फ़्लू-गैस स्टैक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:GRES-2.jpg|thumb|right|180px|[[कजाकिस्तान]] के [[एकिबस्तुज]] में जीआरईएस 2 पावर स्टेशन पर एक फ्लू गैस के ढेर, दुनिया में अपनी तरह का सबसे ऊंचा 420 मीटर है<ref>[http://www.skyscraperpage.com/diagrams/?20374745 Diagram of 25 tallest flue gas stacks worldwide]</ref><!-- The image is consistent with what the powerplant itself (http://www.gres2.kz/index.php?view=3&in=gallery&id=15#) claims to be the GRES-2 stack -->]]एक फ़्लू-गैस स्टैक जिसे स्मोक स्टैक या [[ चिमनी ]] स्टैक के रूप में जाना जाता हैं। और तरल पदार्थ चिमनी का एक ऊर्ध्वाधर पाइप मार्ग या इसी तरह की संरचना होती है जिसके माध्यम से [[ दहन ]] उत्पाद गैसों को [[ फ्लू गैस ]] कहा जाता है जो बाहरी वायु में समाप्त हो जाती हैं। जब कोयले, तेल, प्राकृतिक गैस, लकड़ी या किसी अन्य ईंधन को औद्योगिक भट्टी, विद्युत संयंत्र के भाप उत्पादन करने वाले बॉयलर या अन्य बड़े दहन उपकरण के समय किया जाता है फ्लू गैस सामान्यतः [[कार्बन डाइऑक्साइड]] (CO2) और जल वाष्प के साथ [[नाइट्रोजन]] और [[ऑक्सीजन]] के सेवन से बनने वाली वायु से बनी होती है। इसमें कुछ प्रतिशत [[ वायुमंडलीय कण पदार्थ | वायुमंडलीय कण पदार्थ]] [[ कार्बन मोनोआक्साइड | कार्बन मोनोआक्साइड]] [[ नाइट्रोजन आक्साइड | नाइट्रोजन आक्साइड]] और [[ सल्फर ऑक्साइड ]] जैसे प्रदूषकों का एक छोटा प्रतिशत भी होता है। चिमनी के प्रभाव और प्रदूषकों के फैलाव को बढ़ाने के लिए फ़्लू गैस के ढेर अधिकांशतः 400 मीटर 1300 फ़ीट या उससे अधिक पर्याप्त रूप में लंबे होते हैं।       
[[File:GRES-2.jpg|thumb|right|180px|[[कजाकिस्तान]] के [[एकिबस्तुज]] में जीआरईएस 2 पावर स्टेशन पर एक फ्लू गैस के ढेर, दुनिया में अपनी तरह का सबसे ऊंचा 420 मीटर है<ref>[http://www.skyscraperpage.com/diagrams/?20374745 Diagram of 25 tallest flue gas stacks worldwide]</ref>]]एक फ़्लू-गैस स्टैक जिसे स्मोक स्टैक या [[ चिमनी |चिमनी]] स्टैक के रूप में जाना जाता हैं। और तरल पदार्थ चिमनी का एक ऊर्ध्वाधर पाइप मार्ग या इसी तरह की संरचना होती है जिसके माध्यम से [[ दहन |दहन]] उत्पाद गैसों को [[ फ्लू गैस |फ्लू गैस]] कहा जाता है जो बाहरी वायु में समाप्त हो जाती हैं। जब कोयले, तेल, प्राकृतिक गैस, लकड़ी या किसी अन्य ईंधन को औद्योगिक भट्टी, विद्युत संयंत्र के भाप उत्पादन करने वाले बॉयलर या अन्य बड़े दहन उपकरण के समय किया जाता है फ्लू गैस सामान्यतः [[कार्बन डाइऑक्साइड]] और जल वाष्प के साथ [[नाइट्रोजन]] और [[ऑक्सीजन]] के सेवन से बनने वाली वायु से बनी होती है। इसमें कुछ प्रतिशत [[ वायुमंडलीय कण पदार्थ |वायुमंडलीय कण पदार्थ]] [[ कार्बन मोनोआक्साइड |कार्बन मोनोआक्साइड]] [[ नाइट्रोजन आक्साइड |नाइट्रोजन आक्साइड]] और [[ सल्फर ऑक्साइड |सल्फर ऑक्साइड]] जैसे प्रदूषकों का एक छोटा प्रतिशत भी होता है। चिमनी के प्रभाव और प्रदूषकों के फैलाव को बढ़ाने के लिए फ़्लू गैस के ढेर अधिकांशतः 400 मीटर 1300 फ़ीट या उससे अधिक पर्याप्त रूप में लंबे होते हैं।       


जब स्टोव, ओवन, चिमनी, भट्टियां और बॉयलर या धुएं की गैसें चूल्हे, रेस्तरां, होटल, या अन्य सार्वजनिक भवनों और छोटे वाणिज्यिक उद्यमों के भीतर अन्य छोटे स्रोतों से फ़्लू गैसों का निकास के लिए उपयोग किये जाते है, तो उन फ़्लू गैस के ढेर को चिमनी कहा जाता है।       
जब स्टोव, ओवन, चिमनी, भट्टियां और बॉयलर या धुएं की गैसें चूल्हे, रेस्तरां, होटल, या अन्य सार्वजनिक भवनों और छोटे वाणिज्यिक उद्यमों के भीतर अन्य छोटे स्रोतों से फ़्लू गैसों का निकास के लिए उपयोग किये जाते है, तो उन फ़्लू गैस के ढेर को चिमनी कहा जाता है।       
== इतिहास ==
== इतिहास ==


प्रथम औद्योगिक चिमनियों का निर्माण सत्रहवीं शताब्दी के मध्य में तब हुआ जब यह पहली बार समझा गया कि किस प्रकार वे भट्ठी के दहन को दहन क्षेत्र में बढ़ा कर उसमें सुधार कर सकते हैं।<ref>Douet, James (1988). ''Going up in Smoke:The History of the Industrial Chimney'', Victorian Society, London, England.  [http://www.victoriansociety.org.uk/caserpts.html Victorian Society Casework Reports] {{webarchive|url=https://web.archive.org/web/20060925221950/http://www.victoriansociety.org.uk/caserpts.html |date=2006-09-25 }}</ref> इस प्रकार उन्होंने भावोत्तेजक भट्ठियों के विकास और कोयला आधारित धातुकर्म उद्योग होते है जो आरंभिक [[औद्योगिक]] क्रांति के प्रमुख क्षेत्र के विकास में महत्वपूर्ण भूमिका निभाई थी। 18 वीं शताब्दी की अधिकांश औद्योगिक चिमनियों को अब सामान्यतः [[ ग्रिप ]] गैस के ढेर के रूप में संदर्भित किया जाता था जो घरेलू चिमनी की तरह भट्ठी की दीवारों में बनाये जाते थे.प्रथम मुक़्त रूप से खड़ी होने वाली औद्योगिक चिमनियां संभवतया वे थीं जिन्हें गलाने वाले सीसे से जुड़े लंबे समय तक संघनित प्रवाह के अंत में खड़ा किया गया था।
प्रथम औद्योगिक चिमनियों का निर्माण सत्रहवीं शताब्दी के मध्य में तब हुआ जब यह पहली बार समझा गया कि किस प्रकार वे भट्ठी के दहन को दहन क्षेत्र में बढ़ा कर उसमें सुधार कर सकते हैं।<ref>Douet, James (1988). ''Going up in Smoke:The History of the Industrial Chimney'', Victorian Society, London, England.  [http://www.victoriansociety.org.uk/caserpts.html Victorian Society Casework Reports] {{webarchive|url=https://web.archive.org/web/20060925221950/http://www.victoriansociety.org.uk/caserpts.html |date=2006-09-25 }}</ref> इस प्रकार उन्होंने भावोत्तेजक भट्ठियों के विकास और कोयला आधारित धातुकर्म उद्योग होते है जो आरंभिक [[औद्योगिक]] क्रांति के प्रमुख क्षेत्र के विकास में महत्वपूर्ण भूमिका निभाई थी। 18 वीं शताब्दी की अधिकांश औद्योगिक चिमनियों को अब सामान्यतः[[ ग्रिप | ग्रिप]] गैस के ढेर के रूप में संदर्भित किया जाता था जो घरेलू चिमनी की तरह भट्ठी की दीवारों में बनाये जाते थे.प्रथम मुक़्त रूप से खड़ी होने वाली औद्योगिक चिमनियां संभवतया वे थीं जिन्हें गलाने वाले सीसे से जुड़े लंबे समय तक संघनित प्रवाह के अंत में खड़ा किया गया था।


औद्योगिक चिमनियों और औद्योगिक क्रांति के विशिष्ट धुएँ से भरे परिदृश्य के बीच शक्तिशाली जुड़ाव अधिकांश निर्माण प्रक्रियाओं के लिए भाप इंजन के सार्वभौमिक अनुप्रयोग के कारण था। चिमनी भाप उत्पन्न करने वाले बॉयलर का हिस्सा है और इसका विकास भाप इंजन की बल में वृद्धि के साथ निकटता से जुड़ा होता है। [[ थॉमस न्यूकोमेन | थॉमस न्यूकोमेन]] के [[ भाप का इंजन | भाप इंजन]] की चिमनियों को इंजन हाउस की दीवारों में सम्मलित किया गया था। 19वीं शताब्दी की शुरुआत में दिखाई देने वाली ऊंची, मुक्त-खड़ी औद्योगिक चिमनियां [[ जेम्स वॉट | जेम्स वॉट]] के दोहरे बल वाले इंजनों से जुड़े बॉयलर डिजाइन में बदलाव से संबंधित होती थीं और वे पूरे विक्टोरियन युग में पूरी तरह से विकसित होती थीं। सजावटी अलंकरण सन् 1860 के दशक में अनेक औद्योगिक चिमनियों की होते थे जिसमें ओवर-सेलिंग कैप और पैटर्न वाली ईंटवर्क होते थे।
औद्योगिक चिमनियों और औद्योगिक क्रांति के विशिष्ट धुएँ से भरे परिदृश्य के बीच शक्तिशाली जुड़ाव अधिकांश निर्माण प्रक्रियाओं के लिए भाप इंजन के सार्वभौमिक अनुप्रयोग के कारण था। चिमनी भाप उत्पन्न करने वाले बॉयलर का हिस्सा है और इसका विकास भाप इंजन की बल में वृद्धि के साथ निकटता से जुड़ा होता है। [[ थॉमस न्यूकोमेन |थॉमस न्यूकोमेन]] के [[ भाप का इंजन |भाप इंजन]] की चिमनियों को इंजन हाउस की दीवारों में सम्मलित किया गया था। 19वीं शताब्दी की शुरुआत में दिखाई देने वाली ऊंची, मुक्त-खड़ी औद्योगिक चिमनियां [[ जेम्स वॉट |जेम्स वॉट]] के दोहरे बल वाले इंजनों से जुड़े बॉयलर डिजाइन में बदलाव से संबंधित होती थीं और वे पूरे विक्टोरियन युग में पूरी तरह से विकसित होती थीं। सजावटी अलंकरण सन् 1860 के दशक में अनेक औद्योगिक चिमनियों की होते थे जिसमें ओवर-सेलिंग कैप और पैटर्न वाली ईंटवर्क होते थे।


20 वीं शताब्दी के प्रारंभ में पंखे से मदद के लिए मजबूर प्रारूप के आविष्कार ने औद्योगिक चिमनी का मूल कार्य समाप्त कर दिया, जो भाप उत्पन्न करने वाले बॉयलरों या अन्य भट्टियों में वायु निर्मित करने के  लिए उपयोग किया जाता है। भाप इंजन को प्रमुख प्रेरक के रूप में प्रस्तुत करने से पहले डीजल इंजनों द्वारा और उसके बाद विद्युत मोटरों द्वारा भाप इंजन को एक प्रमुख चालक के रूप में बदलने के साथ, प्रारंभिक औद्योगिक चिमनियाँ औद्योगिक परिदृश्य से गायब होने लगीं। निर्माण सामग्री पत्थर और ईंट से स्टील और बाद में प्रबलित कंक्रीट में बदल गई और सरकारी वायु प्रदूषण नियंत्रण नियमों का पालन करने के लिए दहन फ़्लू गैसों को फैलाने की आवश्यकता के अनुसार औद्योगिक चिमनी की ऊंचाई निर्धारित करती है।
20 वीं शताब्दी के प्रारंभ में पंखे से मदद के लिए मजबूर प्रारूप के आविष्कार ने औद्योगिक चिमनी का मूल कार्य समाप्त कर दिया, जो भाप उत्पन्न करने वाले बॉयलरों या अन्य भट्टियों में वायु निर्मित करने के लिए उपयोग किया जाता है। भाप इंजन को प्रमुख प्रेरक के रूप में प्रस्तुत करने से पहले डीजल इंजनों द्वारा और उसके बाद विद्युत मोटरों द्वारा भाप इंजन को एक प्रमुख चालक के रूप में बदलने के साथ, प्रारंभिक औद्योगिक चिमनियाँ औद्योगिक परिदृश्य से गायब होने लगीं। निर्माण सामग्री पत्थर और ईंट से स्टील और बाद में प्रबलित कंक्रीट में बदल गई और सरकारी वायु प्रदूषण नियंत्रण नियमों का पालन करने के लिए दहन फ़्लू गैसों को फैलाने की आवश्यकता के अनुसार औद्योगिक चिमनी की ऊंचाई निर्धारित करती है।


== फ्लू-गैस स्टैक ड्राफ्ट ==
== फ्लू-गैस स्टैक ड्राफ्ट ==
Line 14: Line 14:
{{main|क्रमबद्ध प्रभाव}}
{{main|क्रमबद्ध प्रभाव}}


फ़्लू गैस के ढेर के अंदर दहन फ्ल्यू गैस बाहर की वायु की तुलना में बहुत अधिक गर्म होती हैं और इसलिए परिवेश वायु की तुलना में कम घनी होती हैं। इससे गर्म फ़्लू गैस के ऊर्ध्वाधर स्तंभ के निचले भाग में बाहरी वायु के संबंधित स्तंभ के तल पर नीचे के दबाव से कम होता है। चिमनी के बाहर उच्च दबाव वह प्रेरक बल होता है जो आवश्यक दहन वायु को दहन क्षेत्र में धकेलती है और चिमनी से ग्रिप गैस को ऊपर और बाहर भी ले जाती है। दहन वायु और फ़्लू गैस के प्रवाह या बहाव को प्राकृतिक ड्राफ्ट, प्राकृतिक वेंटिलेशन, चिमनी प्रभाव या स्टैक प्रभाव कहा जाता है स्टैक जितना लंबा होता है उतना ही अधिक ड्राफ्ट बनता है।
फ़्लू गैस के ढेर के अंदर दहन फ्ल्यू गैस बाहर की वायु की तुलना में बहुत अधिक गर्म होती हैं और इसलिए परिवेश वायु की तुलना में कम घनी होती हैं। इससे गर्म फ़्लू गैस के ऊर्ध्वाधर स्तंभ के निचले भाग में बाहरी वायु के संबंधित स्तंभ के तल पर नीचे के दबाव से कम होता है। चिमनी के बाहर उच्च दबाव वह प्रेरक बल होता है जो आवश्यक दहन वायु को दहन क्षेत्र में धकेलती है और चिमनी से ग्रिप गैस को ऊपर और बाहर भी ले जाती है। दहन वायु और फ़्लू गैस के प्रवाह या बहाव को प्राकृतिक ड्राफ्ट, प्राकृतिक वेंटिलेशन, चिमनी प्रभाव या स्टैक प्रभाव कहा जाता है स्टैक जितना लंबा होता है उतना ही अधिक ड्राफ्ट बनता है।


नीचे दिया गया समीकरण ड्राफ्ट द्वारा बनाए गए फ़्लू गैस के ढेर के नीचे और ऊपर के बीच दबाव अंतर ΔP का अनुमान प्रदान करता है<ref>[http://www.arch.hku.hk/teaching/lectures/airvent/sect02.htm Natural Ventilation Lecture 2] {{webarchive|url=https://web.archive.org/web/20060512181617/http://www.arch.hku.hk/teaching/lectures/airvent/sect02.htm |date=2006-05-12 }}</ref><ref>{{cite book|author1=Perry, R.H.|author2=Green, Don W.|title=Perry's Chemical Engineers' Handbook|edition=6th Edition (page 9-72)|publisher=McGraw-Hill Book Company|year=1984|isbn=0-07-049479-7|url-access=registration|url=https://archive.org/details/perryschemicalen04newy}}</ref>
नीचे दिया गया समीकरण ड्राफ्ट द्वारा बनाए गए फ़्लू गैस के ढेर के नीचे और ऊपर के बीच दबाव अंतर ΔP का अनुमान प्रदान करता है<ref>[http://www.arch.hku.hk/teaching/lectures/airvent/sect02.htm Natural Ventilation Lecture 2] {{webarchive|url=https://web.archive.org/web/20060512181617/http://www.arch.hku.hk/teaching/lectures/airvent/sect02.htm |date=2006-05-12 }}</ref><ref>{{cite book|author1=Perry, R.H.|author2=Green, Don W.|title=Perry's Chemical Engineers' Handbook|edition=6th Edition (page 9-72)|publisher=McGraw-Hill Book Company|year=1984|isbn=0-07-049479-7|url-access=registration|url=https://archive.org/details/perryschemicalen04newy}}</ref>
:<math>\Delta P =Cah\bigg(\frac {1}{T_o} - \frac {1}{T_i}\bigg)</math>
:<math>\Delta P =Cah\bigg(\frac {1}{T_o} - \frac {1}{T_i}\bigg)</math>
जहाँ पे,
जहाँ पे,
* ΔP: [[ पास्कल (यूनिट) ]] में उपलब्ध दबाव अंतर के रूप में  होता है
* ΔP: [[ पास्कल (यूनिट) |पास्कल (यूनिट)]] में उपलब्ध दबाव अंतर के रूप में होता है
* सी = 0.0342 मान होता है
* सी = 0.0342 मान होता है
* ए: वायुमंडलीय दबाव को पीए के रूप में व्यक्त करते है
* ए: वायुमंडलीय दबाव को पीए के रूप में व्यक्त करते है
Line 30: Line 30:
== ड्राफ्ट द्वारा प्रेरित ग्रिप गैस प्रवाह दर ==
== ड्राफ्ट द्वारा प्रेरित ग्रिप गैस प्रवाह दर ==


प्रथम अनुमान सन्निकटन के रूप में, निम्न समीकरण का प्रयोग फ़्लू गैस के ढेर के प्रारूप से प्रेरित तरल गैस प्रवाह-दर के अनुमान के लिए किया जा सकता है। इस समीकरण में यह मान लिया गया है कि ग्रिप गैस का मोलर द्रव्यमान और बाहरी वायु समान रूप में होता है। यहां पर घर्षण प्रतिरोध और ऊष्मा हास नगण्य रहता है।<ref>[http://www.arch.hku.hk/teaching/lectures/airvent/sect03.htm Natural Ventilation Lecture 3] {{webarchive|url=https://web.archive.org/web/20060702065714/http://www.arch.hku.hk/teaching/lectures/airvent/sect03.htm |date=2006-07-02 }}</ref>
प्रथम अनुमान सन्निकटन के रूप में, निम्न समीकरण का प्रयोग फ़्लू गैस के ढेर के प्रारूप से प्रेरित तरल गैस प्रवाह-दर के अनुमान के लिए किया जा सकता है। इस समीकरण में यह मान लिया गया है कि ग्रिप गैस का मोलर द्रव्यमान और बाहरी वायु समान रूप में होता है। यहां पर घर्षण प्रतिरोध और ऊष्मा हास नगण्य रहता है।<ref>[http://www.arch.hku.hk/teaching/lectures/airvent/sect03.htm Natural Ventilation Lecture 3] {{webarchive|url=https://web.archive.org/web/20060702065714/http://www.arch.hku.hk/teaching/lectures/airvent/sect03.htm |date=2006-07-02 }}</ref>
:<math>Q = CA\sqrt {2gH\frac{T_i - T_o}{T_i}}</math>
:<math>Q = CA\sqrt {2gH\frac{T_i - T_o}{T_i}}</math>
जहाँ पे,
जहाँ पे,
* क्यू: ग्रिप-गैस प्रवाह-दर, मी³/से रूप में होता है।
* क्यू: ग्रिप-गैस प्रवाह-दर, मी³/से रूप में होता है।
* ए: चिमनी का अनुप्रस्थ क्षेत्र मी² होता है। यह मानते हुए कि इसका एक लगातार क्रॉस-सेक्शन होता है।
* ए: चिमनी का अनुप्रस्थ क्षेत्र मी² होता है। यह मानते हुए कि इसका एक लगातार क्रॉस-सेक्शन होता है।
* सी : निर्वहन गुणांक सामान्यतः 0.65–0.70 लिया जाता है।
* सी : निर्वहन गुणांक सामान्यतः 0.65–0.70 लिया जाता है।
* g: समुद्र तल पर मानक गुरुत्वीय त्वरण = 9.807 मी/से² रूप में होता है।
* g: समुद्र तल पर मानक गुरुत्वीय त्वरण = 9.807 मी/से² रूप में होता है।
* एच : चिमनी की ऊंचाई मीटर में होती है
* एच : चिमनी की ऊंचाई मीटर में होती है
* टी<sub>i</sub>: स्टैक में ग्रिप गैस का पूर्ण औसत तापमान, केल्विन (K) रूप में होता है।
* टी<sub>i</sub>: स्टैक में ग्रिप गैस का पूर्ण औसत तापमान, केल्विन (K) रूप में होता है।
* टी<sub>o</sub>: पूर्ण बाहरी वायु का तापमान केल्विन (K) रूप में होता है।
* टी<sub>o</sub>: पूर्ण बाहरी वायु का तापमान केल्विन (K) रूप में होता है।


यह समीकरण केवल तभी मान्य होता है जब ड्राफ्ट प्रवाह का प्रतिरोध एक एकल छिद्र के कारण होता है जिसमें लक्षण निर्वहन गुणांक सी के रूप में होता है। यदि अधिकांश स्थितियों में प्रतिरोध मुख्य रूप से फ़्लू स्टैक द्वारा ही लगाया जाता है। तो इन स्थितियो में, प्रतिरोध के ढेर की ऊँचाई H के समानुपाती होता है। इस के बाद उपरोक्त समीकरण में एच को (Q) पर परिवर्तन कर दिया गया है जो कि वह पैरामीटर के सापेक्ष निश्चर होता है।।
यह समीकरण केवल तभी मान्य होता है जब ड्राफ्ट प्रवाह का प्रतिरोध एक एकल छिद्र के कारण होता है जिसमें लक्षण निर्वहन गुणांक सी के रूप में होता है। यदि अधिकांश स्थितियों में प्रतिरोध मुख्य रूप से फ़्लू स्टैक द्वारा ही लगाया जाता है। तो इन स्थितियो में, प्रतिरोध के ढेर की ऊँचाई H के समानुपाती होता है। इस के बाद उपरोक्त समीकरण में एच को (Q) पर परिवर्तन कर दिया गया है जो कि वह पैरामीटर के सापेक्ष निश्चर होता है।।


प्राकृतिक ड्राफ्ट की सही मात्रा प्रदान करने के लिए चिमनियों और ढेरों को डिजाइन करने में बहुत सारे कारक सम्मलित होते हैं जैसे,
प्राकृतिक ड्राफ्ट की सही मात्रा प्रदान करने के लिए चिमनियों और ढेरों को डिजाइन करने में बहुत सारे कारक सम्मलित होते हैं जैसे,


* ढेर की ऊंचाई और व्यास।
* ढेर की ऊंचाई और व्यास।
* पूर्ण दहन सुनिश्चित करने के लिए आवश्यक अतिरिक्त दहन वायु की वांछित मात्रा के रूप में होता है।
* पूर्ण दहन सुनिश्चित करने के लिए आवश्यक अतिरिक्त दहन वायु की वांछित मात्रा के रूप में होता है।
* दहन क्षेत्र से निकलने वाली फ्लू गैसों का तापमान होता है।
* दहन क्षेत्र से निकलने वाली फ्लू गैसों का तापमान होता है।
* दहन फ़्लू गैस की संरचना, जो फ़्लू-गैस घनत्व निर्धारित करती है।
* दहन फ़्लू गैस की संरचना, जो फ़्लू-गैस घनत्व निर्धारित करती है।
Line 55: Line 55:
उपरोक्त डिज़ाइन कारकों में से कई की गणना के लिए परीक्षण-और-त्रुटि पुनरावर्तक विधियों की आवश्यकता होती है।
उपरोक्त डिज़ाइन कारकों में से कई की गणना के लिए परीक्षण-और-त्रुटि पुनरावर्तक विधियों की आवश्यकता होती है।


अधिकांश देशों में सरकारी एजेंसियों के पास विशिष्ट कोड होते हैं जो यह नियंत्रित करते हैं कि इस तरह की डिज़ाइन गणना कैसे की जानी चाहिए। कई गैर सरकारी संगठनों के पास चिमनी और ढेर के डिजाइन को नियंत्रित करने वाले कोड भी होते है विशेष रूप से, [[ यांत्रिक इंजीनियरों का अमरीकी समुदाय ]] कोड होता है।
अधिकांश देशों में सरकारी एजेंसियों के पास विशिष्ट कोड होते हैं जो यह नियंत्रित करते हैं कि इस तरह की डिज़ाइन गणना कैसे की जानी चाहिए। कई गैर सरकारी संगठनों के पास चिमनी और ढेर के डिजाइन को नियंत्रित करने वाले कोड भी होते है विशेष रूप से, [[ यांत्रिक इंजीनियरों का अमरीकी समुदाय |यांत्रिक इंजीनियरों का अमरीकी समुदाय]] कोड होता है।


== ढेर डिजाइन ==
== ढेर डिजाइन ==
[[File:SchornsteinwendelSKL.jpg|thumb|चिमनी के ढेर पर एक पेचदार आघात]]बड़े ढेर का डिजाइन अभियांत्रिकी चुनौतियों का निर्माण करता है। उच्च हवाओं में भंवर का बहना स्टैक में खतरनाक [[ दोलनों ]] का कारण बन सकता है, और इसके पतन का कारण बन सकता है। पेचदार स्ट्रेक का प्रयोग स्टैक की [[ गुंजयमान आवृत्ति ]] पर या उसके करीब होने वाली इस प्रक्रिया को रोकने के लिए सामान्य रूप में होता है ।
[[File:SchornsteinwendelSKL.jpg|thumb|चिमनी के ढेर पर एक पेचदार आघात]]बड़े ढेर का डिजाइन अभियांत्रिकी चुनौतियों का निर्माण करता है। उच्च हवाओं में भंवर का बहना स्टैक में खतरनाक [[ दोलनों |दोलनों]] का कारण बन सकता है, और इसके पतन का कारण बन सकता है। पेचदार स्ट्रेक का प्रयोग स्टैक की [[ गुंजयमान आवृत्ति |गुंजयमान आवृत्ति]] पर या उसके करीब होने वाली इस प्रक्रिया को रोकने के लिए सामान्य रूप में होता है ।


== रुचि के अन्य आइटम ==
== रुचि के अन्य आइटम ==


कुछ ईंधन जलाने वाले औद्योगिक उपकरण प्राकृतिक ड्राफ्ट पर निर्भर नहीं करते हैं। ऐसे अनेक उपकरण समान उद्देश्यों को पूरा करने के लिए बड़े पंखे या ब्लोअर का उपयोग करते हैं,अर्थात् दहन कक्ष में दहन वायु का प्रवाह और चिमनी या स्टैक से गर्म फ़्लू गैस का प्रवाह होता है।
कुछ ईंधन जलाने वाले औद्योगिक उपकरण प्राकृतिक ड्राफ्ट पर निर्भर नहीं करते हैं। ऐसे अनेक उपकरण समान उद्देश्यों को पूरा करने के लिए बड़े पंखे या ब्लोअर का उपयोग करते हैं,अर्थात् दहन कक्ष में दहन वायु का प्रवाह और चिमनी या स्टैक से गर्म फ़्लू गैस का प्रवाह होता है।


अनेक विद्युत संयंत्र में [[ सल्फर डाइऑक्साइड ]]अर्थात [[ ग्रिप-गैस डिसल्फराइजेशन | ग्रिप गैस डिसल्फराइजेशन]] , नाइट्रोजन ऑक्साइड, चयनात्मक उत्प्रेरक अवक्षेप, गैस का पुनर्वितरण, तापीय डीएनओएक्स अथवा   न्यूक बर्नर तथा विशेष पदार्थ, [[स्थिरवैद्युत अवक्षेपक]] के लिए सुविधाएं उपलब्ध होती हैं। ऐसे विद्युत संयंत्रों में, [[ शीतलन टॉवर ]] का उपयोग ग्रिप गैस स्टैक के रूप में किया जाता है। उदाहरण के लिए जर्मनी में [[ पावर स्टेशन स्टुडिंगर ग्रॉसक्रोटज़ेनबर्ग ]] और [[ रोस्टॉक पावर स्टेशन ]] पर देखे जा सकते हैं। ग्रिप गैस शोधन के बिना विद्युत संयंत्रों को इन ढेरों में गंभीर रूप से जंग का अनुभव होता है।
अनेक विद्युत संयंत्र में [[ सल्फर डाइऑक्साइड |सल्फर डाइऑक्साइड]] अर्थात [[ ग्रिप-गैस डिसल्फराइजेशन |ग्रिप गैस डिसल्फराइजेशन]] , नाइट्रोजन ऑक्साइड, चयनात्मक उत्प्रेरक अवक्षेप, गैस का पुनर्वितरण, तापीय डीएनओएक्स अथवा न्यूक बर्नर तथा विशेष पदार्थ, [[स्थिरवैद्युत अवक्षेपक]] के लिए सुविधाएं उपलब्ध होती हैं। ऐसे विद्युत संयंत्रों में, [[ शीतलन टॉवर |शीतलन टॉवर]] का उपयोग ग्रिप गैस स्टैक के रूप में किया जाता है। उदाहरण के लिए जर्मनी में [[ पावर स्टेशन स्टुडिंगर ग्रॉसक्रोटज़ेनबर्ग |पावर स्टेशन स्टुडिंगर ग्रॉसक्रोटज़ेनबर्ग]] और [[ रोस्टॉक पावर स्टेशन |रोस्टॉक पावर स्टेशन]] पर देखे जा सकते हैं। ग्रिप गैस शोधन के बिना विद्युत संयंत्रों को इन ढेरों में गंभीर रूप से जंग का अनुभव होता है।


संयुक्त राज्य अमेरिका और कई अन्य देशों में, [[ वायुमंडलीय फैलाव मॉडलिंग ]]<ref>{{cite book|author=Beychok, Milton R.|title=[[Fundamentals Of Stack Gas Dispersion]]|edition=4th|publisher=author-published|year=2005|isbn=0-9644588-0-2}} [http://www.air-dispersion.com www.air-dispersion.com]</ref> स्थानीय वायु प्रदूषण नियमों का पालन करने के लिए आवश्यक ग्रिप गैस के ढेर की ऊंचाई निर्धारित करने के लिए अध्ययन आवश्यक हैं। संयुक्त राज्य अमेरिका भी फ़्लू गैस के ढेर की अधिकतम ऊंचाई को अच्छा अभियांत्रिकी कार्य (जीईपी) स्टैक ऊंचाई के रूप में जाना जाता है।<ref>''Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations), Revised'' (1985), EPA Publication No. EPA–450/4–80–023R, U.S. Environmental Protection Agency (NTIS No. PB 85–225241)</ref><ref>Lawson, Jr., R.E. and W.H. Snyder (1983). ''Determination of Good Engineering Practice Stack Height: A Demonstration Study for a Power Plant'', EPA Publication No. EPA–600/3–83–024. U.S. Environmental Protection Agency (NTIS No. PB 83–207407)</ref> सम्मलित फ़्लू गैस के ढेर के स्थिति जो जीईपी स्टैक की ऊँचाई से अधिक होती है, ऐसे स्टैक के लिए किसी भी वायु प्रदूषण प्रकीर्णन मॉडलिंग अध्ययन को वास्तविक स्टैक की ऊँचाई के अतिरिक्त जीईपी स्टैक की ऊँचाई का उपयोग करना चाहिए।
संयुक्त राज्य अमेरिका और कई अन्य देशों में, [[ वायुमंडलीय फैलाव मॉडलिंग |वायुमंडलीय फैलाव मॉडलिंग]] <ref>{{cite book|author=Beychok, Milton R.|title=[[Fundamentals Of Stack Gas Dispersion]]|edition=4th|publisher=author-published|year=2005|isbn=0-9644588-0-2}} [http://www.air-dispersion.com www.air-dispersion.com]</ref> स्थानीय वायु प्रदूषण नियमों का पालन करने के लिए आवश्यक ग्रिप गैस के ढेर की ऊंचाई निर्धारित करने के लिए अध्ययन आवश्यक हैं। संयुक्त राज्य अमेरिका भी फ़्लू गैस के ढेर की अधिकतम ऊंचाई को अच्छा अभियांत्रिकी कार्य (जीईपी) स्टैक ऊंचाई के रूप में जाना जाता है।<ref>''Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations), Revised'' (1985), EPA Publication No. EPA–450/4–80–023R, U.S. Environmental Protection Agency (NTIS No. PB 85–225241)</ref><ref>Lawson, Jr., R.E. and W.H. Snyder (1983). ''Determination of Good Engineering Practice Stack Height: A Demonstration Study for a Power Plant'', EPA Publication No. EPA–600/3–83–024. U.S. Environmental Protection Agency (NTIS No. PB 83–207407)</ref> सम्मलित फ़्लू गैस के ढेर के स्थिति जो जीईपी स्टैक की ऊँचाई से अधिक होती है, ऐसे स्टैक के लिए किसी भी वायु प्रदूषण प्रकीर्णन मॉडलिंग अध्ययन को वास्तविक स्टैक की ऊँचाई के अतिरिक्त जीईपी स्टैक की ऊँचाई का उपयोग करना चाहिए।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 22:37, 22 January 2023

कजाकिस्तान के एकिबस्तुज में जीआरईएस 2 पावर स्टेशन पर एक फ्लू गैस के ढेर, दुनिया में अपनी तरह का सबसे ऊंचा 420 मीटर है[1]

एक फ़्लू-गैस स्टैक जिसे स्मोक स्टैक या चिमनी स्टैक के रूप में जाना जाता हैं। और तरल पदार्थ चिमनी का एक ऊर्ध्वाधर पाइप मार्ग या इसी तरह की संरचना होती है जिसके माध्यम से दहन उत्पाद गैसों को फ्लू गैस कहा जाता है जो बाहरी वायु में समाप्त हो जाती हैं। जब कोयले, तेल, प्राकृतिक गैस, लकड़ी या किसी अन्य ईंधन को औद्योगिक भट्टी, विद्युत संयंत्र के भाप उत्पादन करने वाले बॉयलर या अन्य बड़े दहन उपकरण के समय किया जाता है फ्लू गैस सामान्यतः कार्बन डाइऑक्साइड और जल वाष्प के साथ नाइट्रोजन और ऑक्सीजन के सेवन से बनने वाली वायु से बनी होती है। इसमें कुछ प्रतिशत वायुमंडलीय कण पदार्थ कार्बन मोनोआक्साइड नाइट्रोजन आक्साइड और सल्फर ऑक्साइड जैसे प्रदूषकों का एक छोटा प्रतिशत भी होता है। चिमनी के प्रभाव और प्रदूषकों के फैलाव को बढ़ाने के लिए फ़्लू गैस के ढेर अधिकांशतः 400 मीटर 1300 फ़ीट या उससे अधिक पर्याप्त रूप में लंबे होते हैं।

जब स्टोव, ओवन, चिमनी, भट्टियां और बॉयलर या धुएं की गैसें चूल्हे, रेस्तरां, होटल, या अन्य सार्वजनिक भवनों और छोटे वाणिज्यिक उद्यमों के भीतर अन्य छोटे स्रोतों से फ़्लू गैसों का निकास के लिए उपयोग किये जाते है, तो उन फ़्लू गैस के ढेर को चिमनी कहा जाता है।

इतिहास

प्रथम औद्योगिक चिमनियों का निर्माण सत्रहवीं शताब्दी के मध्य में तब हुआ जब यह पहली बार समझा गया कि किस प्रकार वे भट्ठी के दहन को दहन क्षेत्र में बढ़ा कर उसमें सुधार कर सकते हैं।[2] इस प्रकार उन्होंने भावोत्तेजक भट्ठियों के विकास और कोयला आधारित धातुकर्म उद्योग होते है जो आरंभिक औद्योगिक क्रांति के प्रमुख क्षेत्र के विकास में महत्वपूर्ण भूमिका निभाई थी। 18 वीं शताब्दी की अधिकांश औद्योगिक चिमनियों को अब सामान्यतः ग्रिप गैस के ढेर के रूप में संदर्भित किया जाता था जो घरेलू चिमनी की तरह भट्ठी की दीवारों में बनाये जाते थे.प्रथम मुक़्त रूप से खड़ी होने वाली औद्योगिक चिमनियां संभवतया वे थीं जिन्हें गलाने वाले सीसे से जुड़े लंबे समय तक संघनित प्रवाह के अंत में खड़ा किया गया था।

औद्योगिक चिमनियों और औद्योगिक क्रांति के विशिष्ट धुएँ से भरे परिदृश्य के बीच शक्तिशाली जुड़ाव अधिकांश निर्माण प्रक्रियाओं के लिए भाप इंजन के सार्वभौमिक अनुप्रयोग के कारण था। चिमनी भाप उत्पन्न करने वाले बॉयलर का हिस्सा है और इसका विकास भाप इंजन की बल में वृद्धि के साथ निकटता से जुड़ा होता है। थॉमस न्यूकोमेन के भाप इंजन की चिमनियों को इंजन हाउस की दीवारों में सम्मलित किया गया था। 19वीं शताब्दी की शुरुआत में दिखाई देने वाली ऊंची, मुक्त-खड़ी औद्योगिक चिमनियां जेम्स वॉट के दोहरे बल वाले इंजनों से जुड़े बॉयलर डिजाइन में बदलाव से संबंधित होती थीं और वे पूरे विक्टोरियन युग में पूरी तरह से विकसित होती थीं। सजावटी अलंकरण सन् 1860 के दशक में अनेक औद्योगिक चिमनियों की होते थे जिसमें ओवर-सेलिंग कैप और पैटर्न वाली ईंटवर्क होते थे।

20 वीं शताब्दी के प्रारंभ में पंखे से मदद के लिए मजबूर प्रारूप के आविष्कार ने औद्योगिक चिमनी का मूल कार्य समाप्त कर दिया, जो भाप उत्पन्न करने वाले बॉयलरों या अन्य भट्टियों में वायु निर्मित करने के लिए उपयोग किया जाता है। भाप इंजन को प्रमुख प्रेरक के रूप में प्रस्तुत करने से पहले डीजल इंजनों द्वारा और उसके बाद विद्युत मोटरों द्वारा भाप इंजन को एक प्रमुख चालक के रूप में बदलने के साथ, प्रारंभिक औद्योगिक चिमनियाँ औद्योगिक परिदृश्य से गायब होने लगीं। निर्माण सामग्री पत्थर और ईंट से स्टील और बाद में प्रबलित कंक्रीट में बदल गई और सरकारी वायु प्रदूषण नियंत्रण नियमों का पालन करने के लिए दहन फ़्लू गैसों को फैलाने की आवश्यकता के अनुसार औद्योगिक चिमनी की ऊंचाई निर्धारित करती है।

फ्लू-गैस स्टैक ड्राफ्ट

चिमनियों में स्टैक प्रभाव: गेज पूर्ण वायु दबाव का प्रतिनिधित्व करते हैं और वायु प्रवाह को हल्के भूरे रंग के तीरों से दर्शाया जाता है। गेज डायल बढ़ते दबाव के साथ दक्षिणावर्त चलते हैं।

फ़्लू गैस के ढेर के अंदर दहन फ्ल्यू गैस बाहर की वायु की तुलना में बहुत अधिक गर्म होती हैं और इसलिए परिवेश वायु की तुलना में कम घनी होती हैं। इससे गर्म फ़्लू गैस के ऊर्ध्वाधर स्तंभ के निचले भाग में बाहरी वायु के संबंधित स्तंभ के तल पर नीचे के दबाव से कम होता है। चिमनी के बाहर उच्च दबाव वह प्रेरक बल होता है जो आवश्यक दहन वायु को दहन क्षेत्र में धकेलती है और चिमनी से ग्रिप गैस को ऊपर और बाहर भी ले जाती है। दहन वायु और फ़्लू गैस के प्रवाह या बहाव को प्राकृतिक ड्राफ्ट, प्राकृतिक वेंटिलेशन, चिमनी प्रभाव या स्टैक प्रभाव कहा जाता है स्टैक जितना लंबा होता है उतना ही अधिक ड्राफ्ट बनता है।

नीचे दिया गया समीकरण ड्राफ्ट द्वारा बनाए गए फ़्लू गैस के ढेर के नीचे और ऊपर के बीच दबाव अंतर ΔP का अनुमान प्रदान करता है[3][4]

जहाँ पे,

  • ΔP: पास्कल (यूनिट) में उपलब्ध दबाव अंतर के रूप में होता है
  • सी = 0.0342 मान होता है
  • ए: वायुमंडलीय दबाव को पीए के रूप में व्यक्त करते है
  • h: फ़्लू गैस के ढेर की ऊँचाई को मी में व्यक्त करते है
  • टीo:पूर्ण बाहरी वायु के तापमान को केल्विन में व्यक्त करते है
  • टीi: स्टैक के अंदर फ़्लू गैस का पूर्ण औसत तापमान को कैल्विन के रूप में व्यक्त करते है।

उपरोक्त समीकरण एक सन्निकटन है क्योंकि यह मानता है कि फ़्लू गैस का मोलर द्रव्यमान और बाहरी वायु बराबर होती है और फ़्लू गैस के ढेर के माध्यम से दबाव कम होता है। दोनों मान्यताओं काफी अच्छी हैं लेकिन बिल्कुल सटीक नहीं हैं।

ड्राफ्ट द्वारा प्रेरित ग्रिप गैस प्रवाह दर

प्रथम अनुमान सन्निकटन के रूप में, निम्न समीकरण का प्रयोग फ़्लू गैस के ढेर के प्रारूप से प्रेरित तरल गैस प्रवाह-दर के अनुमान के लिए किया जा सकता है। इस समीकरण में यह मान लिया गया है कि ग्रिप गैस का मोलर द्रव्यमान और बाहरी वायु समान रूप में होता है। यहां पर घर्षण प्रतिरोध और ऊष्मा हास नगण्य रहता है।[5]

जहाँ पे,

  • क्यू: ग्रिप-गैस प्रवाह-दर, मी³/से रूप में होता है।
  • ए: चिमनी का अनुप्रस्थ क्षेत्र मी² होता है। यह मानते हुए कि इसका एक लगातार क्रॉस-सेक्शन होता है।
  • सी : निर्वहन गुणांक सामान्यतः 0.65–0.70 लिया जाता है।
  • g: समुद्र तल पर मानक गुरुत्वीय त्वरण = 9.807 मी/से² रूप में होता है।
  • एच : चिमनी की ऊंचाई मीटर में होती है
  • टीi: स्टैक में ग्रिप गैस का पूर्ण औसत तापमान, केल्विन (K) रूप में होता है।
  • टीo: पूर्ण बाहरी वायु का तापमान केल्विन (K) रूप में होता है।

यह समीकरण केवल तभी मान्य होता है जब ड्राफ्ट प्रवाह का प्रतिरोध एक एकल छिद्र के कारण होता है जिसमें लक्षण निर्वहन गुणांक सी के रूप में होता है। यदि अधिकांश स्थितियों में प्रतिरोध मुख्य रूप से फ़्लू स्टैक द्वारा ही लगाया जाता है। तो इन स्थितियो में, प्रतिरोध के ढेर की ऊँचाई H के समानुपाती होता है। इस के बाद उपरोक्त समीकरण में एच को (Q) पर परिवर्तन कर दिया गया है जो कि वह पैरामीटर के सापेक्ष निश्चर होता है।।

प्राकृतिक ड्राफ्ट की सही मात्रा प्रदान करने के लिए चिमनियों और ढेरों को डिजाइन करने में बहुत सारे कारक सम्मलित होते हैं जैसे,

  • ढेर की ऊंचाई और व्यास।
  • पूर्ण दहन सुनिश्चित करने के लिए आवश्यक अतिरिक्त दहन वायु की वांछित मात्रा के रूप में होता है।
  • दहन क्षेत्र से निकलने वाली फ्लू गैसों का तापमान होता है।
  • दहन फ़्लू गैस की संरचना, जो फ़्लू-गैस घनत्व निर्धारित करती है।
  • चिमनी या स्टैक के माध्यम से ग्रिप गैसों के प्रवाह का घर्षण प्रतिरोध, जो चिमनी या स्टैक के निर्माण के लिए उपयोग की जाने वाली सामग्री के साथ अलग-अलग होता है।
  • चिमनी या ढेर के माध्यम से प्रवाहित होने पर ग्रिप गैसों से गर्मी की क्षति होती है।
  • परिवेशी वायु का स्थानीय वायुमंडलीय दबाव, जो समुद्र तल से स्थानीय ऊंचाई द्वारा निर्धारित किया जाता है।

उपरोक्त डिज़ाइन कारकों में से कई की गणना के लिए परीक्षण-और-त्रुटि पुनरावर्तक विधियों की आवश्यकता होती है।

अधिकांश देशों में सरकारी एजेंसियों के पास विशिष्ट कोड होते हैं जो यह नियंत्रित करते हैं कि इस तरह की डिज़ाइन गणना कैसे की जानी चाहिए। कई गैर सरकारी संगठनों के पास चिमनी और ढेर के डिजाइन को नियंत्रित करने वाले कोड भी होते है विशेष रूप से, यांत्रिक इंजीनियरों का अमरीकी समुदाय कोड होता है।

ढेर डिजाइन

चिमनी के ढेर पर एक पेचदार आघात

बड़े ढेर का डिजाइन अभियांत्रिकी चुनौतियों का निर्माण करता है। उच्च हवाओं में भंवर का बहना स्टैक में खतरनाक दोलनों का कारण बन सकता है, और इसके पतन का कारण बन सकता है। पेचदार स्ट्रेक का प्रयोग स्टैक की गुंजयमान आवृत्ति पर या उसके करीब होने वाली इस प्रक्रिया को रोकने के लिए सामान्य रूप में होता है ।

रुचि के अन्य आइटम

कुछ ईंधन जलाने वाले औद्योगिक उपकरण प्राकृतिक ड्राफ्ट पर निर्भर नहीं करते हैं। ऐसे अनेक उपकरण समान उद्देश्यों को पूरा करने के लिए बड़े पंखे या ब्लोअर का उपयोग करते हैं,अर्थात् दहन कक्ष में दहन वायु का प्रवाह और चिमनी या स्टैक से गर्म फ़्लू गैस का प्रवाह होता है।

अनेक विद्युत संयंत्र में सल्फर डाइऑक्साइड अर्थात ग्रिप गैस डिसल्फराइजेशन , नाइट्रोजन ऑक्साइड, चयनात्मक उत्प्रेरक अवक्षेप, गैस का पुनर्वितरण, तापीय डीएनओएक्स अथवा न्यूक बर्नर तथा विशेष पदार्थ, स्थिरवैद्युत अवक्षेपक के लिए सुविधाएं उपलब्ध होती हैं। ऐसे विद्युत संयंत्रों में, शीतलन टॉवर का उपयोग ग्रिप गैस स्टैक के रूप में किया जाता है। उदाहरण के लिए जर्मनी में पावर स्टेशन स्टुडिंगर ग्रॉसक्रोटज़ेनबर्ग और रोस्टॉक पावर स्टेशन पर देखे जा सकते हैं। ग्रिप गैस शोधन के बिना विद्युत संयंत्रों को इन ढेरों में गंभीर रूप से जंग का अनुभव होता है।

संयुक्त राज्य अमेरिका और कई अन्य देशों में, वायुमंडलीय फैलाव मॉडलिंग [6] स्थानीय वायु प्रदूषण नियमों का पालन करने के लिए आवश्यक ग्रिप गैस के ढेर की ऊंचाई निर्धारित करने के लिए अध्ययन आवश्यक हैं। संयुक्त राज्य अमेरिका भी फ़्लू गैस के ढेर की अधिकतम ऊंचाई को अच्छा अभियांत्रिकी कार्य (जीईपी) स्टैक ऊंचाई के रूप में जाना जाता है।[7][8] सम्मलित फ़्लू गैस के ढेर के स्थिति जो जीईपी स्टैक की ऊँचाई से अधिक होती है, ऐसे स्टैक के लिए किसी भी वायु प्रदूषण प्रकीर्णन मॉडलिंग अध्ययन को वास्तविक स्टैक की ऊँचाई के अतिरिक्त जीईपी स्टैक की ऊँचाई का उपयोग करना चाहिए।

यह भी देखें

संदर्भ

  1. Diagram of 25 tallest flue gas stacks worldwide
  2. Douet, James (1988). Going up in Smoke:The History of the Industrial Chimney, Victorian Society, London, England. Victorian Society Casework Reports Archived 2006-09-25 at the Wayback Machine
  3. Natural Ventilation Lecture 2 Archived 2006-05-12 at the Wayback Machine
  4. Perry, R.H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th Edition (page 9-72) ed.). McGraw-Hill Book Company. ISBN 0-07-049479-7.
  5. Natural Ventilation Lecture 3 Archived 2006-07-02 at the Wayback Machine
  6. Beychok, Milton R. (2005). Fundamentals Of Stack Gas Dispersion (4th ed.). author-published. ISBN 0-9644588-0-2. www.air-dispersion.com
  7. Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations), Revised (1985), EPA Publication No. EPA–450/4–80–023R, U.S. Environmental Protection Agency (NTIS No. PB 85–225241)
  8. Lawson, Jr., R.E. and W.H. Snyder (1983). Determination of Good Engineering Practice Stack Height: A Demonstration Study for a Power Plant, EPA Publication No. EPA–600/3–83–024. U.S. Environmental Protection Agency (NTIS No. PB 83–207407)


बाहरी कड़ियाँ