हार्मोनिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
एक [[ विद्युत शक्ति तंत्र |विद्युत शक्ति तंत्र]] में, वोल्टेज या वर्तमान तरंग का [[ लयबद्ध |लयबद्ध]] [[ सिनसोइडल तरंग |ज्यावक्रीय तरंग]] है, | एक [[ विद्युत शक्ति तंत्र |विद्युत शक्ति तंत्र]] में, वोल्टेज या वर्तमान तरंग का [[ लयबद्ध |लयबद्ध]] [[ सिनसोइडल तरंग |ज्यावक्रीय तरंग]] है, जिसकी आवृत्ति [[ मौलिक आवृत्ति |मौलिक आवृत्ति]] का पूर्णांक बहु है। हार्मोनिक आवृत्तियों को गैर-रेखीय भार जैसे कि परिशोधक, [[ गैस-निर्वासन दीपक |गैस- निर्वहन प्रकाश]], या संतृप्त [[ बिजली की मशीन |विद्युत् मशीनों]] की क्रिया द्वारा उत्पादित किया जाता है। येविद्युत [[ बिजली की गुणवत्ता |की गुणवत्ता]] की समस्याओं के लगातार कारण से हैं, और इसके परिणामस्वरूप उपकरण और विद्युत चालक ताप, [[ परिवर्तनीय गति ड्राइव |परिवर्तनीय गति ड्राइव]] में अपज्वलन और मोटर्स और जनरेटर में '''आघूर्ण बल स्पंदन''' हो सकता है। | ||
'''हार्मोनिक्स''' को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या करंट), और हार्मोनिक का क्रम (यहां तक कि, सम, विषम, ट्रिपलेन, या गैर-ट्रिपल विषम); तीन-चरण प्रणाली में, उन्हें अपने चरण अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है। | '''हार्मोनिक्स''' को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या करंट), और हार्मोनिक का क्रम (यहां तक कि, सम, विषम, ट्रिपलेन, या गैर-ट्रिपल विषम); तीन-चरण प्रणाली में, उन्हें अपने चरण अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है। | ||
== वर्तमान हार्मोनिक्स == | == वर्तमान हार्मोनिक्स == | ||
एक सामान्य वैकल्पिक विद्युत प्रणाली में, वर्तमान एक विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 [[ हेटर्स |हेटर्स]] पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | समय-अपरिवर्तनीय विद्युत | एक सामान्य वैकल्पिक विद्युत प्रणाली में, वर्तमान एक विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 [[ हेटर्स |हेटर्स]] पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | समय-अपरिवर्तनीय विद्युत भार सिस्टम से सयोजित होता है, तो यह वोल्टेज के समान आवृत्ति पर एक ज्यावक्रीय करंट खींचता है (चूंकि सामान्यतः वोल्टेज के साथ चरण (तरंगों) में नहीं) होते है।<ref name="Das_2015">{{cite book |title=पावर सिस्टम हार्मोनिक्स और पैसिव फिल्टर डिज़ाइन|first = J. C. |last=Das |publisher=Wiley, IEEE Press |year=2015 |isbn=978-1-118-86162-2 |quote=रैखिक और nonlinear भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक अनुप्रयोग के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}}}</ref>{{rp|2}} | ||
वर्तमान हार्मोनिक्स गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक | वर्तमान हार्मोनिक्स गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक भार, जैसे कि रेक्टिफायर सिस्टम से जुड़ा होता है, जब एक गैर-रैखिक भार, जैसे कि एक रेक्टीफायर सिस्टम से जुड़ा होता है, तो यह एक ऐसा करंट खींचता है जो अनिवार्य रूप से साइनसोइडल नहीं होता है। भार के प्रकार और सिस्टम के अन्य घटकों के साथ इसकी बातचीत के आधार पर वर्तमान तरंग विरूपण काफी जटिल हो सकता है। भले ही वर्तमान तरंग कितनी जटिल हो, फूरियर श्रृंखला रूपांतरण जटिल तरंग को सरल साइनसोइड्स की एक श्रृंखला में विखंडित करना संभव बनाता है, जो किविद्युत प्रणाली मौलिक आवृत्ति पर शुरू होती है और मौलिक आवृत्ति के पूर्णांक गुणकों पर होती है। | ||
पावर सिस्टम में, हार्मोनिक्स को मौलिक आवृत्ति के सकारात्मक पूर्णांक गुणकों के रूप में परिभाषित किया जाता है। इस प्रकार, तीसरा हार्मोनिक मौलिक आवृत्ति का तीसरा गुणक है। | पावर सिस्टम में, हार्मोनिक्स को मौलिक आवृत्ति के सकारात्मक पूर्णांक गुणकों के रूप में परिभाषित किया जाता है। इस प्रकार, तीसरा हार्मोनिक मौलिक आवृत्ति का तीसरा गुणक है। | ||
बिजली प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। सेमीकंडक्टर डिवाइस जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और चर-गति ड्राइव भी सम्मलित हैं। | बिजली प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। सेमीकंडक्टर डिवाइस जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और चर-गति ड्राइव भी सम्मलित हैं। विद्युत् मोटर्स सामान्यतः हार्मोनिक पीढ़ी में महत्वपूर्ण योगदान नहीं देते हैं। मोटर और ट्रांसफ़ॉर्मर दोनों हार्मोनिक्स तब बनाएंगे जब वे ओवर-फ्लक्स या संतृप्त होंगे। | ||
गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध साइनसोइडल वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप सेविद्युत | गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध साइनसोइडल वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप सेविद्युत व्यवस्था में मौजूद नहीं होते हैं। इसके अतिरिक्त, यदि तीन चरणों की तरंग सममित है, तो नीचे वर्णित ट्रांसफार्मर और मोटर्स के डेल्टा (Δ) कनेक्शन द्वारा तीनों के हार्मोनिक गुणकों को दबा दिया जाता है। | ||
यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों के गुणक वाले सभी हार्मोनिक्स पावर सिस्टम में कैसे व्यवहार करते हैं।<ref name=":0">{{Cite web|title = Harmonics Made Simple|url = http://ecmweb.com/archive/harmonics-made-simple|website = ecmweb.com|access-date = 2015-11-25}}</ref> | यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों के गुणक वाले सभी हार्मोनिक्स पावर सिस्टम में कैसे व्यवहार करते हैं।<ref name=":0">{{Cite web|title = Harmonics Made Simple|url = http://ecmweb.com/archive/harmonics-made-simple|website = ecmweb.com|access-date = 2015-11-25}}</ref> | ||
Line 19: | Line 19: | ||
== वोल्टेज हार्मोनिक्स == | == वोल्टेज हार्मोनिक्स == | ||
वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। य दि इस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स | वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। य दि इस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स भार को हस्तांतरित वास्तविक शक्ति पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मौलिक आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी चरण बदलाव के वर्तमान हार्मोनिक को ओवरले करने से आता है(निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और वर्तमान हार्मोनिक तरंग के नीचे समान क्षेत्र होता है क्योंकि अक्ष के नीचे और वर्तमान हार्मोनिक तरंग के ऊपर होता है। इसका मतलब यह है कि वर्तमान हार्मोनिक्स द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है।चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो वर्तमान हार्मोनिक्स भार को हस्तांतरित वास्तविक शक्ति में योगदान करते हैं। | ||
एक संतुलित तीन-चरण (तीन-तार या चार-तार) पावर सिस्टम में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है जिसकी आवृत्ति तीसरे हार्मोनिक्स (यानी हार्मोनिक्स) की आवृत्ति का एक पूर्णांक गुणक है। आदेश की, | एक संतुलित तीन-चरण (तीन-तार या चार-तार) पावर सिस्टम में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है जिसकी आवृत्ति तीसरे हार्मोनिक्स (यानी हार्मोनिक्स) की आवृत्ति का एक पूर्णांक गुणक है। आदेश की, <math>h = 3 n</math>), जिसमें ट्रिपलन हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) <math>h = 3 (2 n - 1)</math>सम्मलित हैं।<ref name="Wakileh_2001">{{cite book | title = पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन| edition = 1 | first = George J. | last = Wakileh | publisher = Springer | year = 2001 | pages = 13–15 | isbn = 978-3-642-07593-3}}</ref> यह इसलिए होता है क्योंकि अन्यथा '''किरचॉफ''' के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स चरण में हैं, इसलिए तीन चरणों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज के योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, जिसके लिए आवश्यकता होती है।ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए।क ही तर्क के साथ, संतुलित तीन-तार तीन-चरणविद्युत व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करेंगे। | ||
== यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स == | == यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स == | ||
एक विकृत (गैर-साइनसॉइडल) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है। | एक विकृत (गैर-साइनसॉइडल) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है। | ||
हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे इसके बराबर हैं <math>n f_0</math> या <math>h f_0</math>, जहां पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और <math>f_0</math> विकृत (गैर-साइनसॉइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है | हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे इसके बराबर हैं <math>n f_0</math> या <math>h f_0</math>, जहां पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और <math>f_0</math> विकृत (गैर-साइनसॉइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है <math>\omega_n</math> या <math>\omega_h</math>, और वे बराबर हैं <math>n \omega_0</math> या <math>h \omega_0</math>, जहां पे <math>\omega_0</math> विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है <math>\omega = 2 \pi f</math> (हार्मोनिक्स के साथ-साथ मौलिक घटक के लिए मान्य होते है )। | ||
=== यहां तक कि हार्मोनिक्स === | === यहां तक कि हार्मोनिक्स === | ||
एक विकृत (गैर-साइनसॉइडल) आवधिक सिग्नल के भी हार्मोनिक्स हार्मोनिक्स होते हैं | एक विकृत (गैर-साइनसॉइडल) आवधिक सिग्नल के भी हार्मोनिक्स हार्मोनिक्स होते हैं जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति (जो मौलिक घटक की आवृत्ति के समान होती है) के गैर-शून्य भी पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है: | ||
<math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math> | <math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math> | ||
कहाँ पे <math>k</math> पूर्णांक संख्या है;उदाहरण के लिए, | कहाँ पे <math>k</math> पूर्णांक संख्या है;उदाहरण के लिए, <math>h = 2, 4, 6, 8, 10</math>। यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम-चरण रूप में दर्शाया गया है, तो <math>k</math> धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो <math>k</math> के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)। | ||
=== विषम हार्मोनिक्स === | === विषम हार्मोनिक्स === | ||
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स हैं, जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति के (जो मौलिक घटक की आवृत्ति के समान होती है) | एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स हैं, जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति के (जो मौलिक घटक की आवृत्ति के समान होती है) एक विषम पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है: | ||
<math>h = 2 k - 1, \quad k \in \N \quad \text{(odd harmonics)}</math> | <math>h = 2 k - 1, \quad k \in \N \quad \text{(odd harmonics)}</math> | ||
Line 42: | Line 42: | ||
उदाहरण के लिए, <math>h = 1, 3, 5, 7, 9</math>। | उदाहरण के लिए, <math>h = 1, 3, 5, 7, 9</math>। | ||
विकृत आवधिक संकेतों (या तरंगों) में, जिनमें अर्ध-तरंग समरूपता होती है, जिसका अर्थ है कि ऋणात्मक आधे चक्र के दौरान तरंग सकारात्मक आधे चक्र के दौरान तरंग के ऋणात्मक के बराबर होती है, सभी हार्मोनिक्स शून्य होते हैं | विकृत आवधिक संकेतों (या तरंगों) में, जिनमें अर्ध-तरंग समरूपता होती है, जिसका अर्थ है कि ऋणात्मक आधे चक्र के दौरान तरंग सकारात्मक आधे चक्र के दौरान तरंग के ऋणात्मक के बराबर होती है, सभी हार्मोनिक्स शून्य होते हैं <math>a_{2k} = b_{2k} = A_{2k} = 0</math>) और डीसी घटक भी शून्य है (<math>a_0 = 0</math>), इसलिए उनके पास केवल विषम हार्मोनिक्स हैं (<math>A_{2k-1} \ne 0</math>);सामान्य रूप से ये विषम हार्मोनिक्स कोसाइन शब्द के साथ-साथ साइन शब्द भी हैं, लेकिन कुछ तरंगों जैसे वर्ग तरंगों में कोसाइन शब्द शून्य हैं (<math>a_{2k-1} = 0</math>, <math>b_{2k-1} \ne 0</math>)। इनवर्टर, एसी वोल्टेज नियंत्रक और [[ साइक्लोकॉनवर्टर |साइक्लोकॉनवर्टर]] जैसे कई गैर-रैखिक भारों में, आउटपुट वोल्टेज (ओं) तरंग (एस) में सामान्यतः आधा-तरंग समरूपता होती है और इसलिए इसमें केवल विषम हार्मोनिक्स होते हैं। | ||
मौलिक घटक विषम हार्मोनिक है, जब से <math>k=1</math>, उपरोक्त सूत्र से प्राप्त होता है <math>h=1</math>, | मौलिक घटक विषम हार्मोनिक है, जब से <math>k=1</math>, उपरोक्त सूत्र से प्राप्त होता है <math>h=1</math>, जो मूलभूत घटक का क्रम है। यदि मौलिक घटक को विषम हार्मोनिक्स से बाहर रखा जाता है, तो शेष हार्मोनिक्स का क्रम निम्न द्वारा दिया जाता है: | ||
<math>h = 2 k + 1, \quad k \in \N \quad \text{(odd harmonics that aren't the fundamental)}</math> | <math>h = 2 k + 1, \quad k \in \N \quad \text{(odd harmonics that aren't the fundamental)}</math> | ||
Line 84: | Line 84: | ||
=== पॉजिटिव सीक्वेंस हार्मोनिक्स === | === पॉजिटिव सीक्वेंस हार्मोनिक्स === | ||
तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के सकारात्मक अनुक्रम हार्मोनिक्स हैं जिसमें तीन मूल संकेतों के समान चरण अनुक्रम होता है, और एक दूसरे के लिए एक दूसरे के बीच 120 डिग्री के समय में चरण-स्थानांतरित होता है। | तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के सकारात्मक अनुक्रम हार्मोनिक्स हैं जिसमें तीन मूल संकेतों के समान चरण अनुक्रम होता है, और एक दूसरे के लिए एक दूसरे के बीच 120 डिग्री के समय में चरण-स्थानांतरित होता है। ° द्वारा समय में चरण-शिफ्ट किए जाते हैं।आवृत्ति या आदेश दिया।<ref name="SantosoBeatyDuganMcGranaghan_2003">{{cite book | title = विद्युत बिजली प्रणालियों की गुणवत्ता| edition = 2 | first1 = Surya | last1 = Santoso | first2 = H. Wayne | last2 = Beaty | first3 = Roger C. | last3 = Dugan | first4 = Mark F. | last4 = McGranaghan | publisher = McGraw-Hill | year = 2003 | page = 178 | isbn = 978-0-07-138622-7}}</ref> यह साबित किया जा सकता है कि सकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है: | ||
<math>h = 3 k - 2, \quad k \in \N \quad \text{(positive sequence harmonics)}</math> | <math>h = 3 k - 2, \quad k \in \N \quad \text{(positive sequence harmonics)}</math> | ||
Line 119: | Line 119: | ||
{THD_I} = \frac{ \sqrt{I_2^2 + I_3^2 + I_4^2 + \cdots + I_n^2} }{I_1} \cdot 100\% = \frac{ \sqrt{ \sum_{k \mathop = 2}^{n}I_k^2} }{I_1} \cdot 100\% | {THD_I} = \frac{ \sqrt{I_2^2 + I_3^2 + I_4^2 + \cdots + I_n^2} }{I_1} \cdot 100\% = \frac{ \sqrt{ \sum_{k \mathop = 2}^{n}I_k^2} }{I_1} \cdot 100\% | ||
</math> | </math> | ||
जहां '''वी<sub>k</sub>केथ हार्मोनिक''' का आरएमएस वोल्टेज है, मैं<sub>k</sub>KTH हार्मोनिक का RMS करंट है, और k | जहां '''वी<sub>k</sub>केथ हार्मोनिक''' का आरएमएस वोल्टेज है, मैं<sub>k</sub>KTH हार्मोनिक का RMS करंट है, और k = 1 मौलिक घटक का क्रम है। | ||
यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं;चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो | यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं;चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो भार में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है। औसत वास्तविक शक्ति वोल्टेज और वर्तमान (और विद्युत कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद को वोल्टेज के उत्पाद और मौलिक आवृत्ति पर करंट से जोड़कर पाया जा सकता है, या | ||
:<math> | :<math> | ||
{P_{\text{avg}}} = \sum_{k \mathop = 1}^{\infty} V_k \cdot I_k \cdot pf = P_{\text{avg}, 1} + P_{\text{avg}, 2} + \cdots | {P_{\text{avg}}} = \sum_{k \mathop = 1}^{\infty} V_k \cdot I_k \cdot pf = P_{\text{avg}, 1} + P_{\text{avg}, 2} + \cdots | ||
</math> | </math> | ||
जहां वी<sub>k</sub>और मैं<sub>k</sub>हार्मोनिक पर आरएमएस वोल्टेज और वर्तमान परिमाण हैं | जहां वी<sub>k</sub>और मैं<sub>k</sub>हार्मोनिक पर आरएमएस वोल्टेज और वर्तमान परिमाण हैं (<math>k = 1</math> मौलिक आवृत्ति को दर्शाता है), और <math>P_{\text{avg}, 1}</math> हार्मोनिक घटकों में फैक्टरिंग के बिना शक्ति की पारंपरिक परिभाषा है। | ||
ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और शक्ति कारक है जो टीएचडी पर निर्भर करता है। ट्रू पावर फैक्टर को औसत वास्तविक शक्ति और RMS वोल्टेज और करंट के परिमाण के बीच के अनुपात के रूप में लिया जा सकता है, <math>pf_{\text{true}} = \frac{P_{\text{avg}}}{V_{\text{rms}} I_{\text{rms}}}</math>.<ref>{{cite web|title=Harmonics and How They Relate to Power Factor |url=http://intranet.ctism.ufsm.br/gsec/Apostilas/fatordepotenciaethd.pdf|work=Proc. of the EPRI Power Quality Issues & Opportunities Conference|author= W. Mack Grady and Robert Gilleski}}</ref> | ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और शक्ति कारक है जो टीएचडी पर निर्भर करता है। ट्रू पावर फैक्टर को औसत वास्तविक शक्ति और RMS वोल्टेज और करंट के परिमाण के बीच के अनुपात के रूप में लिया जा सकता है, <math>pf_{\text{true}} = \frac{P_{\text{avg}}}{V_{\text{rms}} I_{\text{rms}}}</math>.<ref>{{cite web|title=Harmonics and How They Relate to Power Factor |url=http://intranet.ctism.ufsm.br/gsec/Apostilas/fatordepotenciaethd.pdf|work=Proc. of the EPRI Power Quality Issues & Opportunities Conference|author= W. Mack Grady and Robert Gilleski}}</ref> | ||
Line 146: | Line 146: | ||
</math> | </math> | ||
कहाँ पे <math> pf_{\text{disp}}</math> विस्थापन शक्ति कारक है और <math> | कहाँ पे <math> pf_{\text{disp}}</math> विस्थापन शक्ति कारक है और <math> | ||
pf_{\text{dist}}</math> विरूपण शक्ति कारक है (अर्थात कुलविद्युत | pf_{\text{dist}}</math> विरूपण शक्ति कारक है (अर्थात कुलविद्युत कारक के लिए हार्मोनिक्स का योगदान)। | ||
== प्रभाव == | == प्रभाव == | ||
Line 155: | Line 155: | ||
=== मोटर्स === | === मोटर्स === | ||
मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और एड़ी धाराओं के कारण विद्युत मोटर्स को नुकसान होता है। ये धारा की आवृत्ति के समानुपाती होते हैं। चूंकि हार्मोनिक्स उच्च आवृत्तियों पर हैं, वेविद्युत | मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और एड़ी धाराओं के कारण विद्युत मोटर्स को नुकसान होता है। ये धारा की आवृत्ति के समानुपाती होते हैं। चूंकि हार्मोनिक्स उच्च आवृत्तियों पर हैं, वेविद्युत आवृत्ति की तुलना में मोटर में उच्च कोर नुकसान उत्पन्न करते हैं। इसके परिणामस्वरूप मोटर कोर का ताप बढ़ जाता है, जो (यदि अत्यधिक हो) मोटर के जीवन को छोटा कर सकता है। पांचवां हार्मोनिक बड़े मोटर्स में सीईएमएफ (काउंटर इलेक्ट्रोमोटिव बल) का कारण बनता है जो रोटेशन की विपरीत दिशा में कार्य करता है।सीईएमएफ रोटेशन का प्रतिकार करने के लिए पर्याप्त बड़ा नहीं है; हालाँकि यह मोटर की परिणामी घूर्णन गति में एक छोटी भूमिका निभाता है। | ||
=== टेलीफोन === | === टेलीफोन === | ||
Line 161: | Line 161: | ||
== स्रोत == | == स्रोत == | ||
एक शुद्ध साइनसोइडल वोल्टेज एक आदर्श एसी जनरेटर द्वारा उत्पादित एक वैचारिक मात्रा है जो एक समान चुंबकीय क्षेत्र में काम करने वाले बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ बनाया गया है। चूँकि कार्यशील एसी मशीन में न तो वाइंडिंग वितरण और न ही चुंबकीय क्षेत्र एक समान होते हैं, | एक शुद्ध साइनसोइडल वोल्टेज एक आदर्श एसी जनरेटर द्वारा उत्पादित एक वैचारिक मात्रा है जो एक समान चुंबकीय क्षेत्र में काम करने वाले बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ बनाया गया है। चूँकि कार्यशील एसी मशीन में न तो वाइंडिंग वितरण और न ही चुंबकीय क्षेत्र एक समान होते हैं, वोल्टेज तरंग विकृतियाँ पैदा होती हैं, और वोल्टेज-समय संबंध शुद्ध साइन फ़ंक्शन से विचलित हो जाता है। पीढ़ी के बिंदु पर विरूपण बहुत छोटा है (लगभग 1% से 2%), लेकिन फिर भी यह सम्मलित है। क्योंकि यह एक शुद्ध साइन लहर से विचलन है, विचलन आवधिक कार्य के रूप में होता है, और परिभाषा के अनुसार, वोल्टेज विरूपण में हार्मोनिक्स होते हैं। | ||
जब साइनसोइडल वोल्टेज एक रैखिक समय-अपरिवर्तनीय भार पर लागू होता है, जैसे कि हीटिंग तत्व, इसके माध्यम से वर्तमान में भी साइनसोइडल होता है। गैर-रैखिक और/या समय-भिन्न भार में, जैसे क्लिपिंग विरूपण के साथ एक एम्पलीफायर, लागू किए गए साइनसॉइड का वोल्टेज स्विंग सीमित है और शुद्ध स्वर हार्मोनिक्स के ढेर से प्रदूषित होता है। | जब साइनसोइडल वोल्टेज एक रैखिक समय-अपरिवर्तनीय भार पर लागू होता है, जैसे कि हीटिंग तत्व, इसके माध्यम से वर्तमान में भी साइनसोइडल होता है। गैर-रैखिक और/या समय-भिन्न भार में, जैसे क्लिपिंग विरूपण के साथ एक एम्पलीफायर, लागू किए गए साइनसॉइड का वोल्टेज स्विंग सीमित है और शुद्ध स्वर हार्मोनिक्स के ढेर से प्रदूषित होता है। | ||
जब पावर स्रोत से अरेखीय भार के मार्ग में महत्वपूर्ण प्रतिबाधा होती है, तो ये वर्तमान विकृतियां भार पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी। चूंकि, ज्यादातर मामलों में जहांविद्युत | जब पावर स्रोत से अरेखीय भार के मार्ग में महत्वपूर्ण प्रतिबाधा होती है, तो ये वर्तमान विकृतियां भार पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी। चूंकि, ज्यादातर मामलों में जहांविद्युत वितरण प्रणाली सामान्य परिस्थितियों में सही ढंग से काम कर रही है, वोल्टेज विकृतियां काफी छोटी होंगी और सामान्यतः इसे अनदेखा किया जा सकता है। | ||
वेवफॉर्म विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है, कि यह शुद्ध साइनवे पर अतिरिक्त आवृत्ति घटकों को सुपरइम्पोज़ करने के बराबर है। ये आवृत्तियां मौलिक आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी-कभी गैर-रैखिक भार से बाहर की ओर फैल सकती हैं, जिससेविद्युत | वेवफॉर्म विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है, कि यह शुद्ध साइनवे पर अतिरिक्त आवृत्ति घटकों को सुपरइम्पोज़ करने के बराबर है। ये आवृत्तियां मौलिक आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी-कभी गैर-रैखिक भार से बाहर की ओर फैल सकती हैं, जिससेविद्युत व्यवस्था में कहीं और समस्याएँ पैदा हो सकती हैं। | ||
एक गैर-रैखिक भार का क्लासिक उदाहरण संधारित्र इनपुट फिल्टर के साथ रेक्टिफायर है, जहां रेक्टिफायर डायोड केवल उस समय के | एक गैर-रैखिक भार का क्लासिक उदाहरण संधारित्र इनपुट फिल्टर के साथ रेक्टिफायर है, जहां रेक्टिफायर डायोड केवल उस समय के भार को पास करने की अनुमति देता है, जो लागू वोल्टेज संधारित्र में संग्रहीत वोल्टेज से अधिक है, जो अपेक्षाकृत हो सकता है आने वाले वोल्टेज चक्र का छोटा हिस्सा हो सकता है । | ||
गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक रोड़े, चर आवृत्ति ड्राइव और स्विचिंग मोडविद्युत | गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक रोड़े, चर आवृत्ति ड्राइव और स्विचिंग मोडविद्युत की आपूर्ति। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:01, 23 January 2023
एक विद्युत शक्ति तंत्र में, वोल्टेज या वर्तमान तरंग का लयबद्ध ज्यावक्रीय तरंग है, जिसकी आवृत्ति मौलिक आवृत्ति का पूर्णांक बहु है। हार्मोनिक आवृत्तियों को गैर-रेखीय भार जैसे कि परिशोधक, गैस- निर्वहन प्रकाश, या संतृप्त विद्युत् मशीनों की क्रिया द्वारा उत्पादित किया जाता है। येविद्युत की गुणवत्ता की समस्याओं के लगातार कारण से हैं, और इसके परिणामस्वरूप उपकरण और विद्युत चालक ताप, परिवर्तनीय गति ड्राइव में अपज्वलन और मोटर्स और जनरेटर में आघूर्ण बल स्पंदन हो सकता है।
हार्मोनिक्स को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या करंट), और हार्मोनिक का क्रम (यहां तक कि, सम, विषम, ट्रिपलेन, या गैर-ट्रिपल विषम); तीन-चरण प्रणाली में, उन्हें अपने चरण अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है।
वर्तमान हार्मोनिक्स
एक सामान्य वैकल्पिक विद्युत प्रणाली में, वर्तमान एक विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 हेटर्स पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | समय-अपरिवर्तनीय विद्युत भार सिस्टम से सयोजित होता है, तो यह वोल्टेज के समान आवृत्ति पर एक ज्यावक्रीय करंट खींचता है (चूंकि सामान्यतः वोल्टेज के साथ चरण (तरंगों) में नहीं) होते है।[1]: 2
वर्तमान हार्मोनिक्स गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक भार, जैसे कि रेक्टिफायर सिस्टम से जुड़ा होता है, जब एक गैर-रैखिक भार, जैसे कि एक रेक्टीफायर सिस्टम से जुड़ा होता है, तो यह एक ऐसा करंट खींचता है जो अनिवार्य रूप से साइनसोइडल नहीं होता है। भार के प्रकार और सिस्टम के अन्य घटकों के साथ इसकी बातचीत के आधार पर वर्तमान तरंग विरूपण काफी जटिल हो सकता है। भले ही वर्तमान तरंग कितनी जटिल हो, फूरियर श्रृंखला रूपांतरण जटिल तरंग को सरल साइनसोइड्स की एक श्रृंखला में विखंडित करना संभव बनाता है, जो किविद्युत प्रणाली मौलिक आवृत्ति पर शुरू होती है और मौलिक आवृत्ति के पूर्णांक गुणकों पर होती है।
पावर सिस्टम में, हार्मोनिक्स को मौलिक आवृत्ति के सकारात्मक पूर्णांक गुणकों के रूप में परिभाषित किया जाता है। इस प्रकार, तीसरा हार्मोनिक मौलिक आवृत्ति का तीसरा गुणक है।
बिजली प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। सेमीकंडक्टर डिवाइस जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और चर-गति ड्राइव भी सम्मलित हैं। विद्युत् मोटर्स सामान्यतः हार्मोनिक पीढ़ी में महत्वपूर्ण योगदान नहीं देते हैं। मोटर और ट्रांसफ़ॉर्मर दोनों हार्मोनिक्स तब बनाएंगे जब वे ओवर-फ्लक्स या संतृप्त होंगे।
गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध साइनसोइडल वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप सेविद्युत व्यवस्था में मौजूद नहीं होते हैं। इसके अतिरिक्त, यदि तीन चरणों की तरंग सममित है, तो नीचे वर्णित ट्रांसफार्मर और मोटर्स के डेल्टा (Δ) कनेक्शन द्वारा तीनों के हार्मोनिक गुणकों को दबा दिया जाता है।
यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों के गुणक वाले सभी हार्मोनिक्स पावर सिस्टम में कैसे व्यवहार करते हैं।[2]
बिजली की आपूर्ति तीन चरण प्रणाली द्वारा की जाती है, जहां प्रत्येक चरण 120 डिग्री अलग होता है। यह दो कारणों से किया जाता है: मुख्य रूप से क्योंकि तीन चरण जनरेटर और मोटर तीन चरण चरणों में विकसित निरंतर टोक़ के कारण निर्माण करना आसान होता है; और दूसरी बात, यदि तीन चरणों को संतुलित किया जाता है, तो उनका योग शून्य होता है, और कुछ स्थिति में तटस्थ कंडक्टरों के आकार को कम या छोड़ा जा सकता है। इन दोनों उपायों के परिणामस्वरूप उपयोगिता कंपनियों को महत्वपूर्ण लागत पर बचत होती है।चूंकि, संतुलित तीसरा हार्मोनिक करंट न्यूट्रल में शून्य में नहीं जुड़ेगा। जैसा कि चित्र में देखा गया है, तीसरा हार्मोनिक तीन चरणों में रचनात्मक रूप से जोड़ देगा। इससे न्यूट्रल वायर में मौलिक आवृत्ति से तीन गुना अधिक करंट होता है, जो समस्याओं का कारण बन सकता है यदि सिस्टम इसके लिए डिज़ाइन नहीं किया गया है,(अर्थात कंडक्टर केवल सामान्य संचालन के लिए आकार देते हैं।)[2] तीसरे क्रम के प्रभाव को कम करने के लिए हार्मोनिक्स डेल्टा कनेक्शन एटेन्यूएटर्स, या तीसरे हार्मोनिक शॉर्ट्स के रूप में उपयोग किए जाते हैं क्योंकि वर्तमान डेल्टा में वाई-Δ ट्रांसफॉर्मर (वाईई कनेक्शन) के तटस्थ प्रवाह के बजाय कनेक्शन को प्रसारित करता है।
वोल्टेज हार्मोनिक्स
वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। य दि इस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स भार को हस्तांतरित वास्तविक शक्ति पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मौलिक आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी चरण बदलाव के वर्तमान हार्मोनिक को ओवरले करने से आता है(निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और वर्तमान हार्मोनिक तरंग के नीचे समान क्षेत्र होता है क्योंकि अक्ष के नीचे और वर्तमान हार्मोनिक तरंग के ऊपर होता है। इसका मतलब यह है कि वर्तमान हार्मोनिक्स द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है।चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो वर्तमान हार्मोनिक्स भार को हस्तांतरित वास्तविक शक्ति में योगदान करते हैं।
एक संतुलित तीन-चरण (तीन-तार या चार-तार) पावर सिस्टम में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है जिसकी आवृत्ति तीसरे हार्मोनिक्स (यानी हार्मोनिक्स) की आवृत्ति का एक पूर्णांक गुणक है। आदेश की, ), जिसमें ट्रिपलन हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) सम्मलित हैं।[3] यह इसलिए होता है क्योंकि अन्यथा किरचॉफ के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स चरण में हैं, इसलिए तीन चरणों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज के योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, जिसके लिए आवश्यकता होती है।ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए।क ही तर्क के साथ, संतुलित तीन-तार तीन-चरणविद्युत व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करेंगे।
यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स
एक विकृत (गैर-साइनसॉइडल) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है।
हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है या , और वे इसके बराबर हैं या , जहां पे या हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और विकृत (गैर-साइनसॉइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है या , और वे बराबर हैं या , जहां पे विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है (हार्मोनिक्स के साथ-साथ मौलिक घटक के लिए मान्य होते है )।
यहां तक कि हार्मोनिक्स
एक विकृत (गैर-साइनसॉइडल) आवधिक सिग्नल के भी हार्मोनिक्स हार्मोनिक्स होते हैं जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति (जो मौलिक घटक की आवृत्ति के समान होती है) के गैर-शून्य भी पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है:
कहाँ पे पूर्णांक संख्या है;उदाहरण के लिए, । यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम-चरण रूप में दर्शाया गया है, तो धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)।
विषम हार्मोनिक्स
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स हैं, जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति के (जो मौलिक घटक की आवृत्ति के समान होती है) एक विषम पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है:
उदाहरण के लिए, ।
विकृत आवधिक संकेतों (या तरंगों) में, जिनमें अर्ध-तरंग समरूपता होती है, जिसका अर्थ है कि ऋणात्मक आधे चक्र के दौरान तरंग सकारात्मक आधे चक्र के दौरान तरंग के ऋणात्मक के बराबर होती है, सभी हार्मोनिक्स शून्य होते हैं ) और डीसी घटक भी शून्य है (), इसलिए उनके पास केवल विषम हार्मोनिक्स हैं ();सामान्य रूप से ये विषम हार्मोनिक्स कोसाइन शब्द के साथ-साथ साइन शब्द भी हैं, लेकिन कुछ तरंगों जैसे वर्ग तरंगों में कोसाइन शब्द शून्य हैं (, )। इनवर्टर, एसी वोल्टेज नियंत्रक और साइक्लोकॉनवर्टर जैसे कई गैर-रैखिक भारों में, आउटपुट वोल्टेज (ओं) तरंग (एस) में सामान्यतः आधा-तरंग समरूपता होती है और इसलिए इसमें केवल विषम हार्मोनिक्स होते हैं।
मौलिक घटक विषम हार्मोनिक है, जब से , उपरोक्त सूत्र से प्राप्त होता है , जो मूलभूत घटक का क्रम है। यदि मौलिक घटक को विषम हार्मोनिक्स से बाहर रखा जाता है, तो शेष हार्मोनिक्स का क्रम निम्न द्वारा दिया जाता है:
उदाहरण के लिए, ।
ट्रिपलन हार्मोनिक्स
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के ट्रिपलन हार्मोनिक्स हैं जिनकी आवृत्ति विकृत सिग्नल के तीसरे हार्मोनिक (एस) की आवृत्ति का एक विषम पूर्णांक गुणक है। तो, उनका आदेश इसके द्वारा दिया गया है:
उदाहरण के लिए, ।सभी ट्रिपलेन हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी ट्रिपल हार्मोनिक्स नहीं हैं।
नॉन-ट्रिप्लेन विषम हार्मोनिक्स
कुछ विकृत (गैर-साइनसोइडल) आवधिक संकेतों के ट्रिपलेन हार्मोनिक्स होते हैं जो न तो हार्मोनिक्स होते हैं और न ही ट्रिपल हार्मोनिक्स, उदाहरण के लिए चरण कोण नियंत्रण और फायरिंग कोण के साथ तीन-चरण WYE- कनेक्टेड एसी वोल्टेज नियंत्रक का आउटपुट वोल्टेज और अपने आउटपुट से जुड़े विशुद्ध रूप से प्रतिरोधक भार के साथ और तीन-चरण साइनसोइडल संतुलित वोल्टेज के साथ सिंचित किया जाता है। उनका आदेश द्वारा दिया गया है:
उदाहरण के लिए, ।
सभी हार्मोनिक्स जो हार्मोनिक्स भी नहीं हैं और न ही ट्रिपल हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी हार्मोनिक्स नहीं हैं जो हार्मोनिक्स या ट्रिपल हार्मोनिक्स भी नहीं हैं।
यदि मौलिक घटक को हार्मोनिक्स से बाहर रखा गया है जो न तो सम और न ही ट्रिपल हार्मोनिक्स हैं, तो शेष हार्मोनिक्स का क्रम इस प्रकार दिया जाता है:
या द्वारा भी:
उदाहरण के लिए, । इस बाद के स्थिति में, इन हार्मोनिक्स को इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स द्वारा नॉनट्रिपल ऑड हार्मोनिक्स कहा जाता है[4]
सकारात्मक अनुक्रम, नकारात्मक अनुक्रम और शून्य अनुक्रम हार्मोनिक्स
संतुलित तीन-चरण प्रणालियों (तीन-तार या चार-तार) कि स्थिति में, तीन विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के हार्मोनिक्स को उनके चरण अनुक्रम के अनुसार भी वर्गीकृत किया जा सकता है।[1]: 7–8 [5][3]
पॉजिटिव सीक्वेंस हार्मोनिक्स
तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के सकारात्मक अनुक्रम हार्मोनिक्स हैं जिसमें तीन मूल संकेतों के समान चरण अनुक्रम होता है, और एक दूसरे के लिए एक दूसरे के बीच 120 डिग्री के समय में चरण-स्थानांतरित होता है। ° द्वारा समय में चरण-शिफ्ट किए जाते हैं।आवृत्ति या आदेश दिया।[6] यह साबित किया जा सकता है कि सकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:
तीन संकेतों के मौलिक घटक सकारात्मक अनुक्रम हार्मोनिक्स हैं, जब से , उपरोक्त सूत्र पैदावार , जो मौलिक घटकों का क्रम है।यदि मौलिक घटकों को सकारात्मक अनुक्रम हार्मोनिक्स से बाहर रखा गया है, तो शेष हार्मोनिक्स का क्रम दिया जाता है:[1]
उदाहरण के लिए, ।
नकारात्मक अनुक्रम हार्मोनिक्स
तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स होते हैं जो तीन मूल संकेतों के विपरीत चरण अनुक्रम होते हैं, और किसी दिए गए आवृत्ति के लिए 120 ° द्वारा समय में चरण-शिफ्ट किया जाता है।गण।[6]यह साबित किया जा सकता है कि नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:[1]
शून्य अनुक्रम हार्मोनिक्स
तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जो किसी दिए गए आवृत्ति या आदेश के लिए समय में चरण में होते हैं।यह साबित हो सकता है कि शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का पूर्णांक है।[1]तो, उनका आदेश द्वारा दिया गया है:
सभी ट्रिपलन हार्मोनिक्स भी शून्य अनुक्रम हार्मोनिक्स हैं,[1]लेकिन सभी शून्य अनुक्रम हार्मोनिक्स भी ट्रिपलन हार्मोनिक्स नहीं हैं।
कुल हार्मोनिक विरूपण
कुल हार्मोनिक विरूपण, या टीएचडी विद्युत प्रणालियों में सम्मलित हार्मोनिक विरूपण के स्तर का सामान्य माप है। टीएचडी या वोल्टेज हार्मोनिक्स से संबंधित हो सकता है, इसे सभी हार्मोनिक्स के आरएमएस मूल्य के अनुपात के रूप में परिभाषित किया गया है जो मौलिक घटक के आरएमएस मूल्य 100% है; डीसी घटक उपेक्षित है।
जहां वीkकेथ हार्मोनिक का आरएमएस वोल्टेज है, मैंkKTH हार्मोनिक का RMS करंट है, और k = 1 मौलिक घटक का क्रम है।
यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं;चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो भार में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है। औसत वास्तविक शक्ति वोल्टेज और वर्तमान (और विद्युत कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद को वोल्टेज के उत्पाद और मौलिक आवृत्ति पर करंट से जोड़कर पाया जा सकता है, या
जहां वीkऔर मैंkहार्मोनिक पर आरएमएस वोल्टेज और वर्तमान परिमाण हैं ( मौलिक आवृत्ति को दर्शाता है), और हार्मोनिक घटकों में फैक्टरिंग के बिना शक्ति की पारंपरिक परिभाषा है।
ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और शक्ति कारक है जो टीएचडी पर निर्भर करता है। ट्रू पावर फैक्टर को औसत वास्तविक शक्ति और RMS वोल्टेज और करंट के परिमाण के बीच के अनुपात के रूप में लिया जा सकता है, .[7]
और
सही शक्ति कारक के लिए समीकरण के लिए इसे प्रतिस्थापित करते हुए, यह स्पष्ट हो जाता है कि मात्रा में दो घटकों के लिए लिया जा सकता है, जिनमें से पारंपरिक शक्ति कारक है (हारमोनिक्स के प्रभाव की उपेक्षा) और जिनमें से हार्मोनिक्स का योगदान हैशक्ति तत्व:
नाम दो अलग -अलग कारकों को सौंपे गए हैं:
कहाँ पे विस्थापन शक्ति कारक है और विरूपण शक्ति कारक है (अर्थात कुलविद्युत कारक के लिए हार्मोनिक्स का योगदान)।
प्रभाव
पावर सिस्टम हार्मोनिक्स के प्रमुख प्रभावों में से सिस्टम में करंट को बढ़ाना है। यह विशेष रूप से तीसरे हार्मोनिक के स्थिति में है, जो शून्य अनुक्रम वर्तमान में तेज वृद्धि का कारण बनता है, इसलिए तटस्थ कंडक्टर में वर्तमान को बढ़ाता है। इस प्रभाव को गैर-रैखिक भारों को पूरा करने के लिए विद्युत प्रणाली के डिजाइन में विशेष विचार की आवश्यकता हो सकती है।[8]
बढ़ी हुई रेखा वर्तमान के अतिरिक्त, विद्युत उपकरण के विभिन्न टुकड़े विद्युत प्रणाली पर हार्मोनिक्स से प्रभाव डाल सकते हैं।
मोटर्स
मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और एड़ी धाराओं के कारण विद्युत मोटर्स को नुकसान होता है। ये धारा की आवृत्ति के समानुपाती होते हैं। चूंकि हार्मोनिक्स उच्च आवृत्तियों पर हैं, वेविद्युत आवृत्ति की तुलना में मोटर में उच्च कोर नुकसान उत्पन्न करते हैं। इसके परिणामस्वरूप मोटर कोर का ताप बढ़ जाता है, जो (यदि अत्यधिक हो) मोटर के जीवन को छोटा कर सकता है। पांचवां हार्मोनिक बड़े मोटर्स में सीईएमएफ (काउंटर इलेक्ट्रोमोटिव बल) का कारण बनता है जो रोटेशन की विपरीत दिशा में कार्य करता है।सीईएमएफ रोटेशन का प्रतिकार करने के लिए पर्याप्त बड़ा नहीं है; हालाँकि यह मोटर की परिणामी घूर्णन गति में एक छोटी भूमिका निभाता है।
टेलीफोन
संयुक्त राज्य अमेरिका में, सामान्य टेलीफोन लाइनों को 300 और 3400 हर्ट्ज के बीच आवृत्तियों को प्रसारित करने के लिए डिज़ाइन किया गया है। चूंकि संयुक्त राज्य अमेरिका में विद्युत पावर 60 हर्ट्ज पर वितरित किया जाता है, यह सामान्य रूप से टेलीफोन संचार में हस्तक्षेप नहीं करती है क्योंकि इसकी आवृत्ति बहुत कम है।
स्रोत
एक शुद्ध साइनसोइडल वोल्टेज एक आदर्श एसी जनरेटर द्वारा उत्पादित एक वैचारिक मात्रा है जो एक समान चुंबकीय क्षेत्र में काम करने वाले बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ बनाया गया है। चूँकि कार्यशील एसी मशीन में न तो वाइंडिंग वितरण और न ही चुंबकीय क्षेत्र एक समान होते हैं, वोल्टेज तरंग विकृतियाँ पैदा होती हैं, और वोल्टेज-समय संबंध शुद्ध साइन फ़ंक्शन से विचलित हो जाता है। पीढ़ी के बिंदु पर विरूपण बहुत छोटा है (लगभग 1% से 2%), लेकिन फिर भी यह सम्मलित है। क्योंकि यह एक शुद्ध साइन लहर से विचलन है, विचलन आवधिक कार्य के रूप में होता है, और परिभाषा के अनुसार, वोल्टेज विरूपण में हार्मोनिक्स होते हैं।
जब साइनसोइडल वोल्टेज एक रैखिक समय-अपरिवर्तनीय भार पर लागू होता है, जैसे कि हीटिंग तत्व, इसके माध्यम से वर्तमान में भी साइनसोइडल होता है। गैर-रैखिक और/या समय-भिन्न भार में, जैसे क्लिपिंग विरूपण के साथ एक एम्पलीफायर, लागू किए गए साइनसॉइड का वोल्टेज स्विंग सीमित है और शुद्ध स्वर हार्मोनिक्स के ढेर से प्रदूषित होता है।
जब पावर स्रोत से अरेखीय भार के मार्ग में महत्वपूर्ण प्रतिबाधा होती है, तो ये वर्तमान विकृतियां भार पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी। चूंकि, ज्यादातर मामलों में जहांविद्युत वितरण प्रणाली सामान्य परिस्थितियों में सही ढंग से काम कर रही है, वोल्टेज विकृतियां काफी छोटी होंगी और सामान्यतः इसे अनदेखा किया जा सकता है।
वेवफॉर्म विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है, कि यह शुद्ध साइनवे पर अतिरिक्त आवृत्ति घटकों को सुपरइम्पोज़ करने के बराबर है। ये आवृत्तियां मौलिक आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी-कभी गैर-रैखिक भार से बाहर की ओर फैल सकती हैं, जिससेविद्युत व्यवस्था में कहीं और समस्याएँ पैदा हो सकती हैं।
एक गैर-रैखिक भार का क्लासिक उदाहरण संधारित्र इनपुट फिल्टर के साथ रेक्टिफायर है, जहां रेक्टिफायर डायोड केवल उस समय के भार को पास करने की अनुमति देता है, जो लागू वोल्टेज संधारित्र में संग्रहीत वोल्टेज से अधिक है, जो अपेक्षाकृत हो सकता है आने वाले वोल्टेज चक्र का छोटा हिस्सा हो सकता है ।
गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक रोड़े, चर आवृत्ति ड्राइव और स्विचिंग मोडविद्युत की आपूर्ति।
यह भी देखें
आगे की पढाई
- Sankaran, C. (1999-10-01). "Effects of Harmonics on Power Systems". Electrical Construction and Maintenance Magazine. Penton Media, Inc. Retrieved 2020-03-11.
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Das, J. C. (2015). पावर सिस्टम हार्मोनिक्स और पैसिव फिल्टर डिज़ाइन. Wiley, IEEE Press. ISBN 978-1-118-86162-2.
रैखिक और nonlinear भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक अनुप्रयोग के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।
} - ↑ 2.0 2.1 "Harmonics Made Simple". ecmweb.com. Retrieved 2015-11-25.
- ↑ 3.0 3.1 3.2 3.3 3.4 Wakileh, George J. (2001). पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन (1 ed.). Springer. pp. 13–15. ISBN 978-3-642-07593-3.
- ↑ IEEE Standard 519, IEEE recommended practices and requirements for harmonic control in electric power systems, IEEE-519, 1992. p. 10.
- ↑ 5.0 5.1 5.2 5.3 Fuchs, Ewald F.; Masoum, Mohammad A. S. (2008). बिजली प्रणालियों और विद्युत मशीनों में बिजली की गुणवत्ता (1 ed.). Academic Press. pp. 17–18. ISBN 978-0123695369.
- ↑ 6.0 6.1 Santoso, Surya; Beaty, H. Wayne; Dugan, Roger C.; McGranaghan, Mark F. (2003). विद्युत बिजली प्रणालियों की गुणवत्ता (2 ed.). McGraw-Hill. p. 178. ISBN 978-0-07-138622-7.
- ↑ W. Mack Grady and Robert Gilleski. "Harmonics and How They Relate to Power Factor" (PDF). Proc. of the EPRI Power Quality Issues & Opportunities Conference.
- ↑ For example, see the National Electrical Code: "A 3-phase, 4-wire, wye-connected power system used to supply power to nonlinear loads may necessitate that the power system design allow for the possibility of high harmonic neutral currents. (Article 220.61(C), FPN No. 2)"