प्रणोद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Other uses}}
{{Other uses}}
{{Use dmy dates|date=April 2020}}
{{Use dmy dates|date=April 2020}}
{{More citations needed|date=December 2017}}
[[File:Engine.f15.arp.750pix.jpg|thumb| जनरल डायनेमिक्स F-16 [[ लड़ाकू विमान |लड़ाकू विमान]] दोनों को शक्ति प्रदान करता है।]]प्रणोद एक [[ प्रतिक्रिया (भौतिकी) |प्रतिक्रिया (भौतिकी)]] [[ बल (भौतिकी) |बल (भौतिकी)]] है जिसे न्यूटन के तीसरे नियम द्वारा मात्रात्मक रूप में वर्णित किया गया है। जब कोई प्रणाली [[ द्रव्यमान |द्रव्यमान]] को एक दिशा में बाहर निकालती या [[ त्वरण |त्वरण]] करती है, तो त्वरित द्रव्यमान उस प्रणाली पर लागू होने के लिए समान [[ परिमाण (वेक्टर) |परिमाण (वेक्टर)]] लेकिन विपरीत दिशा के बल का कारण बनती है।<ref>{{cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/thrust1.html|title=थ्रस्ट क्या है?|website=www.grc.nasa.gov|access-date=2 April 2020|archive-url=https://web.archive.org/web/20200214214218/https://www.grc.nasa.gov/WWW/K-12/airplane/thrust1.html|archive-date=14 February 2020|url-status=live}}</ref>
[[File:Engine.f15.arp.750pix.jpg|thumb|एक प्रैट एंड व्हिटनी F100 जेट इंजन का परीक्षण किया जा रहा है। यह इंजन जोर पैदा करने के लिए गैस का जेट पैदा करता है। इसका उद्देश्य एक जेट हवाई जहाज को आगे बढ़ाना है। यह विशेष मॉडल [[ टर्बोफैन ]] इंजन McDonnell डगलस F-15 ईगल | McDonnell डगलस F-15 और [[ जनरल डायनेमिक्स F-16 फाइटिंग फाल्कन ]] | जनरल डायनेमिक्स F-16 [[ लड़ाकू विमान ]] दोनों को शक्ति प्रदान करता है।]]प्रणोद एक [[ प्रतिक्रिया (भौतिकी) ]] [[ बल (भौतिकी) ]] है जिसे न्यूटन के तीसरे नियम द्वारा मात्रात्मक रूप में वर्णित किया गया है। जब कोई प्रणाली [[ द्रव्यमान |द्रव्यमान]] को एक दिशा में बाहर निकालती या [[ त्वरण ]] करती है, तो त्वरित द्रव्यमान उस प्रणाली पर लागू होने के लिए समान [[ परिमाण (वेक्टर) ]]लेकिन विपरीत दिशा के बल का कारण बनती है।<ref>{{cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/thrust1.html|title=थ्रस्ट क्या है?|website=www.grc.nasa.gov|access-date=2 April 2020|archive-url=https://web.archive.org/web/20200214214218/https://www.grc.nasa.gov/WWW/K-12/airplane/thrust1.html|archive-date=14 February 2020|url-status=live}}</ref>
सतह पर लंबवत या [[ सामान्य वेक्टर |सामान्य वेक्टर]] दिशा में सतह पर लगाया गया बल भी प्रणोद कहलाता है। बल, और इस प्रकार प्रणोद, [[ न्यूटन (यूनिट) |न्यूटन (यूनिट)]] में [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (एसआई) का उपयोग करके मापा जाता है, और 1 [[ मीटर प्रति सेकंड वर्ग |मीटर प्रति सेकंड वर्ग]] की दर से 1 किलोग्राम द्रव्यमान में तेजी लाने के लिए आवश्यक राशि का प्रतिनिधित्व करता है।<ref>{{Cite web |title=बल और गति: परिभाषा, नियम और सूत्र {{!}} StudySmarter|url=https://www.studysmarter.co.uk/explanations/physics/force/force-and-motion/ |access-date=2022-10-12 |website=StudySmarter UK |language=en-GB}}</ref> [[ मैकेनिकल इंजीनियरिंग |मैकेनिकल इंजीनियरिंग]] में, मुख्य भार (जैसे समानांतर [[ पेचदार गियर |पेचदार गियर]] में) के लिए [[ ओर्थोगोनल |ओर्थोगोनल]] बल को [[ स्थिति-विज्ञान |स्थिति-विज्ञान]] के रूप में जाना जाता है।
सतह पर लंबवत या [[ सामान्य वेक्टर ]]दिशा में सतह पर लगाया गया बल भी प्रणोद कहलाता है। बल, और इस प्रकार प्रणोद, [[ न्यूटन (यूनिट) ]]में [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली ]] (एसआई) का उपयोग करके मापा जाता है, और 1 [[ मीटर प्रति सेकंड वर्ग ]] की दर से 1 किलोग्राम द्रव्यमान में तेजी लाने के लिए आवश्यक राशि का प्रतिनिधित्व करता है।<ref>{{Cite web |title=बल और गति: परिभाषा, नियम और सूत्र {{!}} StudySmarter|url=https://www.studysmarter.co.uk/explanations/physics/force/force-and-motion/ |access-date=2022-10-12 |website=StudySmarter UK |language=en-GB}}</ref> [[ मैकेनिकल इंजीनियरिंग ]] में, मुख्य भार (जैसे समानांतर [[ पेचदार गियर ]]्स में) के लिए [[ ओर्थोगोनल ]] बल को [[ स्थिति-विज्ञान ]] के रूप में जाना जाता है।


== उदाहरण ==
== उदाहरण ==
जब हवा को उड़ान के विपरीत दिशा में धकेला जाता है तो [[ फिक्स्ड-विंग विमान ]] प्रोपल्शन सिस्टम आगे की ओर प्रणोद उत्पन्न करता है। यह अलग-अलग तरीकों से किया जा सकता है जैसे[[ प्रोपेलर (विमान) ]] के कताई ब्लेड , [[ जेट इंजिन ]] के प्रोपेलिंग जेट या [[ रॉकेट इंजन ]] से गर्म गैसों को बाहर निकालना।<ref>{{cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/newton3.html|title=न्यूटन का गति का तीसरा नियम|website=www.grc.nasa.gov|access-date=2 April 2020|archive-url=https://web.archive.org/web/20200203022807/https://www.grc.nasa.gov/WWW/K-12/airplane/newton3.html|archive-date=3 February 2020|url-status=live}}</ref> परिवर्तनीय-पिच प्रोपेलर ब्लेड की पिच को उलट कर या जेट इंजन पर [[ थ्रस्ट रिवर्सल ]] का उपयोग करके लैंडिंग के बाद ब्रेक लगाने में सहायता के लिए रिवर्स प्रणोद उत्पन्न किया जा सकता है। [[ रोटरी विंग विमान ]] रोटर्स और प्रणोदक वेक्टरिंग वी/एसटीओएल एयरक्राफ्ट का उपयोग प्रोपेलर या इंजन प्रणोदक का उपयोग विमान के वजन का समर्थन करने और आगे प्रणोदन प्रदान करने के लिए करता है।
जब हवा को उड़ान के विपरीत दिशा में धकेला जाता है तो [[ फिक्स्ड-विंग विमान |फिक्स्ड-विंग विमान]] प्रोपल्शन सिस्टम आगे की ओर प्रणोद उत्पन्न करता है। यह अलग-अलग तरीकों से किया जा सकता है जैसे[[ प्रोपेलर (विमान) | प्रोपेलर (विमान)]] के कताई ब्लेड, [[ जेट इंजिन |जेट इंजिन]] के प्रोपेलिंग जेट या [[ रॉकेट इंजन |रॉकेट इंजन]] से गर्म गैसों को बाहर निकालना।<ref>{{cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/newton3.html|title=न्यूटन का गति का तीसरा नियम|website=www.grc.nasa.gov|access-date=2 April 2020|archive-url=https://web.archive.org/web/20200203022807/https://www.grc.nasa.gov/WWW/K-12/airplane/newton3.html|archive-date=3 February 2020|url-status=live}}</ref> परिवर्तनीय-पिच प्रोपेलर ब्लेड की पिच को उलट कर या जेट इंजन पर [[ थ्रस्ट रिवर्सल |थ्रस्ट रिवर्सल]] का उपयोग करके लैंडिंग के बाद ब्रेक लगाने में सहायता के लिए रिवर्स प्रणोद उत्पन्न किया जा सकता है। [[ रोटरी विंग विमान |रोटरी विंग विमान]] रोटर्स और प्रणोदक वेक्टरिंग वी/एसटीओएल एयरक्राफ्ट का उपयोग प्रोपेलर या इंजन प्रणोदक का उपयोग विमान के वजन का समर्थन करने और आगे प्रणोदन प्रदान करने के लिए करता है।


[[ मोटरबोट ]] प्रोपेलर जब घूमता है तो बल उत्पन्न करता है और पानी को पीछे की ओर धकेलता है।
[[ मोटरबोट | मोटरबोट]] प्रोपेलर जब घूमता है तो बल उत्पन्न करता है और पानी को पीछे की ओर धकेलता है।


[[ राकेट ]] इंजन नोजल के माध्यम से दहन कक्ष से त्वरित [[ निकास गैस ]] के संवेग परिवर्तन की समय-दर के परिमाण के बराबर, लेकिन विपरीत दिशा में एक रॉकेट को आगे बढ़ाया जाता है। यह रॉकेट के संबंध में[[ निकास वेग ]] है, समय-दर जिस पर द्रव्यमान को निष्कासित किया जाता है, या गणितीय शब्दों में:
[[ राकेट | राकेट]] इंजन नोजल के माध्यम से दहन कक्ष से त्वरित [[ निकास गैस |निकास गैस]] के संवेग परिवर्तन की समय-दर के परिमाण के बराबर, लेकिन विपरीत दिशा में एक रॉकेट को आगे बढ़ाया जाता है। यह रॉकेट के संबंध में[[ निकास वेग | निकास वेग]] है, समय-दर जिस पर द्रव्यमान को निष्कासित किया जाता है, या गणितीय शब्दों में:
:<math>\mathbf{T}=\mathbf{v}\frac{\mathrm{d}m}{\mathrm{d}t}</math>
:<math>\mathbf{T}=\mathbf{v}\frac{\mathrm{d}m}{\mathrm{d}t}</math>
जहां टी उत्पन्न प्रणोद (बल) है, <math>\frac {\mathrm{d}m} {\mathrm{d}t}</math> समय के संबंध में द्रव्यमान परिवर्तन की दर है (निकास की द्रव्यमान प्रवाह दर) है, और v रॉकेट के सापेक्ष मापी गई निकास गैसों का वेग है।
जहां टी उत्पन्न प्रणोद (बल) है, <math>\frac {\mathrm{d}m} {\mathrm{d}t}</math> समय के संबंध में द्रव्यमान परिवर्तन की दर है (निकास की द्रव्यमान प्रवाह दर) है, और v रॉकेट के सापेक्ष मापी गई निकास गैसों का वेग है।
Line 17: Line 16:
रॉकेट के ऊर्ध्वाधर लॉन्च के लिए लिफ्टऑफ पर प्रारंभिक जोर भार से अधिक होना चाहिए।
रॉकेट के ऊर्ध्वाधर लॉन्च के लिए लिफ्टऑफ पर प्रारंभिक जोर भार से अधिक होना चाहिए।


तीन [[ अंतरिक्ष शटल ]] [[ अंतरिक्ष यान का मुख्य इंजन ]] में से प्रत्येक 1.[[ Meganewton ]]का प्रणोद पैदा कर सकता है, और प्रत्येक अंतरिक्ष शटल के दो [[ स्पेस शटल सॉलिड रॉकेट बूस्टर ]] {{convert|14.7|MN|lbf|abbr=on|lk=on}}, कुल मिलाकर 29.4 मिलियन।<ref>{{cite web|url=http://www.braeunig.us/space/specs/shuttle.htm|title=स्पेस लॉन्चर्स - स्पेस शटल|website=www.braeunig.us|access-date=16 February 2018|archive-url=https://web.archive.org/web/20180406061909/http://www.braeunig.us/space/specs/shuttle.htm|archive-date=6 April 2018|url-status=live}}</ref>
तीन [[ अंतरिक्ष शटल |अंतरिक्ष शटल]] [[ अंतरिक्ष यान का मुख्य इंजन |अंतरिक्ष यान का मुख्य इंजन]] में से प्रत्येक 1.8 [[ Meganewton |Meganewton]] का प्रणोद पैदा कर सकता है, और प्रत्येक अंतरिक्ष शटल के दो [[ स्पेस शटल सॉलिड रॉकेट बूस्टर |स्पेस शटल सॉलिड रॉकेट बूस्टर]] {{convert|14.7|MN|lbf|abbr=on|lk=on}}, कुल मिलाकर 29.4 मिलियन।<ref>{{cite web|url=http://www.braeunig.us/space/specs/shuttle.htm|title=स्पेस लॉन्चर्स - स्पेस शटल|website=www.braeunig.us|access-date=16 February 2018|archive-url=https://web.archive.org/web/20180406061909/http://www.braeunig.us/space/specs/shuttle.htm|archive-date=6 April 2018|url-status=live}}</ref>
इसके विपरीत, [[ ईवा बचाव के लिए सरलीकृत सहायता ]] (SAFER) में {{convert|3.56|N|lbf|abbr=on}} प्रत्येक के 24 थ्रस्टर हैं।<ref>{{Cite journal |last1=Handley |first1=Patrick M. |last2=Hess |first2=Ronald A. |last3=Robinson |first3=Stephen K. |date=2018-02-01 |title=असाधारण गतिविधि बचाव के लिए नासा सरलीकृत सहायता के लिए वर्णनात्मक पायलट मॉडल|url=https://arc.aiaa.org/doi/10.2514/1.G003131 |journal=Journal of Guidance, Control, and Dynamics |volume=41 |issue=2 |pages=515–518 |doi=10.2514/1.G003131 |bibcode=2018JGCD...41..515H |issn=0731-5090}}</ref>
इसके विपरीत, [[ ईवा बचाव के लिए सरलीकृत सहायता |ईवा बचाव के लिए सरलीकृत सहायता]] (SAFER) में {{convert|3.56|N|lbf|abbr=on}} प्रत्येक के 24 थ्रस्टर हैं।<ref>{{Cite journal |last1=Handley |first1=Patrick M. |last2=Hess |first2=Ronald A. |last3=Robinson |first3=Stephen K. |date=2018-02-01 |title=असाधारण गतिविधि बचाव के लिए नासा सरलीकृत सहायता के लिए वर्णनात्मक पायलट मॉडल|url=https://arc.aiaa.org/doi/10.2514/1.G003131 |journal=Journal of Guidance, Control, and Dynamics |volume=41 |issue=2 |pages=515–518 |doi=10.2514/1.G003131 |bibcode=2018JGCD...41..515H |issn=0731-5090}}</ref>
वायु-श्वास श्रेणी में,एएमटी-यूएसए एटी-180 जेट इंजन रेडियो-नियंत्रित विमान के लिए विकसित किया गया है जो एन (20 पाउंड-बल) का जोर पैदा करता है।<ref>{{cite web
वायु-श्वास श्रेणी में,एएमटी-यूएसए एटी-180 जेट इंजन रेडियो-नियंत्रित विमान के लिए विकसित किया गया है जो एन (20 पाउंड-बल) का जोर पैदा करता है।<ref>{{cite web
| url = http://usamt.com/Mel/comm/comm_products.html
| url = http://usamt.com/Mel/comm/comm_products.html
Line 25: Line 24:
| archive-date = 10 November 2006
| archive-date = 10 November 2006
| url-status = dead
| url-status = dead
}}</ref>[[ GE90 | GE90]]-115B इंजन [[ बोइंग 777 |बोइंग 777]] -300ER पर फिट किया गया है, जिसे [[ गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स |गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स]] द्वारा "दुनिया के सबसे शक्तिशाली वाणिज्यिक जेट इंजन" के रूप में मान्यता प्राप्त है, 569 kN (127,900 lbf) का थ्रस्ट है, जब तक कि इसे [[ जनरल इलेक्ट्रिक GE9X |जनरल इलेक्ट्रिक GE9X]] द्वारा पार नहीं कर लिया गया था। 609 kN (134,300 lbf) पर आगामी [[ बोइंग 777X | बोइंग 777X]] पर फिट किया गया।  
}}</ref>[[ GE90 | GE90]]-115B इंजन [[ बोइंग 777 |बोइंग 777]] -300ER पर फिट किया गया है, जिसे [[ गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स |गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स]] द्वारा "दुनिया के सबसे शक्तिशाली वाणिज्यिक जेट इंजन" के रूप में मान्यता प्राप्त है, 569 kN (127,900 lbf) का थ्रस्ट है, जब तक कि इसे [[ जनरल इलेक्ट्रिक GE9X |जनरल इलेक्ट्रिक GE9X]] द्वारा पार नहीं कर लिया गया था। 609 kN (134,300 lbf) पर आगामी [[ बोइंग 777X |बोइंग 777X]] पर फिट किया गया।  


== अवधारणाएं ==
== अवधारणाएं ==
Line 46: Line 45:


=== प्रणोदक शक्ति पर जोर ===
=== प्रणोदक शक्ति पर जोर ===
एक बहुत ही आम सवाल यह है कि जेट इंजन की प्रणोद रेटिंग की तुलना पिस्टन इंजन की पावर रेटिंग से कैसे की जाए। ऐसी तुलना कठिन है, क्योंकि ये राशियाँ समतुल्य नहीं हैं। एक पिस्टन इंजन अपने आप में विमान को स्थानांतरित नहीं करता है (प्रोपेलर ऐसा करता है), इसलिए पिस्टन इंजन सामान्य रूप से प्रोपेलर को कितनी शक्ति प्रदान करते हैं, इसका मूल्यांकन किया जाता है। तापमान और वायु दाब में बदलाव को छोड़कर, यह मात्रा मूल रूप से थ्रॉटल सेटिंग पर निर्भर करती है।
एक बहुत ही साधारण सवाल यह है कि जेट इंजन की प्रणोद रेटिंग की तुलना पिस्टन इंजन की पावर रेटिंग से कैसे की जाए। ऐसी तुलना कठिन है, क्योंकि ये राशियाँ समतुल्य नहीं हैं। एक पिस्टन इंजन अपने आप में विमान को स्थानांतरित नहीं करता है (प्रोपेलर ऐसा करता है), इसलिए पिस्टन इंजन सामान्य रूप से प्रोपेलर को कितनी शक्ति प्रदान करते हैं, इसका मूल्यांकन किया जाता है। तापमान और वायु दाब में बदलाव को छोड़कर, यह मात्रा मूल रूप से थ्रॉटल सेटिंग पर निर्भर करती है।


एक जेट इंजन में कोई प्रोपेलर नहीं होता है, इसलिए जेट इंजन की प्रणोदक शक्ति इसके प्रणोद से निर्धारित होती है। शक्ति बल है (एफ) यह कुछ दूरी पर कुछ स्थानांतरित करने के लिए लेता है (डी) समय से विभाजित होता है (टी) उस दूरी को स्थानांतरित करने में लगता है:<ref>{{cite web
एक जेट इंजन में कोई प्रोपेलर नहीं होता है, इसलिए जेट इंजन की प्रणोदक शक्ति इसके प्रणोद से निर्धारित होती है। शक्ति बल है (एफ) यह कुछ दूरी पर कुछ स्थानांतरित करने के लिए लेता है (डी) समय से विभाजित होता है (टी) उस दूरी को स्थानांतरित करने में लगता है:<ref>{{cite web
Line 60: Line 59:
रॉकेट या जेट विमान के मामले में, बल इंजन द्वारा उत्पादित प्रणोद (T) है। यदि रॉकेट या विमान एक स्थिर गति से आगे बढ़ रहा है, तो समय से विभाजित दूरी केवल गति है, इसलिए शक्ति प्रणोदन की गति है:<ref>{{cite book |title=विमान उड़ान यांत्रिकी का परिचय|first1=Thomas |last1=Yechout |first2=Steven|last2=Morris |isbn=1-56347-577-4}}</ref>
रॉकेट या जेट विमान के मामले में, बल इंजन द्वारा उत्पादित प्रणोद (T) है। यदि रॉकेट या विमान एक स्थिर गति से आगे बढ़ रहा है, तो समय से विभाजित दूरी केवल गति है, इसलिए शक्ति प्रणोदन की गति है:<ref>{{cite book |title=विमान उड़ान यांत्रिकी का परिचय|first1=Thomas |last1=Yechout |first2=Steven|last2=Morris |isbn=1-56347-577-4}}</ref>
:<math>\mathbf{P}=\mathbf{T}{v}</math>
:<math>\mathbf{P}=\mathbf{T}{v}</math>
यह सूत्र बहुत आश्चर्यजनक लगता है, लेकिन यह सही है: एक जेट इंजन की प्रणोदन शक्ति (या शक्ति उपलब्ध <ref>{{cite book |title=उड़ान को समझना|first1=David |last1=Anderson |first2=Scott |last2=Eberhardt |publisher=McGraw-Hill |isbn=0-07-138666-1 |date=2001}}</ref>) इसकी गति के साथ बढ़ती है। अगर गति शून्य है, तो प्रणोदन शक्ति शून्य है। यदि एक जेट विमान पूर्ण गला घोंट रहा है, लेकिन एक स्थिर परीक्षण स्टैंड से जुड़ा हुआ है, तो जेट इंजन प्रणोदक शक्ति उत्पन्न नहीं करता है, हालांकि अभी भी जोर उत्पन्न होता है। संयोजन [[ पिस्टन इंजन ]]-प्रोपेलर में भी ठीक उसी सूत्र के साथ प्रणोदन शक्ति होती है,और यह शून्य गति पर भी शून्य होगा - लेकिन यह इंजन-प्रोपेलर सेट के लिए है। चाहे विमान चल रहा हो या नहीं, अकेले इंजन एक स्थिर दर पर अपनी रेटेड शक्ति का उत्पादन करना जारी रखेगा।
यह सूत्र बहुत आश्चर्यजनक लगता है, लेकिन यह सही है: एक जेट इंजन की प्रणोदन शक्ति (या शक्ति उपलब्ध <ref>{{cite book |title=उड़ान को समझना|first1=David |last1=Anderson |first2=Scott |last2=Eberhardt |publisher=McGraw-Hill |isbn=0-07-138666-1 |date=2001}}</ref>) इसकी गति के साथ बढ़ती है। अगर गति शून्य है, तो प्रणोदन शक्ति शून्य है। यदि एक जेट विमान पूर्ण गला घोंट रहा है, लेकिन एक स्थिर परीक्षण स्टैंड से जुड़ा हुआ है, तो जेट इंजन प्रणोदक शक्ति उत्पन्न नहीं करता है, हालांकि अभी भी जोर उत्पन्न होता है। संयोजन [[ पिस्टन इंजन |पिस्टन इंजन]] -प्रोपेलर में भी ठीक उसी सूत्र के साथ प्रणोदन शक्ति होती है,और यह शून्य गति पर भी शून्य होगा - लेकिन यह इंजन-प्रोपेलर सेट के लिए है। चाहे विमान चल रहा हो या नहीं, अकेले इंजन एक स्थिर दर पर अपनी रेटेड शक्ति का उत्पादन करना जारी रखेगा।


अब, कल्पना करें कि मजबूत श्रृंखला टूट गई है, और जेट और पिस्टन विमान चलना शुरू हो गए हैं। कम गति पर:
अब, कल्पना करें कि मजबूत श्रृंखला टूट गई है, और जेट और पिस्टन विमान चलना शुरू हो गए हैं। कम गति पर:
Line 75: Line 74:
=== जोर अक्ष ===
=== जोर अक्ष ===


एक हवाई जहाज के लिए प्रणोद अक्ष किसी भी क्षण कुल प्रणोद की [[ कार्रवाई की रेखा ]] है। यह जेट इंजन या प्रणोदक के स्थान, संख्या और विशेषताओं पर निर्भर करता है। यह सामान्य रूप से ड्रैग अक्ष से भिन्न होता है। यदि ऐसा है, तो प्रणोद अक्ष और ड्रैग अक्ष के बीच की दूरी एक क्षण का कारण बनेगी जिसे क्षैतिज स्टेबलाइज़र पर वायुगतिकीय बल में परिवर्तन द्वारा प्रतिरोधित किया जाना चाहिए। विशेष रूप से, [[ बोइंग 737 मैक्स ]], पिछले 737 मॉडलों की तुलना में बड़े, लो-स्लंग इंजन के साथ, थ्रस्ट एक्सिस और ड्रैग एक्सिस के बीच अधिक दूरी थी, जिससे कुछ उड़ान व्यवस्थाओं में नाक ऊपर उठ जाती है, इस प्रकार एक पिच-नियंत्रण प्रणाली की आवश्यकता होती है, प्रणाली [[ पैंतरेबाज़ी विशेषताओं में वृद्धि प्रणाली ]]करती है। MCAS के शुरुआती संस्करण उड़ान में खराब हो गए जिससे विनाशकारी परिणाम हुए, जिसके कारण 2018 और 2019 में [[ बोइंग 737 मैक्स ग्राउंडिंग ]] हुआ।<ref>{{Cite web|url=https://www.aljazeera.com/news/2019/03/control-system-scrutiny-ethiopian-airlines-crash-190311094532350.html|title=इथोपियन एयरलाइंस के दुर्घटनाग्रस्त होने के बाद जांच के दायरे में नियंत्रण प्रणाली|website=Al Jazeera|access-date=7 April 2019|archive-url=https://web.archive.org/web/20190428062403/https://www.aljazeera.com/news/2019/03/control-system-scrutiny-ethiopian-airlines-crash-190311094532350.html|archive-date=28 April 2019|url-status=live}}</ref><ref>{{Cite web|url=https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/|title=बोइंग 737 मैक्स मैन्युवरिंग कैरेक्टरिस्टिक ऑग्मेंटेशन सिस्टम क्या है?|date=14 November 2018|website=The Air Current|language=en-US|access-date=7 April 2019|archive-url=https://web.archive.org/web/20190407184426/https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/|archive-date=7 April 2019|url-status=live}}</ref>
एक हवाई जहाज के लिए प्रणोद अक्ष किसी भी क्षण कुल प्रणोद की [[ कार्रवाई की रेखा |कार्रवाई की रेखा]] है। यह जेट इंजन या प्रणोदक के स्थान, संख्या और विशेषताओं पर निर्भर करता है। यह सामान्य रूप से ड्रैग अक्ष से भिन्न होता है। यदि ऐसा है, तो प्रणोद अक्ष और ड्रैग अक्ष के बीच की दूरी एक क्षण का कारण बनेगी जिसे क्षैतिज स्टेबलाइज़र पर वायुगतिकीय बल में परिवर्तन द्वारा प्रतिरोधित किया जाना चाहिए। विशेष रूप से, [[ बोइंग 737 मैक्स |बोइंग 737 मैक्स]], पिछले 737 मॉडलों की तुलना में बड़े, लो-स्लंग इंजन के साथ, थ्रस्ट एक्सिस और ड्रैग एक्सिस के बीच अधिक दूरी थी, जिससे कुछ उड़ान व्यवस्थाओं में नाक ऊपर उठ जाती है, इस प्रकार एक पिच-नियंत्रण प्रणाली की आवश्यकता होती है, प्रणाली [[ पैंतरेबाज़ी विशेषताओं में वृद्धि प्रणाली |पैंतरेबाज़ी विशेषताओं में वृद्धि प्रणाली]] करती है। MCAS के प्रारम्भिक संस्करण उड़ान में निष्क्रिय हो गए जिससे विनाशकारी परिणाम हुए, जिसके कारण 2018 और 2019 में [[ बोइंग 737 मैक्स ग्राउंडिंग |बोइंग 737 मैक्स ग्राउंडिंग]] हुआ।<ref>{{Cite web|url=https://www.aljazeera.com/news/2019/03/control-system-scrutiny-ethiopian-airlines-crash-190311094532350.html|title=इथोपियन एयरलाइंस के दुर्घटनाग्रस्त होने के बाद जांच के दायरे में नियंत्रण प्रणाली|website=Al Jazeera|access-date=7 April 2019|archive-url=https://web.archive.org/web/20190428062403/https://www.aljazeera.com/news/2019/03/control-system-scrutiny-ethiopian-airlines-crash-190311094532350.html|archive-date=28 April 2019|url-status=live}}</ref><ref>{{Cite web|url=https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/|title=बोइंग 737 मैक्स मैन्युवरिंग कैरेक्टरिस्टिक ऑग्मेंटेशन सिस्टम क्या है?|date=14 November 2018|website=The Air Current|language=en-US|access-date=7 April 2019|archive-url=https://web.archive.org/web/20190407184426/https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/|archive-date=7 April 2019|url-status=live}}</ref>




Line 82: Line 81:
* [[ अस्टर्न प्रणोदन ]]
* [[ अस्टर्न प्रणोदन ]]
* [[ गैस टरबाइन इंजन जोर ]]
* [[ गैस टरबाइन इंजन जोर ]]
* Gimballed प्रणोद, आधुनिक रॉकेटों में सबसे आम है
* Gimballed प्रणोद, आधुनिक रॉकेटों में सबसे साधारण है
* [[ पाउंड का जोर ]] (पाउंड (बल) के समान)
* [[ पाउंड का जोर | पाउंड का जोर]] (पाउंड (बल) के समान)
*[[ स्ट्रीम थ्रस्ट औसत ]]
*[[ स्ट्रीम थ्रस्ट औसत ]]
* [[ थ्रस्ट-टू-वेट अनुपात ]]
* [[ थ्रस्ट-टू-वेट अनुपात ]]
Line 90: Line 89:
* [[ ट्रैक्टिव प्रयास ]]
* [[ ट्रैक्टिव प्रयास ]]


==इस पेज में लापता आंतरिक लिंक की सूची==
*मैकडॉनेल डगलस एफ -15 ईगल
*थ्रस्ट वेक्टरिंग
*पौंड बल
*रेडियो नियंत्रित विमान
*गैर रेखीय
*एरोडायनामिक ड्रैग
*पल (भौतिकी)
*गिंबल थ्रस्ट
*पौंड (बल)
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


{{Authority control}}
{{Authority control}}
[[श्रेणी:वायुगतिकी]]
[[श्रेणी:बल]]
[[श्रेणी:अस्थायी दरें]]
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/12/2022]]
[[Category:Created On 26/12/2022]]

Revision as of 14:15, 19 January 2023

जनरल डायनेमिक्स F-16 लड़ाकू विमान दोनों को शक्ति प्रदान करता है।

प्रणोद एक प्रतिक्रिया (भौतिकी) बल (भौतिकी) है जिसे न्यूटन के तीसरे नियम द्वारा मात्रात्मक रूप में वर्णित किया गया है। जब कोई प्रणाली द्रव्यमान को एक दिशा में बाहर निकालती या त्वरण करती है, तो त्वरित द्रव्यमान उस प्रणाली पर लागू होने के लिए समान परिमाण (वेक्टर) लेकिन विपरीत दिशा के बल का कारण बनती है।[1]

सतह पर लंबवत या सामान्य वेक्टर दिशा में सतह पर लगाया गया बल भी प्रणोद कहलाता है। बल, और इस प्रकार प्रणोद, न्यूटन (यूनिट) में इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) का उपयोग करके मापा जाता है, और 1 मीटर प्रति सेकंड वर्ग की दर से 1 किलोग्राम द्रव्यमान में तेजी लाने के लिए आवश्यक राशि का प्रतिनिधित्व करता है।[2] मैकेनिकल इंजीनियरिंग में, मुख्य भार (जैसे समानांतर पेचदार गियर में) के लिए ओर्थोगोनल बल को स्थिति-विज्ञान के रूप में जाना जाता है।

उदाहरण

जब हवा को उड़ान के विपरीत दिशा में धकेला जाता है तो फिक्स्ड-विंग विमान प्रोपल्शन सिस्टम आगे की ओर प्रणोद उत्पन्न करता है। यह अलग-अलग तरीकों से किया जा सकता है जैसे प्रोपेलर (विमान) के कताई ब्लेड, जेट इंजिन के प्रोपेलिंग जेट या रॉकेट इंजन से गर्म गैसों को बाहर निकालना।[3] परिवर्तनीय-पिच प्रोपेलर ब्लेड की पिच को उलट कर या जेट इंजन पर थ्रस्ट रिवर्सल का उपयोग करके लैंडिंग के बाद ब्रेक लगाने में सहायता के लिए रिवर्स प्रणोद उत्पन्न किया जा सकता है। रोटरी विंग विमान रोटर्स और प्रणोदक वेक्टरिंग वी/एसटीओएल एयरक्राफ्ट का उपयोग प्रोपेलर या इंजन प्रणोदक का उपयोग विमान के वजन का समर्थन करने और आगे प्रणोदन प्रदान करने के लिए करता है।

मोटरबोट प्रोपेलर जब घूमता है तो बल उत्पन्न करता है और पानी को पीछे की ओर धकेलता है।

राकेट इंजन नोजल के माध्यम से दहन कक्ष से त्वरित निकास गैस के संवेग परिवर्तन की समय-दर के परिमाण के बराबर, लेकिन विपरीत दिशा में एक रॉकेट को आगे बढ़ाया जाता है। यह रॉकेट के संबंध में निकास वेग है, समय-दर जिस पर द्रव्यमान को निष्कासित किया जाता है, या गणितीय शब्दों में:

जहां टी उत्पन्न प्रणोद (बल) है, समय के संबंध में द्रव्यमान परिवर्तन की दर है (निकास की द्रव्यमान प्रवाह दर) है, और v रॉकेट के सापेक्ष मापी गई निकास गैसों का वेग है।

रॉकेट के ऊर्ध्वाधर लॉन्च के लिए लिफ्टऑफ पर प्रारंभिक जोर भार से अधिक होना चाहिए।

तीन अंतरिक्ष शटल अंतरिक्ष यान का मुख्य इंजन में से प्रत्येक 1.8 Meganewton का प्रणोद पैदा कर सकता है, और प्रत्येक अंतरिक्ष शटल के दो स्पेस शटल सॉलिड रॉकेट बूस्टर 14.7 MN (3,300,000 lbf), कुल मिलाकर 29.4 मिलियन।[4] इसके विपरीत, ईवा बचाव के लिए सरलीकृत सहायता (SAFER) में 3.56 N (0.80 lbf) प्रत्येक के 24 थ्रस्टर हैं।[5] वायु-श्वास श्रेणी में,एएमटी-यूएसए एटी-180 जेट इंजन रेडियो-नियंत्रित विमान के लिए विकसित किया गया है जो एन (20 पाउंड-बल) का जोर पैदा करता है।[6] GE90-115B इंजन बोइंग 777 -300ER पर फिट किया गया है, जिसे गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स द्वारा "दुनिया के सबसे शक्तिशाली वाणिज्यिक जेट इंजन" के रूप में मान्यता प्राप्त है, 569 kN (127,900 lbf) का थ्रस्ट है, जब तक कि इसे जनरल इलेक्ट्रिक GE9X द्वारा पार नहीं कर लिया गया था। 609 kN (134,300 lbf) पर आगामी बोइंग 777X पर फिट किया गया।

अवधारणाएं

सत्ता पर जोर

प्रणोद उत्पन्न करने के लिए आवश्यक शक्ति और प्रणोद के बल को अरेखीय तरीके से संबंधित किया जा सकता है। सामान्य रूप में, . आनुपातिकता स्थिरांक बदलता रहता है, और एक समान प्रवाह के लिए हल किया जा सकता है, जहाँ आने वाली वायु वेग है, एक्चुएटर डिस्क पर वेग है, और अंतिम निकास वेग है:

डिस्क पर वेग के लिए समाधान, , तो हमारे पास है:

जब आने वाली हवा को एक ठहराव से त्वरित किया जाता है - उदाहरण के लिए जब मँडरा रहा हो - तब , और हम पा सकते हैं:

यहाँ से हम देख सकते हैं संबंध, खोज:

आनुपातिकता स्थिरांक का व्युत्क्रम, एक अन्यथा-परिपूर्ण थ्रस्टर की "दक्षता", द्रव के प्रवाहित आयतन के अनुप्रस्थ काट के क्षेत्रफल के समानुपाती होता है () और तरल पदार्थ का घनत्व (). यह समझाने में मदद करता है कि पानी के माध्यम से आगे बढ़ना क्यों आसान है और क्यों विमान में जलयान की तुलना में बहुत बड़े प्रोपेलर होते हैं।

प्रणोदक शक्ति पर जोर

एक बहुत ही साधारण सवाल यह है कि जेट इंजन की प्रणोद रेटिंग की तुलना पिस्टन इंजन की पावर रेटिंग से कैसे की जाए। ऐसी तुलना कठिन है, क्योंकि ये राशियाँ समतुल्य नहीं हैं। एक पिस्टन इंजन अपने आप में विमान को स्थानांतरित नहीं करता है (प्रोपेलर ऐसा करता है), इसलिए पिस्टन इंजन सामान्य रूप से प्रोपेलर को कितनी शक्ति प्रदान करते हैं, इसका मूल्यांकन किया जाता है। तापमान और वायु दाब में बदलाव को छोड़कर, यह मात्रा मूल रूप से थ्रॉटल सेटिंग पर निर्भर करती है।

एक जेट इंजन में कोई प्रोपेलर नहीं होता है, इसलिए जेट इंजन की प्रणोदक शक्ति इसके प्रणोद से निर्धारित होती है। शक्ति बल है (एफ) यह कुछ दूरी पर कुछ स्थानांतरित करने के लिए लेता है (डी) समय से विभाजित होता है (टी) उस दूरी को स्थानांतरित करने में लगता है:[7]

रॉकेट या जेट विमान के मामले में, बल इंजन द्वारा उत्पादित प्रणोद (T) है। यदि रॉकेट या विमान एक स्थिर गति से आगे बढ़ रहा है, तो समय से विभाजित दूरी केवल गति है, इसलिए शक्ति प्रणोदन की गति है:[8]

यह सूत्र बहुत आश्चर्यजनक लगता है, लेकिन यह सही है: एक जेट इंजन की प्रणोदन शक्ति (या शक्ति उपलब्ध [9]) इसकी गति के साथ बढ़ती है। अगर गति शून्य है, तो प्रणोदन शक्ति शून्य है। यदि एक जेट विमान पूर्ण गला घोंट रहा है, लेकिन एक स्थिर परीक्षण स्टैंड से जुड़ा हुआ है, तो जेट इंजन प्रणोदक शक्ति उत्पन्न नहीं करता है, हालांकि अभी भी जोर उत्पन्न होता है। संयोजन पिस्टन इंजन -प्रोपेलर में भी ठीक उसी सूत्र के साथ प्रणोदन शक्ति होती है,और यह शून्य गति पर भी शून्य होगा - लेकिन यह इंजन-प्रोपेलर सेट के लिए है। चाहे विमान चल रहा हो या नहीं, अकेले इंजन एक स्थिर दर पर अपनी रेटेड शक्ति का उत्पादन करना जारी रखेगा।

अब, कल्पना करें कि मजबूत श्रृंखला टूट गई है, और जेट और पिस्टन विमान चलना शुरू हो गए हैं। कम गति पर:

पिस्टन इंजन में निरंतर 100% शक्ति होगी, और प्रोपेलर का प्रणोद गति के साथ बदलता रहेगा।

जेट इंजन में निरंतर 100% प्रणोद होगा, और इंजन की शक्ति गति के साथ बदलती रहेगी।

अतिरिक्त जोर

यदि एक संचालित विमान थ्रस्ट टी उत्पन्न कर रहा है और ड्रैग डी का अनुभव कर रहा है, तो दोनों के बीच का अंतर, टी-डी, अतिरिक्त थ्रस्ट कहा जाता है। वायुयान का तात्क्षणिक प्रदर्शन अधिकतर जोर के अतिरिक्त पर निर्भर करता है।

अतिरिक्त थ्रस्ट एकvयूक्लिडियन वेक्टर है और थ्रस्ट वेक्टर और ड्रैग वेक्टर के बीच वेक्टर अंतर के रूप में निर्धारित होता है।

जोर अक्ष

एक हवाई जहाज के लिए प्रणोद अक्ष किसी भी क्षण कुल प्रणोद की कार्रवाई की रेखा है। यह जेट इंजन या प्रणोदक के स्थान, संख्या और विशेषताओं पर निर्भर करता है। यह सामान्य रूप से ड्रैग अक्ष से भिन्न होता है। यदि ऐसा है, तो प्रणोद अक्ष और ड्रैग अक्ष के बीच की दूरी एक क्षण का कारण बनेगी जिसे क्षैतिज स्टेबलाइज़र पर वायुगतिकीय बल में परिवर्तन द्वारा प्रतिरोधित किया जाना चाहिए। विशेष रूप से, बोइंग 737 मैक्स, पिछले 737 मॉडलों की तुलना में बड़े, लो-स्लंग इंजन के साथ, थ्रस्ट एक्सिस और ड्रैग एक्सिस के बीच अधिक दूरी थी, जिससे कुछ उड़ान व्यवस्थाओं में नाक ऊपर उठ जाती है, इस प्रकार एक पिच-नियंत्रण प्रणाली की आवश्यकता होती है, प्रणाली पैंतरेबाज़ी विशेषताओं में वृद्धि प्रणाली करती है। MCAS के प्रारम्भिक संस्करण उड़ान में निष्क्रिय हो गए जिससे विनाशकारी परिणाम हुए, जिसके कारण 2018 और 2019 में बोइंग 737 मैक्स ग्राउंडिंग हुआ।[10][11]


यह भी देखें

संदर्भ

  1. "थ्रस्ट क्या है?". www.grc.nasa.gov. Archived from the original on 14 February 2020. Retrieved 2 April 2020.
  2. "बल और गति: परिभाषा, नियम और सूत्र | StudySmarter". StudySmarter UK (in British English). Retrieved 12 October 2022.
  3. "न्यूटन का गति का तीसरा नियम". www.grc.nasa.gov. Archived from the original on 3 February 2020. Retrieved 2 April 2020.
  4. "स्पेस लॉन्चर्स - स्पेस शटल". www.braeunig.us. Archived from the original on 6 April 2018. Retrieved 16 February 2018.
  5. Handley, Patrick M.; Hess, Ronald A.; Robinson, Stephen K. (1 February 2018). "असाधारण गतिविधि बचाव के लिए नासा सरलीकृत सहायता के लिए वर्णनात्मक पायलट मॉडल". Journal of Guidance, Control, and Dynamics. 41 (2): 515–518. Bibcode:2018JGCD...41..515H. doi:10.2514/1.G003131. ISSN 0731-5090.
  6. "एएमटी-यूएसए जेट इंजन उत्पाद जानकारी". Archived from the original on 10 November 2006. Retrieved 13 December 2006.
  7. Yoon, Joe. "थ्रस्ट को हॉर्सपावर में बदलें". Archived from the original on 13 June 2010. Retrieved 1 May 2009.
  8. Yechout, Thomas; Morris, Steven. विमान उड़ान यांत्रिकी का परिचय. ISBN 1-56347-577-4.
  9. Anderson, David; Eberhardt, Scott (2001). उड़ान को समझना. McGraw-Hill. ISBN 0-07-138666-1.
  10. "इथोपियन एयरलाइंस के दुर्घटनाग्रस्त होने के बाद जांच के दायरे में नियंत्रण प्रणाली". Al Jazeera. Archived from the original on 28 April 2019. Retrieved 7 April 2019.
  11. "बोइंग 737 मैक्स मैन्युवरिंग कैरेक्टरिस्टिक ऑग्मेंटेशन सिस्टम क्या है?". The Air Current (in English). 14 November 2018. Archived from the original on 7 April 2019. Retrieved 7 April 2019.