूब बॉयलर का सबसे पहला रूप रिचर्ड ट्रेविथिक का उच्च दबाव वाला कोर्निश बॉयलर था। यह एक लंबा क्षैतिज बेलनाकार है जिसमें आग युक्त एक बड़ी चिमनी होती है। गैर-दहनशील अवशेषों को एकत्रित करने के लिए नीचे एक उथले ऐशपैन के साथ, आग इस फ़्लू के आर-पार रखी गई लोहे की झंझरी पर लगी थी। हालांकि कम दबाव के रूप में माना जाता है (अनुमानतः 25 pounds per square inch (170 kPa)) आज, एक बेलनाकार बॉयलर शेल के उपयोग से थॉमस न्यूकॉमन|न्यूकॉमन डे के पहले के हेस्टैक बॉयलरों की तुलना में अधिक दबाव की अनुमति मिली। चूंकि भट्टी प्राकृतिक ड्राफ्ट (वायु प्रवाह) पर निर्भर करती है, आग के लिए हवा (ऑक्सीजन) की अच्छी आपूर्ति को प्रोत्साहित करने के लिए ग्रिप के दूर अंत में एक लंबी चिमनी की आवश्यकता होती है।

दक्षता के लिए, बॉयलर को सामान्यतः ईंट से बने कक्ष के नीचे रखा जाता था। फ़्लू गैसों को इसके माध्यम से, लोहे के बॉयलर खोल के बाहर, फायर-ट्यूब से गुजरने के बाद और इस तरह एक चिमनी से गुजारा गया, जिसे अब बॉयलर के सामने वाले हिस्से में रखा गया था।

जर्मनी में लैंकशियर बॉयलर

लैंकशियर बॉयलर

लैंकशियर बॉयलर कोर्निश के समान है, लेकिन आग से युक्त दो बड़े गुच्छे हैं। यह 1844 में विलियम फेयरबैर्न का आविष्कार था, अधिक कुशल बॉयलरों के ऊष्मप्रवैगिकी के एक सैद्धांतिक विचार से, जिसने उन्हें पानी की मात्रा के सापेक्ष फर्नेस ग्रेट क्षेत्र में वृद्धि करने के लिए प्रेरित किया।

बाद के घटनाक्रमों में गैलोवे ट्यूब सम्मिलित किए गए (उनके आविष्कारक के बाद, 1848 में पेटेंट कराया गया),[2] फ़्लू के आर-पार वाटर ट्यूब, इस प्रकार गर्म सतह क्षेत्र में वृद्धि हुई। चूंकि ये बड़े व्यास के छोटे ट्यूब हैं और बॉयलर अपेक्षाकृत कम दबाव का उपयोग करना जारी रखता है, यह अभी भी जल-ट्यूब बॉयलर नहीं माना जाता है। बस फ़्लू के माध्यम से उनकी स्थापना को आसान बनाने के लिए ट्यूबों को टेप किया जाता है।[3]

स्कॉच मरीन बॉयलर का साइड-सेक्शन: तीर ग्रिप गैस प्रवाह की दिशा दिखाते हैं; दहन कक्ष दाईं ओर है, बाईं ओर स्मोकबॉक्स।

स्कॉच मरीन बायलर

बड़ी संख्या में छोटे-व्यास वाले ट्यूबों का उपयोग करने में स्कॉच मरीन बॉयलर अपने पूर्ववर्तियों से बनावटी रूप में भिन्न होता है। यह मात्रा और वजन के लिए कहीं अधिक ताप सतह क्षेत्र देता है। भट्ठी एक बड़े व्यास वाली ट्यूब द्वारा बनी हुई है जिसके ऊपर कई छोटी ट्यूबें व्यवस्थित हैं। वे एक दहन कक्ष के माध्यम से एक साथ जुड़े हुए हैं, बॉयलर खोल के भीतर पूरी तरह से समाहित एक संलग्न मात्रा में ताकि फायरट्यूब के माध्यम से ग्रिप गैस का प्रवाह पीछे से सामने की ओर हो। इन ट्यूबों के सामने को कवर करने वाला एक संलग्न स्मोकबॉक्स चिमनी या फ़नल की ओर जाता है। विशिष्ट स्कॉच बॉयलरों में भट्टियों की एक जोड़ी होती थी, जो कि बड़ी भट्टियों में तीन होती थीं। इस आकार से ऊपर, जैसे बड़े स्टीम जहाजों के लिए, कई बॉयलरों को स्थापित करना अधिक सामान्य था।[4]


लोकोमोटिव बॉयलर

एक लोकोमोटिव बॉयलर में तीन मुख्य घटक होते हैं: एक डबल-दीवार वाला फायरबॉक्स (भाप इंजन); एक क्षैतिज, बेलनाकार बॉयलर बैरल जिसमें बड़ी संख्या में छोटे फ़्लू-ट्यूब होते हैं; और निकास गैसों के लिए चिमनी के साथ एक धूम्रपात्र उपस्थित होता है। बॉयलर बैरल में सुपरहीटर तत्वों को ले जाने के लिए बड़े फ़्लू-ट्यूब होते हैं। लोकोमोटिव बॉयलर में स्मोकबॉक्स में ब्लास्ट पाइप के माध्यम से निकास भाप को वापस निकास में इंजेक्ट करके मजबूर ड्राफ्ट प्रदान किया जाता है।

लोकोमोटिव-प्रकार के बॉयलरों का उपयोग कर्षण इंजन, भाप रोलर, पोर्टेबल इंजन और कुछ अन्य स्टीम रोड वाहनों में भी किया जाता है। बॉयलर की अंतर्निहित शक्ति का मतलब है कि इसका उपयोग वाहन के आधार के रूप में किया जाता है: पहियों सहित अन्य सभी घटकों को बॉयलर से जुड़े ब्रैकेट पर लगाया जाता है। इस प्रकार के बॉयलर में डिज़ाइन किए गए सुपरहीटर मिलना दुर्लभ है, और वे सामान्यतः रेलवे लोकोमोटिव प्रकारों की तुलना में बहुत छोटे (और सरल) होते हैं।

लोकोमोटिव-प्रकार का बॉयलर भी सुपरटाइप स्टीम वैगन की एक विशेषता है, जो ट्रक के स्टीम-संचालित फोर-रनर है। इस प्रकरण में, हालांकि, भारी गर्डर फ्रेम वाहन के लोड-असर वाले चेसिस बनाते हैं, और बॉयलर इससे जुड़ा होता है।

टेपर बॉयलर कुछ रेलवे लोकोमोटिव बॉयलरों को फायरबॉक्स अंत में एक बड़े व्यास से स्मोकबॉक्स में एक छोटे व्यास तक पतला किया जाता है। इससे वजन कम होता है और पानी का संचार बेहतर होता है। कई बाद में ग्रेट वेस्टर्न रेलवे और लंदन, मिडलैंड और स्कॉटिश रेलवे इंजनों को टेपर बॉयलर लेने के लिए डिज़ाइन या संशोधित किया गया था।

ऊर्ध्वाधर फायर-ट्यूब बॉयलर

ऊर्ध्वाधर आग-ट्यूब बॉयलर (VFT), बोलचाल की भाषा में ऊर्ध्वाधर बॉयलर के रूप में जाना जाता है, इसमें एक ऊर्ध्वाधर बेलनाकार शेल होता है, जिसमें कई ऊर्ध्वाधर फ्ल्यू ट्यूब होते हैं।

क्षैतिज रिटर्न ट्यूबलर बॉयलर

स्टैट्सबैड बुरा स्टेबेन जीएमबीएच से क्षैतिज वापसी ट्यूबलर बॉयलर

क्षैतिज रिटर्न ट्यूबलर बॉयलर (HRT) में एक क्षैतिज बेलनाकार खोल होता है, जिसमें कई क्षैतिज फ़्लू ट्यूब होते हैं, आग सीधे सामान्यतः एक ईंटवर्क सेटिंग के भीतर बॉयलर के खोल के नीचे स्थित होती है।

एडमिरल्टी-टाइप डायरेक्ट ट्यूब बॉयलर

आयरनक्लाड के पहले और प्रारम्भिक दिनों में, ब्रिटेन द्वारा बड़े पैमाने पर उपयोग किया जाता था, एकमात्र संरक्षित स्थान जलरेखा के नीचे था, कभी-कभी एक बख़्तरबंद डेक के नीचे, इसलिए छोटे डेक के नीचे फिट होने के लिए, ट्यूबों को भट्टी के ऊपर वापस नहीं ले जाया जाता था बल्कि सीधे उससे जारी रखा जाता था। दहन कक्ष को दोनों के बीच में रखा जाता था। इसलिए सर्वव्यापी स्कॉच या रिटर्न ट्यूब बॉयलर की तुलना में नाम काफी कम व्यास रखा जाता था। यह एक बड़ी सफलता नहीं थी और मजबूत साइड आर्मरिंग के प्रारम्भ के बाद इसका उपयोग छोड़ दिया जा रहा था - "भट्टी के शीर्ष भाग, जल-स्तर के बहुत करीब होने के कारण, अधिक गर्म होने के लिए अधिक उत्तरदायी हैं। इसके अलावा, बॉयलर की लंबाई के कारण, झुकाव के समान कोण के लिए, जल-स्तर पर प्रभाव बहुत अधिक होता है। अंत में, बॉयलर के विभिन्न भागों का असमान विस्तार अधिक स्पष्ट है, विशेष रूप से ऊपर और नीचे, बॉयलर की लंबाई और व्यास के बीच बढ़े हुए अनुपात के कारण; लंबे और निचले बॉयलरों में तुलनात्मक रूप से कमजोर परिसंचरण के कारण स्थानीय तनाव भी अधिक गंभीर हैं। इन सबका परिणाम भी बहुत विलम्भ से देखने को मिला। इसके अलावा, एक दहन कक्ष की समान लंबाई रिटर्न ट्यूब बॉयलर की तुलना में कम से कम घूर्णन के बिना भी सीधी ट्यूब पर बहुत कम प्रभावी थी।[5]: 233-235


अंतर्वेशी बॉयलर

अंतर्वेशन प्रक्रिया द्वारा संचालित बॉयलर एक सिंगल-पास फायर-ट्यूब बॉयलर है जिसे 1940 के दशक में सेलर्स इंजीनियरिंग द्वारा विकसित किया गया था। इसमें केवल फायरट्यूब हैं, जो भट्टी और दहन कक्ष के रूप में भी काम करते हैं, जिसमें कई बर्नर नोजल दबाव में पूर्वडिज़ाइन हवा और प्राकृतिक गैस को इंजेक्ट करते हैं। यह थर्मल तनाव को कम करने का दावा करता है, और इसके निर्माण के कारण पूरी तरह से अपवर्तक ईंटवर्क का अभाव है।[6]







विविधताएं

वाटर ट्यूब

हीटिंग सतह को बढ़ाने के लिए फायर-ट्यूब बॉयलरों में कभी-कभी पानी-ट्यूब भी होते हैं। एक कोर्निश बॉयलर में फ़्लू के व्यास में कई जल-ट्यूब हो सकते हैं (यह स्टीमर में साधारण है)। एक विस्तृत फ़ायरबॉक्स वाले लोकोमोटिव बॉयलर में आर्च ट्यूब या थर्मिक साइफन हो सकते हैं। जैसे-जैसे फायरबॉक्स तकनीक विकसित हुई, यह पाया गया कि फायरबॉक्स के अंदर फायरब्रिक्स (गर्मी प्रतिरोधी ईंटों) का एक बैफल रखने से फायरबॉक्स के शीर्ष में फायरबॉक्स के शीर्ष पर फायरबॉक्स के प्रवाह को निर्देशित करने से पहले फायर ट्यूबों में प्रवाहित होने से दक्षता में वृद्धि हुई। ऊपरी और निचले आग ट्यूबों के बीच ऊष्मा का संचारण करना अनिवार्य था। इन्हें जगह पर रखने के लिए, एक धातु ब्रैकेट का उपयोग किया गया था, लेकिन इन ब्रैकेट को जलने और मिटने से रोकने के लिए उन्हें पानी की नलियों के रूप में बनाया गया था, जिसमें बॉयलर के नीचे से ठंडा पानी संवहन द्वारा ऊपर की ओर बढ़ रहा था क्योंकि यह गर्म हो गया था, साथ ही धातु अपने विफलता तापमान तक पहुँचने से पहले और अत्यधिक ऊष्मा ले रहा था ।

हीटिंग सतह को बढ़ाने के लिए एक अन्य तकनीक बॉयलर ट्यूबों के अंदर आंतरिक रूप से राइफल वाले बॉयलर ट्यूबों को सम्मिलित किया गया (जिसे सर्व ट्यूब भी कहा जाता है)।

सभी शेल बॉयलर भाप नहीं बढ़ाते हैं; कुछ विशेष रूप से दबाव वाले पानी को गर्म करने के लिए डिज़ाइन किए गए हैं।

रिवर्स फ्लेम

लैंकशियर डिज़ाइन के सम्मान में, आधुनिक शेल बॉयलर युग्मित भट्टी डिज़ाइन के साथ आ सकते हैं। एक और आधुनिक विकास रिवर्स फ्लेम डिज़ाइन रहा है जहां बर्नर एक अंधी भट्टी में आग लगाता है और दहन गैसें अपने आप में दोगुनी हो जाती हैं। इसका परिणाम अधिक कॉम्पैक्ट डिज़ाइन और कम पाइपवर्क होता है।

पैकेज बॉयलर

पैकेज बॉयलर शब्द का विकास 20वीं शताब्दी के प्रारंभ से मध्य तक हुआ; इसका उपयोग निर्माता द्वारा पहले से ही एकत्रित किए गए सभी इन्सुलेशन, विद्युत पैनल, वाल्व, गेज और ईंधन बर्नर के साथ स्थापना स्थल पर वितरित आवासीय हीटिंग बॉयलरों का वर्णन करने के लिए किया जाता है। अन्य सुपुर्दगी विधियाँ कोयला जलाने के युग से पहले के अभ्यास से अधिक मिलती-जुलती हैं, जब अन्य घटकों को साइट पर या तो एक पूर्व-एकत्रित दबाव पोत में, या एक नॉक-डाउन बॉयलर में जोड़ा जाता था, जहाँ दबाव पोत को कास्टिंग के एक सेट के रूप में वितरित किया जाता है। साइट पर एकत्रित करने के लिए एक सामान्य नियम के रूप में, फैक्ट्री असेंबली अधिक प्रभावी है और घरेलू उपयोग के लिए पैकेज्ड बॉयलर एक पसंदीदा विकल्प है। आंशिक रूप से असेंबल की गई डिलीवरी का उपयोग केवल अधिग्रहित सीमाओं के कारण आवश्यक होने पर ही किया जाता है - उदा. जब बेसमेंट स्थापना स्थल तक एकमात्र सीढ़ियों की पहुंच एक संकीर्ण उड़ान से नीचे हो।

1974 से केवनी गैस-फायर पैकेज्ड फायर-ट्यूब बॉयलर को 25 अश्व शक्ति पर रेट किया गया

सुरक्षा विचार

क्योंकि फायर-फ्लूम बॉयलर ही दबाव पोत है, यांत्रिक विफलता को रोकने के लिए इसे कई सुरक्षा सुविधाओं की आवश्यकता होती है। बॉयलर विस्फोट, जो एक प्रकार का BLEVE (उबलता तरल विस्तार वाष्प विस्फोट) है, वह विनाशकारी हो सकता है।

  • खतरनाक दबाव बनने से पहले सुरक्षा वाल्व भाप छोड़ते हैं
  • फायरबॉक्स के ऊपर फ्यूज़िबल प्लग फायरबॉक्स प्लेट्स की तुलना में कम तापमान पर पिघलते हैं, जिससे फायरबॉक्स क्राउन को सुरक्षित रूप से ठंडा करने के लिए पानी का स्तर बहुत कम होने पर भाप के शोर से बचने से ऑपरेटरों को चेतावनी मिलती है।
  • स्टे या टाई, संरचनात्मक रूप से फायरबॉक्स और बॉयलर केसिंग को लिंक करते हैं, तथा उन्हें मुड़ने से रोकते हैं। चूंकि इनमे जंग लगी हुई होती है, इसलिए अवशेषों में अनुदैर्ध्य छिद्र हो सकते हैं, जिन्हें 'टेल-टेल्स' कहा जाता है, उनमें ड्रिल किया जाता है जो असुरक्षित होने से पहले ही लीक हो जाता है।

स्टेनली स्टीमर ऑटोमोबाइल में उपयोग किए जाने वाले फायर-ट्यूब प्रकार के बॉयलर में कई सौ ट्यूब थे जो बॉयलर के बाहरी आवरण से कमजोर थे, जिससे विस्फोट लगभग असंभव हो जाता था क्योंकि ट्यूब विफल हो जाते थे और बॉयलर के फटने से बहुत पहले रिसाव हो जाता था। स्टेनली के पहले उत्पादन के लगभग 100 वर्षों में, कोई भी स्टेनली बॉयलर कभी भी फटा नहीं है।[citation needed]


अर्थशास्त्र और दक्षता

अत्यधिक चक्रण

हर बार जब बॉयलर बंद और चालू होता है, तो यह दक्षता खो सकता है। जब आग लगती है तो दहन दक्षता सामान्यतः तब तक कम होती है जब तक कि स्थिर स्थिति नहीं होती। जब आग बंद हो जाती है तो गर्म चिमनी ठंडा होने तक आंतरिक स्थान से अतिरिक्त हवा खींचती रहती है।

अत्यधिक चक्रण कम किया जा सकता है

  • मॉड्यूलेटिंग बॉयलर गैर-मॉड्यूलेटिंग बॉयलर (जो पूर्ण फायरिंग दर पर काम करते हैं) की तुलना में लंबे समय तक चल सकते हैं (फायरिंग दरों पर जो लोड से समानता रखते हैं)।
    • संघनक मॉड्यूलेटिंग बॉयलरों का उपयोग करके।
    • गैर-संघनक मॉड्यूलेटिंग बॉयलर का उपयोग करके।
    • स्टॉप और स्टार्ट के बीच अधिक तापमान अंतर के साथ नियंत्रण (थर्मोस्टैट या तापमान सेंसर के साथ नियंत्रक) सेट करके।
  • गैर-संघनक बॉयलरों में प्रावधान करें ताकि न्यूनतम रिटर्न पानी का तापमान 130 °F (54 °C) को 150 °F (66 °C) फायरसाइड जंग से बॉयलर को बचाने के लिए।
    • न्यूनतम समय को 8 से 15 मिनट पर सेट करके। आरामदायक हीटिंग लोड के लिए, कम समय के अंतराल सामान्यतः रहने वालों की शिकायतों को ट्रिगर नहीं करते हैं।[7]

सामान्य प्रावधान पंप (एस) के साथ एक प्राथमिक पाइपिंग लूप और पंप (एस) के साथ एक द्वितीयक पाइपिंग लूप प्रदान करना है; और या तो प्राथमिक लूप से द्वितीयक लूप में पानी स्थानांतरित करने के लिए एक चर गति नियंत्रित पंप, या द्वितीयक लूप से प्राथमिक लूप में पानी को मोड़ने के लिए 3-तरफा वाल्व का प्रयोग किया जाता है।[8]


गैर-संघनक बॉयलरों में फायरसाइड जंग

न्यूनतम वापसी पानी का तापमान 130 °F (54 °C) को 150 °F (66 °C) बॉयलर के लिए, विशिष्ट डिज़ाइन के आधार पर, ग्रिप गैस से जल वाष्प के संघनन से बचने और घुलने के लिए उपयोग किया जाता है, और कार्बोनिक एसिड (CO
2
) और सल्फ्यूरिक एसिड (SO
2
) बनाने वाली ग्रिप गैसों से, एक संक्षारक तरल पदार्थ जो हीट विनिमयकारी को नुकसान पहुंचाता है।[9]


संघनक बॉयलर

फ्लू गैसों में जल वाष्प से वाष्पीकरण की गर्मी को निकालकर संघनक बॉयलर कम फायरिंग दरों पर 2% या अधिक कुशल हो सकते हैं। दक्षता में वृद्धि कुल के एक अंश के रूप में प्राप्त होने वाली ईंधन और उपलब्ध ऊर्जा पर निर्भर करती है। अपेक्षाकृत कम प्रोपेन या ईंधन तेल की तुलना में पुनर्प्राप्त करने के लिए अधिक उपलब्ध ऊर्जा युक्त मीथेन ग्रिप गैस संघनित जल फ्लू से घुलित कार्बन डाइऑक्साइड और सल्फर ऑक्साइड के कारण संक्षारक होता है और निराकरण से पहले इसे निष्प्रभावी किया जाना चाहिए।[9]

कंडेनसिंग बॉयलरों में उच्च मौसमी दक्षता होती है, सामान्यतः 84% से 92%, गैर-संघनक बॉयलरों की तुलना में सामान्यतः 70% से 75% दहन दक्षता के विपरीत मौसमी दक्षता पूरे हीटिंग सीज़न में बॉयलर की समग्र दक्षता है जो बॉयलर की दक्षता है जिसे सक्रिय रूप से निकाल दिया जाता है, जो स्थायी नुकसान को बाहर करता है। उच्च मौसमी दक्षता आंशिक रूप से कम बॉयलर तापमान का उपयोग फ़्लू गैस को संघनित करने के लिए बंद चक्र के दौरान स्थायी नुकसान को कम करता है। कम बॉयलर तापमान एक संघनित भाप बॉयलर को रोकता है और जल प्रणालियों में कम रेडिएटर तापमान की आवश्यकता होती है।

संघनक क्षेत्र में संचालन की उच्च दक्षता सदैव उपलब्ध नहीं होती है। संतोषजनक घरेलू गर्म पानी का उत्पादन करने के लिए प्रायः बॉयलर के पानी के तापमान की आवश्यकता होती है जो हीट विनिमयकारी सतह पर प्रभावी संघनन की अनुमति देता है। ठंडे मौसम के दौरान इमारत का रेडिएटर सतह क्षेत्र सामान्यतः कम बॉयलर तापमान पर पर्याप्त गर्मी देने के लिए पर्याप्त नहीं होता है, इसलिए बॉयलर का नियंत्रण बॉयलर तापमान को हीटिंग की मांग को पूरा करने के लिए आवश्यक बनाता है। ये दो कारक विभिन्न प्रतिष्ठानों में अनुभव किए गए दक्षता लाभ की अधिकांश परिवर्तनशीलता के लिए उत्तरदायी हैं।[9]


रखरखाव

उच्च दबाव वाले रेलवे स्टीम बॉयलर को सुरक्षित स्थिति में रखने के लिए गहन रखरखाव प्रणाली की आवश्यकता होती है।

दैनिक निरीक्षण

लीक के लिए ट्यूब प्लेट्स, फ़्यूज़िबल प्लग और फ़ायरबॉक्स स्टे के प्रमुखों की जाँच की जानी चाहिए। बॉयलर फिटिंग में विशेष रूप से दृश्य ग्लास और अंतःक्षेपक के सही संचालन की पुष्टि की जानी चाहिए। भाप के दबाव को उस स्तर तक उठाया जाना चाहिए जिस पर सुरक्षा वाल्व उठते हैं और दबाव गेज के संकेत के साथ तुलना की जाती है।

वाशआउट

लोकोमोटिव बॉयलर का कटअवे क्राउन शीट तक पहुंचने के लिए फायरबॉक्स और मिट्टी के छेद के आसपास संकीर्ण पानी की जगहों पर ध्यान दें: इन क्षेत्रों को धोने के दौरान विशेष ध्यान देने की आवश्यकता होती है

एक लोकोमोटिव बॉयलर का कार्यात्मक जीवन काफी हद तक बढ़ जाता है अगर इसे ठंडा करने और गर्म करने के निरंतर चक्र से बचा लिया जाता है। ऐतिहासिक रूप से, एक लोकोमोटिव को लगभग आठ से दस दिनों की अवधि के लिए लगातार "भाप में" रखा जाता था, और फिर गर्म पानी के बॉयलर को वॉशआउट के लिए पर्याप्त रूप से ठंडा होने दिया जाता था। एक्सप्रेस इंजनों का शेड्यूल माइलेज पर आधारित था।[10] आज के संरक्षित लोकोमोटिव सामान्यतः भाप में लगातार नहीं रखे जाते हैं और अनुशंसित वाशआउट अंतराल पंद्रह से तीस दिन है, लेकिन 180 दिनों तक कुछ भी संभव है।[11]

प्रक्रिया बॉयलर ब्लोडाउन से प्रारम्भ होती है। "ब्लोडाउन" जबकि बॉयलर में कुछ दबाव रहता है, फिर फायरबॉक्स के आधार पर "मडहोल्स" के माध्यम से बॉयलर के सभी पानी की निकासी और सभी "वॉशआउट प्लग" को हटा दिया जाता है। इसके बाद उच्च दबाव वाले पानी के जेट और तांबे जैसी नरम धातु की छड़ों का उपयोग करके आंतरिक सतहों से दूषण को जेट या स्क्रैप किया जाता है। विशेष रूप से स्केल बिल्डअप के लिए अतिसंवेदनशील क्षेत्र, जैसे कि फायरबॉक्स क्राउन और फायरबॉक्स के आसपास संकीर्ण जल स्थान, पर विशेष ध्यान दिया जाता है। बॉयलर के अंदर का निरीक्षण प्लग छेद के माध्यम से ध्यानपूर्वक किया जाता है, जिसमें फायरट्यूब, फायरबॉक्स क्राउन की अखंडता और बॉयलर प्लेटों की पिटिंग या क्रैकिंग की अनुपस्थिति के लिए विशेष चेक का भुगतान किया जाता है। गेज ग्लास कॉक और ट्यूब और फ़्यूज़िबल प्लग को स्केल से साफ़ किया जाना चाहिए; यदि फ़्यूज़िबल प्लग का कोर कैल्सीनेशन के संकेत दिखाता है तो आइटम को बदला जाना चाहिए।[12] पुन: संयोजन करते समय इस बात का ध्यान रखा जाना चाहिए कि थ्रेडेड प्लग को उनके मूल छिद्रों में बदल दिया जाए: रीथ्रेडिंग के परिणामस्वरूप टेपर्स भिन्न हो सकते हैं। मडहोल डोर गैसकेट्स, यदि एसबेस्टस के हों, तो उन्हें नवीनीकृत किया जाना चाहिए, लेकिन जो सीसे से बने हैं उनका पुन: उपयोग किया जा सकता है; इन हानिकारक सामग्रियों के निराकरण के लिए विशेष निर्देश लागू हैं।[11]कई बॉयलर आज काम के वातावरण और संरक्षण सेवा दोनों के लिए गास्केट के लिए उच्च तापमान सिंथेटिक्स का उपयोग करते हैं क्योंकि ये सामग्रियां ऐतिहासिक विकल्पों की तुलना में अधिक सुरक्षित है। बड़ी रखरखाव सुविधाओं में लोकोमोटिव को अधिक तेज़ी से सेवा में वापस लाने के लिए बॉयलर को बाहरी आपूर्ति से बहुत गर्म पानी से धोया और रिफिल किया जाता है।

आवधिक परीक्षा

सामान्यतः एक वार्षिक निरीक्षण, इसके लिए बाहरी फिटिंग, जैसे इंजेक्टर, सुरक्षा वाल्व और दबाव गेज को हटाने और जांचने की आवश्यकता होगी। उच्च दबाव वाले तांबे के पाइपवर्क उपयोग में कड़ी मेहनत से पीड़ित हो सकते हैं और खतरनाक रूप से भंगुर हो सकते हैं: रिफिटिंग से पहले एनीलिंग (धातु विज्ञान) द्वारा इनका निराकरण करना आवश्यक हो सकता है। बायलर और पाइपवर्क पर हाइड्रोलिक दबाव परीक्षण के लिए भी कहा जा सकता है।

सामान्य निरीक्षण

यूके में पूर्ण निरीक्षण के बीच निर्दिष्ट अधिकतम अंतराल दस वर्ष है। पूर्ण निरीक्षण को सक्षम करने के लिए बॉयलर को लोकोमोटिव फ्रेम से उठा लिया जाता है और थर्मल इन्सुलेशन हटा दिया जाता है। जाँच या बदलने के लिए सभी फायरट्यूब हटा दिए जाते हैं। निरीक्षण के लिए सभी फिटिंग हटा दी जाती हैं। उपयोग पर लौटने से पहले एक योग्य परीक्षक सेवा के लिए बॉयलर की फिटनेस की जांच करेगा और दस साल के लिए वैध सुरक्षा प्रमाणपत्र जारी करेगा।[11]


संदर्भ

  1. "कैनरी में भाप उत्पादन". U.S. Food & Drug Administration. Retrieved 25 March 2018.
  2. "Lancashire Boiler" (PDF). Museum of Science & Industry, Manchester. 2005. Archived from the original on 4 February 2009.{{cite web}}: CS1 maint: unfit URL (link)
  3. Harris, Karl N. (1 June 1967). Model Boilers and Boilermaking (in British English) (New ed.). Kings Langley: Model & Allied Publications. ISBN 978-0852423776. OCLC 821813643. OL 8281488M.
  4. "SHONAS WRECKS". www.bevs.org.
  5. Bertin, Louis-Émile (2018) [1906]. समुद्री बॉयलर, उनका निर्माण और कार्य: विशेष रूप से ट्यूबुलस बॉयलर के साथ अधिक व्यवहार करना (in English). Translated by Robertson, Leslie S. (Second ed.). New York: D. Van Nostrand Company. ISBN 978-0342330232. OCLC 30660489. OL 32577492M. Retrieved 28 June 2021 – via Internet Archive.
  6. "Steam Boilers - SPS Immersion Fired Series". Archived from the original on 2011-07-15. Retrieved 2011-06-21.
  7. "PARR-Partnership for Advanced Residential Retrofit". Gas Technology Institute.
  8. "Taco Radiant Made Easy Application Guide – Setpoint Temperature: Variable Speed Injection Circulators – March 1, 2004" (PDF). taco-hvac.com. Archived from the original (PDF) on February 16, 2017. Retrieved November 17, 2016.
  9. 9.0 9.1 9.2 Tabrizi, Dominic (19 June 2012). "Boiler systems: Economics and efficiencies". BOILERS, CHILLERS. Consulting-Specifying Engineer (in English). Chicago. ISSN 0892-5046. Archived from the original on 29 June 2020. Retrieved 28 June 2021. Fireside corrosion will occur when the flue gases are cooled below the dew point and come in contact with carbon steel pressure vessel. To avoid corrosion, the heating systems should be designed to operate in a way that ensures a minimum return water temperature of 150 F to the boiler. (Note: It is important to verify the return water temperature with the manufacturer's literature to avoid corrosion.) All heating components should be selected to operate with a minimum supply water temperature of 170 F, assuming 20 F differential temperature across supply and return water lines.
  10. Bell, A M (1957): Locomotives, seventh edition, Virtue and Company, London.
  11. 11.0 11.1 11.2 The Management Of Steam Locomotive Boilers (PDF) (in British English). Vol. Railway Safety Publication 6 (Second ed.). Sudbury, Suffolk: Office of Rail and Road. 2007 [2005]. Archived (PDF) from the original on 6 February 2021. Retrieved 28 June 2021 – via Association of Tourist & Heritage Rail Australia.
  12. "Cleaning and inspecting a locomotive" on YouTube


बाहरी कड़ियाँ