तरल वायु चक्र इंजन: Difference between revisions
No edit summary |
No edit summary |
||
(16 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== तरल वायु चक्र इंजन == | |||
{{for|जेट इंजन जो ठंडा करते हैं लेकिन हवा को द्रवित नहीं करते|प्रीकूल्ड जेट इंजन}} | {{for|जेट इंजन जो ठंडा करते हैं लेकिन हवा को द्रवित नहीं करते|प्रीकूल्ड जेट इंजन}} | ||
एक तरल वायु चक्र इंजन ( | एक तरल वायु चक्र इंजन (एलएसीई) एक प्रकार का [[अंतरिक्ष यान प्रणोदन]] इंजन है जो पृथ्वी के वायुमंडल से अपने [[आक्सीकारक]] के हिस्से को इकट्ठा करके अपनी दक्षता बढ़ाने का प्रयास करता है। एक तरल वायु चक्र इंजन हवा को द्रवीभूत करने के लिए [[तरल हाइड्रोजन]] (एलएच2) ईंधन का उपयोग करता है। | ||
एक [[तरल ऑक्सीजन]]/तरल हाइड्रोजन [[तरल रॉकेट]] में | एक [[तरल ऑक्सीजन]]/तरल हाइड्रोजन, [[तरल रॉकेट]] में दहन के लिए आवश्यक तरल ऑक्सीजन (एलओएक्स) उत्थापन पर अंतरिक्ष यान के भार का अधिकांश भाग होता है, इसलिए यदि इसमें से कुछ को रास्ते में हवा से एकत्र किया जाए, तो यह नाटकीय रूप से अंतरिक्ष यान के टेक-ऑफ वजन को कम कर सकता है। | ||
1950 के दशक के अंत और 1960 के दशक के प्रारंभ में [[संयुक्त राज्य अमेरिका]] में | 1950 के दशक के अंत और 1960 के दशक के प्रारंभ में [[संयुक्त राज्य अमेरिका]] में एलएसीई का कुछ हद तक अध्ययन किया गया था, और 1960 के अंत तक [[Index.php?title=मार्क्वार्ट कॉर्पोरेशन|मार्क्वार्ट कॉर्पोरेशन]] के पास एक परीक्षण प्रणाली चल रही थी। हालांकि, जैसा कि [[प्रोजेक्ट मरकरी]] के दौरान [[नासा]] बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया और एलएसीई इसके साथ काम में आने लगा। | ||
एलएसीई 1980 के दशक के [[ब्रिटिश एयरोस्पेस HOTOL|ब्रिटिश एयरोस्पेस]] होटोल डिजाइन पर इंजनों का आधार भी था, लेकिन यह अध्ययन से आगे नहीं बढ़ पाया। | |||
== संचालन का सिद्धांत == | |||
संकल्पनात्मक रूप से, एलएसीई हवा को संपीड़ित करके और फिर जल्दी से द्रवीभूत करके काम करता है। [[कॉनकॉर्ड]] जैसे उच्च-गति वाले विमान पर पाए जाने वाले सेवन के समान राम-वायु प्रभाव के माध्यम से संपीड़न प्राप्त किया जाता है, जहां [[सेवन रैंप]] हवा को संपीड़ित करने वाली शॉक तरंगें बनाते हैं। एलएसीई डिज़ाइन तब संपीड़ित हवा को [[उष्मा का आदान प्रदान करने वाला]] पर उड़ाता है, जिसमें तरल हाइड्रोजन ईंधन प्रवाहित होता है। यह तेजी से हवा को ठंडा करता है, और विभिन्न घटक जल्दी से द्रवीभूत हो जाते हैं। सावधानीपूर्वक यांत्रिक व्यवस्था से तरल ऑक्सीजन को हवा के अन्य भागों से हटाया जा सकता है, विशेष रूप से [[पानी]], [[नाइट्रोजन]] और [[कार्बन डाइआक्साइड]], जिस बिंदु पर तरल ऑक्सीजन को हमेशा की तरह इंजन में डाला जा सकता है। यह देखा जाएगा कि हीट-एक्सचेंजर की सीमाएं हमेशा इस प्रणाली को हाइड्रोजन/वायु अनुपात के साथ चलाने का कारण बनती हैं, जो स्टोइकोमीट्रिक की तुलना में बहुत अधिक समृद्ध होती है, जिसके परिणामस्वरूप प्रदर्शन में दंड राशि लगती है और इस प्रकार कुछ हाइड्रोजन ओवरबोर्ड में फेंक दी जाती है। | |||
== लाभ और हानि == | |||
पंख वाले लॉन्च वाहन का उपयोग गुरुत्वाकर्षण पर नियंत्रण पाने के लिए [[जोर]] देने के बदले लिफ्ट (बल) का उपयोग करने की अनुमति देता है, जो गुरुत्वाकर्षण नुकसान को बहुत कम करता है। दूसरी ओर गुरुत्वाकर्षण के कम होने से होने वाले नुकसान बहुत अधिक वायुगतिकीय ड्रैग और [[वायुगतिकीय ताप]] की कीमत पर आते हैं, जो कि बूस्ट चरण के दौरान एक शुद्ध रॉकेट की तुलना में वातावरण के भीतर अधिक गहराई तक रहने की आवश्यकता के कारण होता है। | |||
एक | प्रक्षेपण के समय ले जाने वाले ऑक्सीजन के द्रव्यमान को सराहनीय रूप से कम करने के लिए, एक एलएसीई वाहन को लॉन्च के शेष समय के दौरान इंजनों की आपूर्ति के लिए पर्याप्त ऑक्सीजन एकत्र करने के लिए निचले वातावरण में अधिक समय बिताने की आवश्यकता होती है। इससे वाहन के ताप और ड्रैग लॉस में बहुत वृद्धि होती है, जिससे ड्रैग लॉस और वायुमंडलीय थर्मल प्रोटेक्शन सिस्टम के अतिरिक्त द्रव्यमान को ऑफसेट करने के लिए ईंधन की बिक्री बढ़ जाती है। यह बढ़ी हुई ईंधन खपत कुछ हद तक ऑक्सीडाइज़र द्रव्यमान में बचत को ऑफसेट करती है; इन नुकसानों को वायु-श्वास इंजन के उच्च विशिष्ट आवेग, आईएसपी द्वारा ऑफसेट किया जाता है। इस प्रकार, शामिल इंजीनियरिंग ट्रेड-ऑफ़ काफी जटिल हैं, और डिज़ाइन की गई धारणाओं के प्रति अत्यधिक संवेदनशील हैं। | ||
अन्य विषयों को एलओएक्स और एलएच2 की सापेक्ष सामग्री और रसद गुणों द्वारा पेश किया जाता है. लोक्स काफी सस्ता है; एलएच<sub>2</sub> परिमाण के लगभग दो आदेश अधिक दाम का हैं। एलओएक्स सघन (1.141 किग्रा/लीटर) है, जबकि एलएच2 बहुत कम घनत्व (0.0678 किग्रा/लीटर) है और इसलिए यह बहुत भारी है। (एलएच2 टैंकेज की अत्यधिक स्थूलता वाहन के ड्रैग समीकरण को बढ़ाकर वाहन ड्रैग को बढ़ाती है।) अंत में, एलओएक्स टैंक अपेक्षाकृत हल्के और बहुत सस्ते होते हैं, जबकि डीप क्रायोजेनिक प्रकृति और एलएच2 के अत्यधिक भौतिक गुणों के कारण, एलएच2 टैंक और प्लंबिंग बड़े होने चाहिए और भारी, महंगी, विदेशी सामग्री और इन्सुलेशन का उपयोग करना चाहिए। इसलिए, हाइड्रोकार्बन ईंधन के बदले एलएच2 का उपयोग करने की लागत एकल-चरण-से-कक्षा रॉकेट में एलएच2 का उपयोग करने केआईएसपी लाभ से अधिक हो सकती है, एलएसीई में प्रणोदक और वायु-द्रवीकरण शीतलक के रूप में अधिक एलएच2 का उपयोग करने की लागत बोर्ड पर अधिक से अधिक एलओएक्स ले जाने की आवश्यकता नहीं होने से प्राप्त होने वाले लाभों से बहुत अधिक हो सकता है। | |||
अन्य | |||
सबसे महत्वपूर्ण रूप से, | सबसे महत्वपूर्ण रूप से,एलएसीई सिस्टम एक ही थ्रस्ट वाले शुद्ध रॉकेट इंजन की तुलना में कहीं अधिक भारी है (लगभग सभी प्रकार के वायु-श्वास इंजनों में रॉकेट की तुलना में अपेक्षाकृत खराब थ्रस्ट-टू-वेट अनुपात होता है), और सभी प्रकार के लॉन्च वाहनों का प्रदर्शन विशेष रूप से वाहन शुष्क द्रव्यमान (जैसे इंजन) में वृद्धि से प्रभावित होता है, जिसे ऑक्सीडाइज़र द्रव्यमान के विपरीत कक्षा में सभी तरह से ले जाना चाहिए, जो उड़ान के दौरान जला दिया जाएगा। इसके अलावा, एक रॉकेट की तुलना में वायु-श्वास इंजन का कम जोर-से-वजन अनुपात लॉन्च वाहन के अधिकतम संभव त्वरण को कम करता है, और गुरुत्वाकर्षण ड्रैग को बढ़ाता है क्योंकि कक्षीय वेग में तेजी लाने के लिए अधिक समय व्यय किया जाना चाहिए। साथ ही, [[गुरुत्वाकर्षण खींचें]] पर एक शुद्ध रॉकेट की तुलना में एक लिफ्टिंग, एयर-ब्रीदिंग व्हीकल लॉन्च ट्रैजेक्टरी का उच्च परजीवी ड्रैग एक अतिरिक्त दंड शब्द का परिचय देता है। <math>\frac {1} {1 + \frac {gD} {aL}}</math> [[रॉकेट समीकरण]] में हवा-सांस के बोझ के रूप में जाना जाता है। इस शब्द का तात्पर्य है कि जब तक [[लिफ्ट-टू-ड्रैग अनुपात]] (एल/डी) और गुरुत्वाकर्षण की तुलना में वाहन का त्वरण (ए/जी) दोनों एक [[आवाज़ से जल्द]] वायु-श्वास वाहन के लिए अविश्वसनीय रूप से बड़े नहीं है, उच्च आईएसपी के फायदे वायु-श्वास इंजन और एलओएक्स द्रव्यमान में बचत काफी हद तक खो जाती है। | ||
इस प्रकार, | इस प्रकार, एलएसीई डिज़ाइन के लाभ या हानि कुछ तर्क-वितर्क का विषय बने हुए हैं। | ||
== इतिहास == | == इतिहास == | ||
1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में | 1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में एलएसीई का कुछ सीमा तक अध्ययन किया गया था, जहाँ इसे एक पंख वाले अंतरिक्ष यान परियोजना के लिए एक प्राकृतिक फिट के रूप में देखा गया था जिसे [[एयरोस्पेसप्लेन]] के रूप में जाना जाता है। लिक्विड एयर कलेक्शन इंजन सिस्टम के लिए अवधारणा को उस समय एलएसीई के रूप में जाना जाता था। तरलीकृत हवा और कुछ हाइड्रोजन को जलाने के लिए सीधे इंजन में पंप किया जाता है। | ||
जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या | जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या समाप्त हो जाती है। एसीईएस ने नाइट्रोजन को एक [[Ramjet|रैमजेट]] इंजन में इंजेक्ट किया, इसके अतिरिक्त कार्यशील द्रव के रूप में उपयोग किया, जबकि इंजन हवा में चल रहा था और तरल ऑक्सीजन संग्रहीत किया जा रहा था। जैसे-जैसे विमान चढ़ता गया और वातावरण पतला होता गया, टैंकों से ऑक्सीजन के प्रवाह को बढ़ाकर हवा की कमी को पूरा किया गया। यह एसीईएस को शुद्ध रॉकेट एलएसीई डिजाइन के विपरीत एक इजेक्टर रैमजेट (या रैमरॉकेट) बनाता है। | ||
मार्क्वार्ट कॉर्पोरेशन और [[General Dynamics|सामान्य गतिशीलता]] दोनों ही | मार्क्वार्ट कॉर्पोरेशन और [[General Dynamics|सामान्य गतिशीलता]] दोनों ही एलएसीई अनुसंधान में शामिल थे। हालांकि, जैसा कि प्रोजेक्ट मर्करी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और इसके साथ एसीईएस भी गायब हो गया। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 66: | Line 45: | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
*[http://www.sworld.com.au/steven/space/lace.txt Liquid Air Cycle Rocket Equation] | *[http://www.sworld.com.au/steven/space/lace.txt Liquid Air Cycle Rocket Equation] | ||
Line 83: | Line 63: | ||
*[http://www.islandone.org/Propulsion/SCRAM-Spencer1.html Liquid Air Cycle Rocket Equation, Henry Spencer Comment] | *[http://www.islandone.org/Propulsion/SCRAM-Spencer1.html Liquid Air Cycle Rocket Equation, Henry Spencer Comment] | ||
*[https://www.newscientist.com/blogs/shortsharpscience/2009/03/rockets-not-air-breathing-plan.html Rockets, not air-breathing planes, will be tomorrow's spaceships] | *[https://www.newscientist.com/blogs/shortsharpscience/2009/03/rockets-not-air-breathing-plan.html Rockets, not air-breathing planes, will be tomorrow's spaceships] | ||
[[Category: | [[Category:All accuracy disputes]] | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with disputed statements from September 2020]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:Articles with unsourced statements from September 2020]] | |||
[[Category:Created On 26/12/2022]] | [[Category:Created On 26/12/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Short description with empty Wikidata description]] |
Latest revision as of 16:18, 24 January 2023
तरल वायु चक्र इंजन
एक तरल वायु चक्र इंजन (एलएसीई) एक प्रकार का अंतरिक्ष यान प्रणोदन इंजन है जो पृथ्वी के वायुमंडल से अपने आक्सीकारक के हिस्से को इकट्ठा करके अपनी दक्षता बढ़ाने का प्रयास करता है। एक तरल वायु चक्र इंजन हवा को द्रवीभूत करने के लिए तरल हाइड्रोजन (एलएच2) ईंधन का उपयोग करता है।
एक तरल ऑक्सीजन/तरल हाइड्रोजन, तरल रॉकेट में दहन के लिए आवश्यक तरल ऑक्सीजन (एलओएक्स) उत्थापन पर अंतरिक्ष यान के भार का अधिकांश भाग होता है, इसलिए यदि इसमें से कुछ को रास्ते में हवा से एकत्र किया जाए, तो यह नाटकीय रूप से अंतरिक्ष यान के टेक-ऑफ वजन को कम कर सकता है।
1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में एलएसीई का कुछ हद तक अध्ययन किया गया था, और 1960 के अंत तक मार्क्वार्ट कॉर्पोरेशन के पास एक परीक्षण प्रणाली चल रही थी। हालांकि, जैसा कि प्रोजेक्ट मरकरी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया और एलएसीई इसके साथ काम में आने लगा।
एलएसीई 1980 के दशक के ब्रिटिश एयरोस्पेस होटोल डिजाइन पर इंजनों का आधार भी था, लेकिन यह अध्ययन से आगे नहीं बढ़ पाया।
संचालन का सिद्धांत
संकल्पनात्मक रूप से, एलएसीई हवा को संपीड़ित करके और फिर जल्दी से द्रवीभूत करके काम करता है। कॉनकॉर्ड जैसे उच्च-गति वाले विमान पर पाए जाने वाले सेवन के समान राम-वायु प्रभाव के माध्यम से संपीड़न प्राप्त किया जाता है, जहां सेवन रैंप हवा को संपीड़ित करने वाली शॉक तरंगें बनाते हैं। एलएसीई डिज़ाइन तब संपीड़ित हवा को उष्मा का आदान प्रदान करने वाला पर उड़ाता है, जिसमें तरल हाइड्रोजन ईंधन प्रवाहित होता है। यह तेजी से हवा को ठंडा करता है, और विभिन्न घटक जल्दी से द्रवीभूत हो जाते हैं। सावधानीपूर्वक यांत्रिक व्यवस्था से तरल ऑक्सीजन को हवा के अन्य भागों से हटाया जा सकता है, विशेष रूप से पानी, नाइट्रोजन और कार्बन डाइआक्साइड, जिस बिंदु पर तरल ऑक्सीजन को हमेशा की तरह इंजन में डाला जा सकता है। यह देखा जाएगा कि हीट-एक्सचेंजर की सीमाएं हमेशा इस प्रणाली को हाइड्रोजन/वायु अनुपात के साथ चलाने का कारण बनती हैं, जो स्टोइकोमीट्रिक की तुलना में बहुत अधिक समृद्ध होती है, जिसके परिणामस्वरूप प्रदर्शन में दंड राशि लगती है और इस प्रकार कुछ हाइड्रोजन ओवरबोर्ड में फेंक दी जाती है।
लाभ और हानि
पंख वाले लॉन्च वाहन का उपयोग गुरुत्वाकर्षण पर नियंत्रण पाने के लिए जोर देने के बदले लिफ्ट (बल) का उपयोग करने की अनुमति देता है, जो गुरुत्वाकर्षण नुकसान को बहुत कम करता है। दूसरी ओर गुरुत्वाकर्षण के कम होने से होने वाले नुकसान बहुत अधिक वायुगतिकीय ड्रैग और वायुगतिकीय ताप की कीमत पर आते हैं, जो कि बूस्ट चरण के दौरान एक शुद्ध रॉकेट की तुलना में वातावरण के भीतर अधिक गहराई तक रहने की आवश्यकता के कारण होता है।
प्रक्षेपण के समय ले जाने वाले ऑक्सीजन के द्रव्यमान को सराहनीय रूप से कम करने के लिए, एक एलएसीई वाहन को लॉन्च के शेष समय के दौरान इंजनों की आपूर्ति के लिए पर्याप्त ऑक्सीजन एकत्र करने के लिए निचले वातावरण में अधिक समय बिताने की आवश्यकता होती है। इससे वाहन के ताप और ड्रैग लॉस में बहुत वृद्धि होती है, जिससे ड्रैग लॉस और वायुमंडलीय थर्मल प्रोटेक्शन सिस्टम के अतिरिक्त द्रव्यमान को ऑफसेट करने के लिए ईंधन की बिक्री बढ़ जाती है। यह बढ़ी हुई ईंधन खपत कुछ हद तक ऑक्सीडाइज़र द्रव्यमान में बचत को ऑफसेट करती है; इन नुकसानों को वायु-श्वास इंजन के उच्च विशिष्ट आवेग, आईएसपी द्वारा ऑफसेट किया जाता है। इस प्रकार, शामिल इंजीनियरिंग ट्रेड-ऑफ़ काफी जटिल हैं, और डिज़ाइन की गई धारणाओं के प्रति अत्यधिक संवेदनशील हैं।
अन्य विषयों को एलओएक्स और एलएच2 की सापेक्ष सामग्री और रसद गुणों द्वारा पेश किया जाता है. लोक्स काफी सस्ता है; एलएच2 परिमाण के लगभग दो आदेश अधिक दाम का हैं। एलओएक्स सघन (1.141 किग्रा/लीटर) है, जबकि एलएच2 बहुत कम घनत्व (0.0678 किग्रा/लीटर) है और इसलिए यह बहुत भारी है। (एलएच2 टैंकेज की अत्यधिक स्थूलता वाहन के ड्रैग समीकरण को बढ़ाकर वाहन ड्रैग को बढ़ाती है।) अंत में, एलओएक्स टैंक अपेक्षाकृत हल्के और बहुत सस्ते होते हैं, जबकि डीप क्रायोजेनिक प्रकृति और एलएच2 के अत्यधिक भौतिक गुणों के कारण, एलएच2 टैंक और प्लंबिंग बड़े होने चाहिए और भारी, महंगी, विदेशी सामग्री और इन्सुलेशन का उपयोग करना चाहिए। इसलिए, हाइड्रोकार्बन ईंधन के बदले एलएच2 का उपयोग करने की लागत एकल-चरण-से-कक्षा रॉकेट में एलएच2 का उपयोग करने केआईएसपी लाभ से अधिक हो सकती है, एलएसीई में प्रणोदक और वायु-द्रवीकरण शीतलक के रूप में अधिक एलएच2 का उपयोग करने की लागत बोर्ड पर अधिक से अधिक एलओएक्स ले जाने की आवश्यकता नहीं होने से प्राप्त होने वाले लाभों से बहुत अधिक हो सकता है।
सबसे महत्वपूर्ण रूप से,एलएसीई सिस्टम एक ही थ्रस्ट वाले शुद्ध रॉकेट इंजन की तुलना में कहीं अधिक भारी है (लगभग सभी प्रकार के वायु-श्वास इंजनों में रॉकेट की तुलना में अपेक्षाकृत खराब थ्रस्ट-टू-वेट अनुपात होता है), और सभी प्रकार के लॉन्च वाहनों का प्रदर्शन विशेष रूप से वाहन शुष्क द्रव्यमान (जैसे इंजन) में वृद्धि से प्रभावित होता है, जिसे ऑक्सीडाइज़र द्रव्यमान के विपरीत कक्षा में सभी तरह से ले जाना चाहिए, जो उड़ान के दौरान जला दिया जाएगा। इसके अलावा, एक रॉकेट की तुलना में वायु-श्वास इंजन का कम जोर-से-वजन अनुपात लॉन्च वाहन के अधिकतम संभव त्वरण को कम करता है, और गुरुत्वाकर्षण ड्रैग को बढ़ाता है क्योंकि कक्षीय वेग में तेजी लाने के लिए अधिक समय व्यय किया जाना चाहिए। साथ ही, गुरुत्वाकर्षण खींचें पर एक शुद्ध रॉकेट की तुलना में एक लिफ्टिंग, एयर-ब्रीदिंग व्हीकल लॉन्च ट्रैजेक्टरी का उच्च परजीवी ड्रैग एक अतिरिक्त दंड शब्द का परिचय देता है। रॉकेट समीकरण में हवा-सांस के बोझ के रूप में जाना जाता है। इस शब्द का तात्पर्य है कि जब तक लिफ्ट-टू-ड्रैग अनुपात (एल/डी) और गुरुत्वाकर्षण की तुलना में वाहन का त्वरण (ए/जी) दोनों एक आवाज़ से जल्द वायु-श्वास वाहन के लिए अविश्वसनीय रूप से बड़े नहीं है, उच्च आईएसपी के फायदे वायु-श्वास इंजन और एलओएक्स द्रव्यमान में बचत काफी हद तक खो जाती है।
इस प्रकार, एलएसीई डिज़ाइन के लाभ या हानि कुछ तर्क-वितर्क का विषय बने हुए हैं।
इतिहास
1950 के दशक के अंत और 1960 के दशक के प्रारंभ में संयुक्त राज्य अमेरिका में एलएसीई का कुछ सीमा तक अध्ययन किया गया था, जहाँ इसे एक पंख वाले अंतरिक्ष यान परियोजना के लिए एक प्राकृतिक फिट के रूप में देखा गया था जिसे एयरोस्पेसप्लेन के रूप में जाना जाता है। लिक्विड एयर कलेक्शन इंजन सिस्टम के लिए अवधारणा को उस समय एलएसीई के रूप में जाना जाता था। तरलीकृत हवा और कुछ हाइड्रोजन को जलाने के लिए सीधे इंजन में पंप किया जाता है।
जब यह प्रदर्शित किया गया कि हवा के अन्य घटकों, ज्यादातर नाइट्रोजन और कार्बन डाइऑक्साइड से ऑक्सीजन को अलग करना अपेक्षाकृत आसान था, वायु संग्रह और संवर्धन प्रणाली के लिए एसीईएस के रूप में एक नई अवधारणा उभरी। इससे बचे हुए गैसों का क्या किया जाए यह समस्या समाप्त हो जाती है। एसीईएस ने नाइट्रोजन को एक रैमजेट इंजन में इंजेक्ट किया, इसके अतिरिक्त कार्यशील द्रव के रूप में उपयोग किया, जबकि इंजन हवा में चल रहा था और तरल ऑक्सीजन संग्रहीत किया जा रहा था। जैसे-जैसे विमान चढ़ता गया और वातावरण पतला होता गया, टैंकों से ऑक्सीजन के प्रवाह को बढ़ाकर हवा की कमी को पूरा किया गया। यह एसीईएस को शुद्ध रॉकेट एलएसीई डिजाइन के विपरीत एक इजेक्टर रैमजेट (या रैमरॉकेट) बनाता है।
मार्क्वार्ट कॉर्पोरेशन और सामान्य गतिशीलता दोनों ही एलएसीई अनुसंधान में शामिल थे। हालांकि, जैसा कि प्रोजेक्ट मर्करी के दौरान नासा बैलिस्टिक कैप्सूल में चला गया, पंख वाले वाहनों में अनुसंधान के लिए धन धीरे-धीरे गायब हो गया, और इसके साथ एसीईएस भी गायब हो गया।
यह भी देखें
- वायु संवर्धित रॉकेट
- आरबी545
- रिएक्शन इंजन सेबर - एक प्रीकूल्ड जेट इंजन जो ठंडा होता है लेकिन हवा को द्रवित नहीं करता
- स्क्रैमजेट
संदर्भ