तरल वायु चक्र इंजन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
== संचालन का सिद्धांत ==
== संचालन का सिद्धांत ==


संकल्पनात्मक रूप से, लेस हवा को संपीड़ित करके और फिर जल्दी से द्रवीभूत करके काम करता है। [[कॉनकॉर्ड]] जैसे उच्च-गति वाले विमान पर पाए जाने वाले सेवन के समान राम-वायु प्रभाव के माध्यम से संपीड़न प्राप्त किया जाता है, जहां [[सेवन रैंप]] हवा को संपीड़ित करने वाली शॉक तरंगें बनाते हैं। लेस डिज़ाइन तब संपीड़ित हवा को [[उष्मा का आदान प्रदान करने वाला]] पर उड़ाता है, जिसमें तरल हाइड्रोजन ईंधन प्रवाहित होता है। यह तेजी से हवा को ठंडा करता है, और विभिन्न घटक जल्दी से द्रवीभूत हो जाते हैं। सावधानीपूर्वक यांत्रिक व्यवस्था से तरल ऑक्सीजन को हवा के अन्य भागों से हटाया जा सकता है, विशेष रूप से [[पानी]], [[नाइट्रोजन]] और [[कार्बन डाइआक्साइड]], जिस बिंदु पर तरल ऑक्सीजन को हमेशा की तरह इंजन में डाला जा सकता है। यह देखा जाएगा कि हीट-एक्सचेंजर की सीमाएं हमेशा इस प्रणाली को हाइड्रोजन/वायु अनुपात के साथ चलाने का कारण बनती हैं, जो स्टोइकोमीट्रिक की तुलना में बहुत अधिक समृद्ध होती है, जिसके परिणामस्वरूप प्रदर्शन में जुर्माना लगता है।<ref>{{Cite web |url=https://www.flightglobal.com/FlightPDFArchive/1963/1963%20-%202241.PDF |title=संग्रहीत प्रति|access-date=2019-05-27 |archive-date=2015-02-13 |archive-url=https://web.archive.org/web/20150213054032/http://www.flightglobal.com/FlightPDFArchive/1963/1963%20-%202241.PDF |url-status=dead }}</ref> और इस प्रकार कुछ हाइड्रोजन पानी में फेंक दी जाती है।
संकल्पनात्मक रूप से, लेस हवा को संपीड़ित करके और फिर जल्दी से द्रवीभूत करके काम करता है। [[कॉनकॉर्ड]] जैसे उच्च-गति वाले विमान पर पाए जाने वाले सेवन के समान राम-वायु प्रभाव के माध्यम से संपीड़न प्राप्त किया जाता है, जहां [[सेवन रैंप]] हवा को संपीड़ित करने वाली शॉक तरंगें बनाते हैं। लेस डिज़ाइन तब संपीड़ित हवा को [[उष्मा का आदान प्रदान करने वाला]] पर उड़ाता है, जिसमें तरल हाइड्रोजन ईंधन प्रवाहित होता है। यह तेजी से हवा को ठंडा करता है, और विभिन्न घटक जल्दी से द्रवीभूत हो जाते हैं। सावधानीपूर्वक यांत्रिक व्यवस्था से तरल ऑक्सीजन को हवा के अन्य भागों से हटाया जा सकता है, विशेष रूप से [[पानी]], [[नाइट्रोजन]] और [[कार्बन डाइआक्साइड]], जिस बिंदु पर तरल ऑक्सीजन को हमेशा की तरह इंजन में डाला जा सकता है। यह देखा जाएगा कि हीट-एक्सचेंजर की सीमाएं हमेशा इस प्रणाली को हाइड्रोजन/वायु अनुपात के साथ चलाने का कारण बनती हैं, जो स्टोइकोमीट्रिक की तुलना में बहुत अधिक समृद्ध होती है, जिसके परिणामस्वरूप प्रदर्शन में दंड राशि लगता है।<ref>{{Cite web |url=https://www.flightglobal.com/FlightPDFArchive/1963/1963%20-%202241.PDF |title=संग्रहीत प्रति|access-date=2019-05-27 |archive-date=2015-02-13 |archive-url=https://web.archive.org/web/20150213054032/http://www.flightglobal.com/FlightPDFArchive/1963/1963%20-%202241.PDF |url-status=dead }}</ref> और इस प्रकार कुछ हाइड्रोजन पानी में फेंक दी जाती है।


== फायदे और नुकसान ==
== लाभ और हानि ==


एक पंख वाले लॉन्च वाहन का उपयोग गुरुत्वाकर्षण पर काबू पाने के लिए [[जोर]] देने के बजाय लिफ्ट (बल) का उपयोग करने की अनुमति देता है, जो गुरुत्वाकर्षण ड्रैग| गुरुत्वाकर्षण नुकसान को बहुत कम करता है। दूसरी ओर, गुरुत्वाकर्षण के कम होने से होने वाले नुकसान बहुत अधिक वायुगतिकीय ड्रैग और [[वायुगतिकीय ताप]] की कीमत पर आते हैं, जो कि बूस्ट चरण के दौरान एक शुद्ध रॉकेट की तुलना में वातावरण के भीतर अधिक गहराई तक रहने की आवश्यकता के कारण होता है।
एक पंख वाले लॉन्च वाहन का उपयोग गुरुत्वाकर्षण पर काबू पाने के लिए [[जोर]] देने के बदले लिफ्ट (बल) का उपयोग करने की अनुमति देता है, जो गुरुत्वाकर्षण ड्रैग| गुरुत्वाकर्षण नुकसान को बहुत कम करता है। दूसरी ओर, गुरुत्वाकर्षण के कम होने से होने वाले नुकसान बहुत अधिक वायुगतिकीय ड्रैग और [[वायुगतिकीय ताप]] की कीमत पर आते हैं, जो कि बूस्ट चरण के दौरान एक शुद्ध रॉकेट की तुलना में वातावरण के भीतर अधिक गहराई तक रहने की आवश्यकता के कारण होता है।


प्रक्षेपण के समय ले जाने वाले ऑक्सीजन के द्रव्यमान को सराहनीय रूप से कम करने के लिए, एक लेस वाहन को लॉन्च के शेष समय के दौरान इंजनों की आपूर्ति के लिए पर्याप्त ऑक्सीजन एकत्र करने के लिए निचले वातावरण में अधिक समय बिताने की आवश्यकता होती है। इससे वाहन के ताप और ड्रैग लॉस में बहुत वृद्धि होती है, जिससे ड्रैग लॉस और वायुमंडलीय रीएंट्री#थर्मल प्रोटेक्शन सिस्टम के अतिरिक्त द्रव्यमान को ऑफसेट करने के लिए ईंधन की खपत बढ़ जाती है। यह बढ़ी हुई ईंधन खपत कुछ हद तक ऑक्सीडाइज़र द्रव्यमान में बचत को ऑफसेट करती है; बदले में ये नुकसान उच्च [[विशिष्ट आवेग]], I द्वारा ऑफसेट होते हैं{{sub|sp}}, वायु-श्वास इंजन की। इस प्रकार, शामिल इंजीनियरिंग ट्रेड-ऑफ़ काफी जटिल हैं, और डिज़ाइन की गई धारणाओं के प्रति अत्यधिक संवेदनशील हैं।<ref>
प्रक्षेपण के समय ले जाने वाले ऑक्सीजन के द्रव्यमान को सराहनीय रूप से कम करने के लिए, एक लेस वाहन को लॉन्च के शेष समय के दौरान इंजनों की आपूर्ति के लिए पर्याप्त ऑक्सीजन एकत्र करने के लिए निचले वातावरण में अधिक समय बिताने की आवश्यकता होती है। इससे वाहन के ताप और ड्रैग लॉस में बहुत वृद्धि होती है, जिससे ड्रैग लॉस और वायुमंडलीय रीएंट्री#थर्मल प्रोटेक्शन सिस्टम के अतिरिक्त द्रव्यमान को ऑफसेट करने के लिए ईंधन की बिक्री बढ़ जाती है। यह बढ़ी हुई ईंधन बिक्री कुछ हद तक ऑक्सीडाइज़र द्रव्यमान में बचत को ऑफसेट करती है; बदले में ये नुकसान उच्च [[विशिष्ट आवेग]], द्वारा ऑफसेट होते हैं{{sub|sp}}, वायु-श्वास इंजन की। इस प्रकार, सम्मिलित इंजीनियरिंग ट्रेड-ऑफ़ काफी जटिल हैं, और डिज़ाइन की गई धारणाओं के प्रति अत्यधिक संवेदनशील हैं।<ref>
{{ cite book
{{ cite book
  | first = Benjamin
  | first = Benjamin
Line 29: Line 29:
}}</ref>
}}</ref>


अन्य मुद्दों को एलओएक्स और एलएच2 | एलएच की सापेक्ष सामग्री और रसद गुणों द्वारा पेश किया जाता है{{sub|2}}. लोक्स काफी सस्ता है; एलएच{{sub|2}} परिमाण के लगभग दो आदेश अधिक महंगे हैं।<ref>
अन्य विषयों को एलओएक्स और एलएच2एलएच की सापेक्ष सामग्री और रसद गुणों द्वारा पेश किया जाता है{{sub|2}}. लोक्स काफी सस्ता है; एलएच{{sub|2}} परिमाण के लगभग दो आदेश अधिक दाम का हैं।<ref>
{{cite web
{{cite web
  | url = http://www.astronautix.com/props/loxlh2.htm
  | url = http://www.astronautix.com/props/loxlh2.htm
Line 36: Line 36:
  | archive-date = March 13, 2002
  | archive-date = March 13, 2002
  | title = LOX/LH2: Properties and Prices
  | title = LOX/LH2: Properties and Prices
}}</ref> LOx सघन (1.141 किग्रा/लीटर) है, जबकि LH{{sub|2}} बहुत कम घनत्व (0.0678 किग्रा/लीटर) है और इसलिए यह बहुत भारी है। (LH2 टैंकेज की अत्यधिक स्थूलता वाहन के ड्रैग समीकरण को बढ़ाकर वाहन ड्रैग को बढ़ाती है।) अंत में, LOx टैंक अपेक्षाकृत हल्के और काफी सस्ते होते हैं, जबकि डीप क्रायोजेनिक प्रकृति और LH के चरम भौतिक गुण{{sub|2}} जनादेश है कि एलएच{{sub|2}} टैंक और नलसाजी बड़े होने चाहिए और भारी, महंगी, विदेशी सामग्री और इन्सुलेशन का उपयोग करना चाहिए। इसलिए, एलएच का उपयोग करने की लागत जितनी अधिक होगी{{sub|2}} रॉकेट प्रणोदक के बजाय # प्रणोदक घनत्व I से अधिक हो सकता है{{sub|sp}} एलएच का उपयोग करने के लाभ{{sub|2}} सिंगल-स्टेज-टू-ऑर्बिट में#घने बनाम हाइड्रोजन ईंधन|सिंगल-स्टेज-टू-ऑर्बिट रॉकेट, अधिक एलएच का उपयोग करने की लागत{{sub|2}} लेस में एक प्रणोदक और वायु-द्रवीकरण शीतलक के रूप में बोर्ड पर अधिक LOx ले जाने की आवश्यकता नहीं होने से प्राप्त होने वाले लाभों से अधिक हो सकता है।
}}</ref> LOx सघन (1.141 किग्रा/लीटर) है, जबकि LH{{sub|2}} बहुत कम घनत्व (0.0678 किग्रा/लीटर) है और इसलिए यह बहुत भारी है। (LH2 टैंकेज की अत्यधिक स्थूलता वाहन के ड्रैग समीकरण को बढ़ाकर वाहन ड्रैग को बढ़ाती है।) अंत में, LOx टैंक अपेक्षाकृत हल्के और बहुत सस्ते होते हैं, जबकि डीप क्रायोजेनिक प्रकृति और LH के चरम भौतिक गुण{{sub|2}} जनादेश है कि एलएच{{sub|2}} टैंक और नलसाजी बड़े होने चाहिए और भारी, अधिक दाम , विदेशी सामग्री और इन्सुलेशन का उपयोग करना चाहिए। इसलिए, एलएच का उपयोग करने की लागत जितनी अधिक होगी{{sub|2}} रॉकेट प्रणोदक के बदले # प्रणोदक घनत्व से अधिक हो सकता है{{sub|sp}} एलएच का उपयोग करने के लाभ{{sub|2}} सिंगल-स्टेज-टू-ऑर्बिट में#घने के नाम पर हाइड्रोजन ईंधन ,सिंगल-स्टेज-टू-ऑर्बिट रॉकेट, अधिक एलएच का उपयोग करने की लागत{{sub|2}} लेस में एक प्रणोदक और वायु-द्रवीकरण शीतलक के रूप में बोर्ड पर अधिक LOx ले जाने की आवश्यकता नहीं होने से प्राप्त होने वाले लाभों से अधिक हो सकता है।


सबसे महत्वपूर्ण रूप से,लेस सिस्टम एक ही थ्रस्ट वाले शुद्ध रॉकेट इंजन की तुलना में कहीं अधिक भारी है (रिएक्शन इंजन कृपाण प्रकार के वायु-श्वास इंजन में अपेक्षाकृत कम थ्रस्ट-टू-वेट अनुपात # उदाहरण | रॉकेट की तुलना में थ्रस्ट-टू-वेट अनुपात होता है) , और सभी प्रकार के लॉन्च वाहनों का प्रदर्शन विशेष रूप से वाहन शुष्क द्रव्यमान (जैसे इंजन) में वृद्धि से प्रभावित होता है, जिसे ऑक्सीडाइज़र द्रव्यमान के विपरीत कक्षा में सभी तरह से ले जाना चाहिए, जो उड़ान के दौरान जला दिया जाएगा। . इसके अलावा, एक रॉकेट की तुलना में वायु-श्वास इंजन का कम जोर-से-वजन अनुपात लॉन्च वाहन के अधिकतम संभव त्वरण को कम करता है, और गुरुत्वाकर्षण ड्रैग को बढ़ाता है क्योंकि कक्षीय वेग में तेजी लाने के लिए अधिक समय खर्च किया जाना चाहिए। साथ ही, [[गुरुत्वाकर्षण खींचें]] पर एक शुद्ध रॉकेट की तुलना में एक लिफ्टिंग, एयर-ब्रीदिंग व्हीकल लॉन्च ट्रैजेक्टरी का उच्च परजीवी ड्रैग एक अतिरिक्त दंड शब्द का परिचय देता है। <math>\frac {1} {1 + \frac {gD} {aL}}</math> [[रॉकेट समीकरण]] में हवा-सांस के बोझ के रूप में जाना जाता है।<ref>
सबसे महत्वपूर्ण रूप से,लेस सिस्टम एक ही थ्रस्ट वाले शुद्ध रॉकेट इंजन की तुलना में कहीं अधिक भारी है (रिएक्शन इंजन कृपाण प्रकार के वायु-श्वास इंजन में अपेक्षाकृत कम थ्रस्ट-टू-वेट अनुपात # उदाहरण | रॉकेट की तुलना में थ्रस्ट-टू-वेट अनुपात होता है) , और सभी प्रकार के लॉन्च वाहनों का प्रदर्शन विशेष रूप से वाहन शुष्क द्रव्यमान (जैसे इंजन) में वृद्धि से प्रभावित होता है, जिसे ऑक्सीडाइज़र द्रव्यमान के विपरीत कक्षा में सभी तरह से ले जाना चाहिए, जो उड़ान के दौरान जला दिया जाएगा। . इसके अलावा, एक रॉकेट की तुलना में वायु-श्वास इंजन का कम जोर-से-वजन अनुपात लॉन्च वाहन के अधिकतम संभव त्वरण को कम करता है, और गुरुत्वाकर्षण ड्रैग को बढ़ाता है क्योंकि कक्षीय वेग में तेजी लाने के लिए अधिक समय व्यय किया जाना चाहिए। साथ ही, [[गुरुत्वाकर्षण खींचें]] पर एक शुद्ध रॉकेट की तुलना में एक लिफ्टिंग, एयर-ब्रीदिंग व्हीकल लॉन्च ट्रैजेक्टरी का उच्च परजीवी ड्रैग एक अतिरिक्त दंड शब्द का परिचय देता है। <math>\frac {1} {1 + \frac {gD} {aL}}</math> [[रॉकेट समीकरण]] में हवा-सांस के बोझ के रूप में जाना जाता है।<ref>
{{Cite web
{{Cite web
  | url  = http://www.islandone.org/Propulsion/SCRAM-Spencer1.html
  | url  = http://www.islandone.org/Propulsion/SCRAM-Spencer1.html
Line 44: Line 44:
}}</ref> इस शब्द का तात्पर्य है कि जब तक [[लिफ्ट-टू-ड्रैग अनुपात]] (एल/डी) और गुरुत्वाकर्षण की तुलना में वाहन का त्वरण (ए/जी) दोनों एक [[आवाज़ से जल्द]] वायु-श्वास वाहन के लिए अविश्वसनीय रूप से बड़े हैं, उच्च I के फायदे{{sub|sp}}वायु-श्वास इंजन और LOx द्रव्यमान में बचत काफी हद तक खो जाती है।
}}</ref> इस शब्द का तात्पर्य है कि जब तक [[लिफ्ट-टू-ड्रैग अनुपात]] (एल/डी) और गुरुत्वाकर्षण की तुलना में वाहन का त्वरण (ए/जी) दोनों एक [[आवाज़ से जल्द]] वायु-श्वास वाहन के लिए अविश्वसनीय रूप से बड़े हैं, उच्च I के फायदे{{sub|sp}}वायु-श्वास इंजन और LOx द्रव्यमान में बचत काफी हद तक खो जाती है।


इस प्रकार, लेस डिज़ाइन के फायदे या नुकसान कुछ बहस का विषय बने हुए हैं।
इस प्रकार, लेस डिज़ाइन के लाभ या हानि कुछ तर्क-वितर्क का विषय बने हुए हैं।


== इतिहास ==
== इतिहास ==


1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में फीता का कुछ हद तक अध्ययन किया गया था, जहाँ इसे एक पंख वाले अंतरिक्ष यान परियोजना के लिए एक प्राकृतिक फिट के रूप में देखा गया था जिसे [[एयरोस्पेसप्लेन]] के रूप में जाना जाता है। लिक्विड एयर कलेक्शन इंजन सिस्टम के लिए अवधारणा को उस समय फीते के रूप में जाना जाता था। तरलीकृत हवा और कुछ हाइड्रोजन को जलाने के लिए सीधे इंजन में पंप किया जाता है।
1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में लेस का कुछ सीमा तक अध्ययन किया गया था, जहाँ इसे एक पंख वाले अंतरिक्ष यान परियोजना के लिए एक प्राकृतिक फिट के रूप में देखा गया था जिसे [[एयरोस्पेसप्लेन]] के रूप में जाना जाता है। लिक्विड एयर कलेक्शन इंजन सिस्टम के लिए अवधारणा को उस समय लेस के रूप में जाना जाता था। तरलीकृत हवा और कुछ हाइड्रोजन को जलाने के लिए सीधे इंजन में पंप किया जाता है।


जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या खत्म हो जाती है। इक्के ने नाइट्रोजन को एक [[ramjet|रैमजेट]]  इंजन में इंजेक्ट किया, इसे अतिरिक्त कार्यशील द्रव के रूप में उपयोग किया, जबकि इंजन हवा में चल रहा था और तरल ऑक्सीजन संग्रहीत किया जा रहा था। जैसे-जैसे विमान चढ़ता गया और वातावरण पतला होता गया, टैंकों से ऑक्सीजन के प्रवाह को बढ़ाकर हवा की कमी को पूरा किया गया। यह एसीईएस को शुद्ध रॉकेट लेस डिजाइन के विपरीत एक इजेक्टर रैमजेट (या रैमरॉकेट) बनाता है।
जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या समाप्त हो जाती है। इक्के ने नाइट्रोजन को एक [[ramjet|रैमजेट]]  इंजन में इंजेक्ट किया, इसे अतिरिक्त कार्यशील द्रव के रूप में उपयोग किया, जबकि इंजन हवा में चल रहा था और तरल ऑक्सीजन संग्रहीत किया जा रहा था। जैसे-जैसे विमान चढ़ता गया और वातावरण पतला होता गया, टैंकों से ऑक्सीजन के प्रवाह को बढ़ाकर हवा की कमी को पूरा किया गया। यह एसीईएस को शुद्ध रॉकेट लेस डिजाइन के विपरीत एक इजेक्टर रैमजेट (या रैमरॉकेट) बनाता है।


मार्क्वार्ट कॉर्पोरेशन और [[General Dynamics|सामान्य गतिशीलता]] दोनों ही लेस अनुसंधान में शामिल थे। हालांकि, जैसा कि प्रोजेक्ट मर्करी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और इसके साथ एसीईएस।
मार्क्वार्ट कॉर्पोरेशन और [[General Dynamics|सामान्य गतिशीलता]] दोनों ही लेस अनुसंधान में शामिल थे। हालांकि, जैसा कि प्रोजेक्ट मर्करी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और इसके साथ एसीईएस।

Revision as of 15:02, 5 January 2023

एक तरल वायु चक्र इंजन (लेस) एक प्रकार का अंतरिक्ष यान प्रणोदन इंजन है जो पृथ्वी के वायुमंडल से अपने आक्सीकारक के हिस्से को इकट्ठा करके अपनी दक्षता बढ़ाने का प्रयास करता है। एक तरल वायु चक्र इंजन हवा को द्रवीभूत करने के लिए तरल हाइड्रोजन (LH2) ईंधन का उपयोग करता है।

एक तरल ऑक्सीजन/तरल हाइड्रोजन तरल रॉकेट में, दहन के लिए आवश्यक तरल ऑक्सीजन (LOX) उत्थापन पर अंतरिक्ष यान के भार का अधिकांश भाग होता है, इसलिए यदि इसमें से कुछ को रास्ते में हवा से एकत्र किया जा सकता है, तो यह हो सकता है नाटकीय रूप से अंतरिक्ष यान के टेक-ऑफ वजन को कम करता है।

1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में लेस का कुछ हद तक अध्ययन किया गया था, और 1960 के अंत तक मार्क्वार्ट कॉर्पोरेशन के पास एक परीक्षण प्रणाली चल रही थी। हालांकि, जैसा कि प्रोजेक्ट मरकरी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और लेस इसके साथ काम में आने लगा।

लेस 1980 के दशक के ब्रिटिश एयरोस्पेस होटोल डिजाइन पर इंजनों का आधार भी था, लेकिन यह अध्ययन से आगे नहीं बढ़ पाया।

संचालन का सिद्धांत

संकल्पनात्मक रूप से, लेस हवा को संपीड़ित करके और फिर जल्दी से द्रवीभूत करके काम करता है। कॉनकॉर्ड जैसे उच्च-गति वाले विमान पर पाए जाने वाले सेवन के समान राम-वायु प्रभाव के माध्यम से संपीड़न प्राप्त किया जाता है, जहां सेवन रैंप हवा को संपीड़ित करने वाली शॉक तरंगें बनाते हैं। लेस डिज़ाइन तब संपीड़ित हवा को उष्मा का आदान प्रदान करने वाला पर उड़ाता है, जिसमें तरल हाइड्रोजन ईंधन प्रवाहित होता है। यह तेजी से हवा को ठंडा करता है, और विभिन्न घटक जल्दी से द्रवीभूत हो जाते हैं। सावधानीपूर्वक यांत्रिक व्यवस्था से तरल ऑक्सीजन को हवा के अन्य भागों से हटाया जा सकता है, विशेष रूप से पानी, नाइट्रोजन और कार्बन डाइआक्साइड, जिस बिंदु पर तरल ऑक्सीजन को हमेशा की तरह इंजन में डाला जा सकता है। यह देखा जाएगा कि हीट-एक्सचेंजर की सीमाएं हमेशा इस प्रणाली को हाइड्रोजन/वायु अनुपात के साथ चलाने का कारण बनती हैं, जो स्टोइकोमीट्रिक की तुलना में बहुत अधिक समृद्ध होती है, जिसके परिणामस्वरूप प्रदर्शन में दंड राशि लगता है।[1] और इस प्रकार कुछ हाइड्रोजन पानी में फेंक दी जाती है।

लाभ और हानि

एक पंख वाले लॉन्च वाहन का उपयोग गुरुत्वाकर्षण पर काबू पाने के लिए जोर देने के बदले लिफ्ट (बल) का उपयोग करने की अनुमति देता है, जो गुरुत्वाकर्षण ड्रैग| गुरुत्वाकर्षण नुकसान को बहुत कम करता है। दूसरी ओर, गुरुत्वाकर्षण के कम होने से होने वाले नुकसान बहुत अधिक वायुगतिकीय ड्रैग और वायुगतिकीय ताप की कीमत पर आते हैं, जो कि बूस्ट चरण के दौरान एक शुद्ध रॉकेट की तुलना में वातावरण के भीतर अधिक गहराई तक रहने की आवश्यकता के कारण होता है।

प्रक्षेपण के समय ले जाने वाले ऑक्सीजन के द्रव्यमान को सराहनीय रूप से कम करने के लिए, एक लेस वाहन को लॉन्च के शेष समय के दौरान इंजनों की आपूर्ति के लिए पर्याप्त ऑक्सीजन एकत्र करने के लिए निचले वातावरण में अधिक समय बिताने की आवश्यकता होती है। इससे वाहन के ताप और ड्रैग लॉस में बहुत वृद्धि होती है, जिससे ड्रैग लॉस और वायुमंडलीय रीएंट्री#थर्मल प्रोटेक्शन सिस्टम के अतिरिक्त द्रव्यमान को ऑफसेट करने के लिए ईंधन की बिक्री बढ़ जाती है। यह बढ़ी हुई ईंधन बिक्री कुछ हद तक ऑक्सीडाइज़र द्रव्यमान में बचत को ऑफसेट करती है; बदले में ये नुकसान उच्च विशिष्ट आवेग, द्वारा ऑफसेट होते हैंsp, वायु-श्वास इंजन की। इस प्रकार, सम्मिलित इंजीनियरिंग ट्रेड-ऑफ़ काफी जटिल हैं, और डिज़ाइन की गई धारणाओं के प्रति अत्यधिक संवेदनशील हैं।[2]

अन्य विषयों को एलओएक्स और एलएच2, एलएच की सापेक्ष सामग्री और रसद गुणों द्वारा पेश किया जाता है2. लोक्स काफी सस्ता है; एलएच2 परिमाण के लगभग दो आदेश अधिक दाम का हैं।[3] LOx सघन (1.141 किग्रा/लीटर) है, जबकि LH2 बहुत कम घनत्व (0.0678 किग्रा/लीटर) है और इसलिए यह बहुत भारी है। (LH2 टैंकेज की अत्यधिक स्थूलता वाहन के ड्रैग समीकरण को बढ़ाकर वाहन ड्रैग को बढ़ाती है।) अंत में, LOx टैंक अपेक्षाकृत हल्के और बहुत सस्ते होते हैं, जबकि डीप क्रायोजेनिक प्रकृति और LH के चरम भौतिक गुण2 जनादेश है कि एलएच2 टैंक और नलसाजी बड़े होने चाहिए और भारी, अधिक दाम , विदेशी सामग्री और इन्सुलेशन का उपयोग करना चाहिए। इसलिए, एलएच का उपयोग करने की लागत जितनी अधिक होगी2 रॉकेट प्रणोदक के बदले # प्रणोदक घनत्व से अधिक हो सकता हैsp एलएच का उपयोग करने के लाभ2 सिंगल-स्टेज-टू-ऑर्बिट में#घने के नाम पर हाइड्रोजन ईंधन ,सिंगल-स्टेज-टू-ऑर्बिट रॉकेट, अधिक एलएच का उपयोग करने की लागत2 लेस में एक प्रणोदक और वायु-द्रवीकरण शीतलक के रूप में बोर्ड पर अधिक LOx ले जाने की आवश्यकता नहीं होने से प्राप्त होने वाले लाभों से अधिक हो सकता है।

सबसे महत्वपूर्ण रूप से,लेस सिस्टम एक ही थ्रस्ट वाले शुद्ध रॉकेट इंजन की तुलना में कहीं अधिक भारी है (रिएक्शन इंजन कृपाण प्रकार के वायु-श्वास इंजन में अपेक्षाकृत कम थ्रस्ट-टू-वेट अनुपात # उदाहरण | रॉकेट की तुलना में थ्रस्ट-टू-वेट अनुपात होता है) , और सभी प्रकार के लॉन्च वाहनों का प्रदर्शन विशेष रूप से वाहन शुष्क द्रव्यमान (जैसे इंजन) में वृद्धि से प्रभावित होता है, जिसे ऑक्सीडाइज़र द्रव्यमान के विपरीत कक्षा में सभी तरह से ले जाना चाहिए, जो उड़ान के दौरान जला दिया जाएगा। . इसके अलावा, एक रॉकेट की तुलना में वायु-श्वास इंजन का कम जोर-से-वजन अनुपात लॉन्च वाहन के अधिकतम संभव त्वरण को कम करता है, और गुरुत्वाकर्षण ड्रैग को बढ़ाता है क्योंकि कक्षीय वेग में तेजी लाने के लिए अधिक समय व्यय किया जाना चाहिए। साथ ही, गुरुत्वाकर्षण खींचें पर एक शुद्ध रॉकेट की तुलना में एक लिफ्टिंग, एयर-ब्रीदिंग व्हीकल लॉन्च ट्रैजेक्टरी का उच्च परजीवी ड्रैग एक अतिरिक्त दंड शब्द का परिचय देता है। रॉकेट समीकरण में हवा-सांस के बोझ के रूप में जाना जाता है।[4] इस शब्द का तात्पर्य है कि जब तक लिफ्ट-टू-ड्रैग अनुपात (एल/डी) और गुरुत्वाकर्षण की तुलना में वाहन का त्वरण (ए/जी) दोनों एक आवाज़ से जल्द वायु-श्वास वाहन के लिए अविश्वसनीय रूप से बड़े हैं, उच्च I के फायदेspवायु-श्वास इंजन और LOx द्रव्यमान में बचत काफी हद तक खो जाती है।

इस प्रकार, लेस डिज़ाइन के लाभ या हानि कुछ तर्क-वितर्क का विषय बने हुए हैं।

इतिहास

1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में लेस का कुछ सीमा तक अध्ययन किया गया था, जहाँ इसे एक पंख वाले अंतरिक्ष यान परियोजना के लिए एक प्राकृतिक फिट के रूप में देखा गया था जिसे एयरोस्पेसप्लेन के रूप में जाना जाता है। लिक्विड एयर कलेक्शन इंजन सिस्टम के लिए अवधारणा को उस समय लेस के रूप में जाना जाता था। तरलीकृत हवा और कुछ हाइड्रोजन को जलाने के लिए सीधे इंजन में पंप किया जाता है।

जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या समाप्त हो जाती है। इक्के ने नाइट्रोजन को एक रैमजेट इंजन में इंजेक्ट किया, इसे अतिरिक्त कार्यशील द्रव के रूप में उपयोग किया, जबकि इंजन हवा में चल रहा था और तरल ऑक्सीजन संग्रहीत किया जा रहा था। जैसे-जैसे विमान चढ़ता गया और वातावरण पतला होता गया, टैंकों से ऑक्सीजन के प्रवाह को बढ़ाकर हवा की कमी को पूरा किया गया। यह एसीईएस को शुद्ध रॉकेट लेस डिजाइन के विपरीत एक इजेक्टर रैमजेट (या रैमरॉकेट) बनाता है।

मार्क्वार्ट कॉर्पोरेशन और सामान्य गतिशीलता दोनों ही लेस अनुसंधान में शामिल थे। हालांकि, जैसा कि प्रोजेक्ट मर्करी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और इसके साथ एसीईएस।

यह भी देखें

संदर्भ

  1. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2015-02-13. Retrieved 2019-05-27.
  2. Orloff, Benjamin. A Comparative Analysis of Singe-State-To-Orbit Rocket and Air-Breathing Vehicles (PDF). AFIT/GAE/ENY/06-J13. Archived (PDF) from the original on June 4, 2011.
  3. "LOX/LH2: Properties and Prices". Archived from the original on March 13, 2002.
  4. "Liquid Air Cycle Rocket Equation, Henry Spencer Comment".

बाहरी कड़ियाँ