ज्वारीय धारा शक्ति: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Extraction of power from ocean currents}} महासागर धारा बड़ी मात्रा में पानी ले जा स...")
 
(No difference)

Revision as of 12:27, 25 January 2023

महासागर धारा बड़ी मात्रा में पानी ले जा सकती है, जो मुख्य रूप से ज्वार द्वारा संचालित होती है, जो पृथ्वी, चंद्रमा और सूर्य की ग्रहों की गति के गुरुत्वाकर्षण प्रभाव का परिणाम है। संवर्धित प्रवाह वेग पाया जा सकता है जहां द्वीपों और मुख्य भूमि के बीच जलडमरूमध्य में पानी के नीचे की स्थलाकृति या हेडलैंड्स के आसपास उथले में प्रवाह वेग को बढ़ाने में एक प्रमुख भूमिका निभाता है, जिसके परिणामस्वरूप प्रशंसनीय गतिज ऊर्जा होती है।[1] सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाएँ और तापमान में अंतर होता है। क्योंकि दिशा में न्यूनतम परिवर्तन के साथ वर्तमान गति और धारा के स्थान में केवल छोटे उतार-चढ़ाव होते हैं, टर्बाइन जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएं उपयुक्त स्थान हो सकती हैं।[2] अन्य प्रभाव जैसे तापमान और लवणता में क्षेत्रीय अंतर और पृथ्वी के घूमने के कारण कोरिओलिस प्रभाव भी प्रमुख प्रभाव हैं। समुद्री धाराओं की गतिज ऊर्जा को उसी तरह से परिवर्तित किया जा सकता है जिस तरह एक पवन टरबाइन विभिन्न प्रकार के खुले प्रवाह वाले रोटरों का उपयोग करके हवा से ऊर्जा निकालता है।[3]


ऊर्जा क्षमता

संयुक्त राज्य अमेरिका के पूर्वी तट के साथ वर्तमान प्रवाह का वेक्टर आरेख।

15 kW/m2 तक की बिजली घनत्व के साथ, महासागर धाराओं में कुल विश्वव्यापी बिजली लगभग 5,000 GW होने का अनुमान लगाया गया है। फ़्लोरिडा जलडमरूमध्य की सतह के पास अपेक्षाकृत स्थिर निकालने योग्य ऊर्जा घनत्व प्रवाह क्षेत्र का लगभग 1 kW/m2 है। यह अनुमान लगाया गया है कि गल्फ स्ट्रीम से उपलब्ध ऊर्जा का केवल 1/1,000वाँ हिस्सा प्राप्त करना, जिसमें पानी के प्रवाह में नियाग्रा फॉल्स की तुलना में 21,000 गुना अधिक ऊर्जा है, जो दुनिया की सभी मीठे पानी की नदियों के कुल प्रवाह का 50 गुना है, आपूर्ति करेगा फ्लोरिडा अपनी 35% विद्युत जरूरतों के साथ। दाईं ओर की छवि तट के साथ प्रवाह के उच्च घनत्व को दर्शाती है, उच्च वेग वाले सफेद उत्तर की ओर प्रवाह पर ध्यान दें, जो समुद्र की वर्तमान ऊर्जा के निष्कर्षण के लिए एकदम सही है। महासागरीय वर्तमान ऊर्जा प्रौद्योगिकियों के अनुप्रयोग में रुचि रखने वाले और उनका अनुसरण करने वाले देशों में यूरोपीय संघ शामिल हैं,[4] जापान,[5] संयुक्त राज्य,[6] और चीन।[7]

समुद्री ज्वारीय धाराओं से बिजली उत्पादन की क्षमता बहुत अधिक है। ऐसे कई कारक हैं जो अन्य नवीनीकरणों की तुलना में समुद्री धाराओं से बिजली उत्पादन को बहुत आकर्षक बनाते हैं:

  • द्रव गुणों के परिणामस्वरूप उच्च भार कारक। संसाधन की पूर्वानुमेयता, ताकि, अधिकांश अन्य नवीनीकरण के विपरीत, ऊर्जा की भविष्य की उपलब्धता को जाना जा सके और उसके लिए योजना बनाई जा सके।[3]* संभावित रूप से बड़े संसाधन जिनका कम पर्यावरणीय प्रभाव के साथ दोहन किया जा सकता है, जिससे बड़े पैमाने पर बिजली उत्पादन के लिए कम से कम हानिकारक तरीकों में से एक की पेशकश की जाती है।[8]
  • बेस ग्रिड पावर भी प्रदान करने के लिए समुद्री-वर्तमान बिजली प्रतिष्ठानों की व्यवहार्यता, खासकर अगर ऑफसेट पीक-फ्लो अवधि के साथ दो या दो से अधिक अलग-अलग सरणियाँ आपस में जुड़ी हों।

समुद्री-वर्तमान-बिजली उत्पादन के लिए प्रौद्योगिकियां

समुद्री बिजली उत्पादन के लिए उपयोग की जाने वाली पवन ऊर्जा से प्रेरित अक्षीय प्रवाह टरबाइन का चित्रण

कई प्रकार के खुले प्रवाह वाले उपकरण हैं जिनका उपयोग समुद्री-वर्तमान-शक्ति अनुप्रयोगों में किया जा सकता है; उनमें से कई जल चक्र या इसी तरह के आधुनिक वंशज हैं। हालांकि, अधिक तकनीकी रूप से परिष्कृत डिजाइन, जो पवन-ऊर्जा रोटार से प्राप्त हुए हैं, बड़े पैमाने पर समुद्री-वर्तमान-ऊर्जा भविष्य के परिदृश्य में व्यावहारिक होने के लिए पर्याप्त लागत-प्रभावशीलता और विश्वसनीयता प्राप्त करने की सबसे अधिक संभावना है। भले ही इन ओपन-फ्लो हाइड्रो टर्बाइन के लिए आम तौर पर स्वीकृत शब्द नहीं है, कुछ स्रोत उन्हें जल-वर्तमान टर्बाइन के रूप में संदर्भित करते हैं। दो मुख्य प्रकार के जल प्रवाह टर्बाइन हैं जिन पर विचार किया जा सकता है: अक्षीय-प्रवाह क्षैतिज-अक्ष प्रोपेलर (चर-पिच प्रोपेलर (समुद्री) समुद्री) | चर-पिच या फिक्स्ड-पिच दोनों के साथ), और क्रॉस-फ्लो रियर रोटर

दोनों रोटर प्रकारों को जल-वर्तमान टर्बाइनों का समर्थन करने के लिए तीन मुख्य विधियों में से किसी एक के साथ जोड़ा जा सकता है: फ्लोटिंग मूरेड सिस्टम, सी-बेड माउंटेड सिस्टम और इंटरमीडिएट सिस्टम। सी-बेड-माउंटेड monopile संरचनाएं पहली पीढ़ी के समुद्री वर्तमान बिजली प्रणालियों का निर्माण करती हैं। उनके पास मौजूदा (और विश्वसनीय) इंजीनियरिंग जानकारियों का उपयोग करने का लाभ है, लेकिन वे अपेक्षाकृत उथले पानी (लगभग 20 to 40 meters (66 to 131 feet) गहराई)।[3]


इतिहास और आवेदन

1973 के पहले तेल संकट के बाद 1970 के दशक के मध्य में ऊर्जा संसाधन के रूप में समुद्री धाराओं के संभावित उपयोग ने ध्यान आकर्षित करना शुरू किया। 1974 में ऊर्जा पर मैकआर्थर वर्कशॉप में कई वैचारिक डिजाइन प्रस्तुत किए गए, और 1976 में जनरल इलेक्ट्रिक कंपनी|ब्रिटिश जनरल इलेक्ट्रिक कंपनी ने आंशिक रूप से सरकार द्वारा वित्त पोषित अध्ययन किया, जिसने निष्कर्ष निकाला कि समुद्री वर्तमान शक्ति अधिक विस्तृत शोध के योग्य है। इसके तुरंत बाद, यूके में आईटीडी-ग्रुप ने सफेद नील पर पहले से ही में तैनात 3-एम हाइड्रोडार्रियस रोटर के प्रदर्शन परीक्षण के एक वर्ष से जुड़े एक शोध कार्यक्रम को लागू किया।[citation needed] 1980 के दशक में समुद्री वर्तमान बिजली प्रणालियों के मूल्यांकन के लिए कई छोटी शोध परियोजनाएं देखी गईं। जिन मुख्य देशों में अध्ययन किए गए वे यूके, कनाडा और जापान थे। 1992-1993 में टाइडल स्ट्रीम एनर्जी रिव्यू ने यूके के जल में 58 TWH/वर्ष तक उत्पन्न करने के लिए उपयुक्त वर्तमान गति वाले विशिष्ट स्थलों की पहचान की। इसने कुल समुद्री वर्तमान बिजली संसाधन की पुष्टि की जो सैद्धांतिक रूप से ब्रिटेन की बिजली की मांग के लगभग 19% को पूरा करने में सक्षम है।[citation needed] 1994-1995 में EU-JOULE CENEX परियोजना ने 2 से 200 किमी तक के 100 से अधिक यूरोपीय स्थलों की पहचान की2समुद्र तल क्षेत्र, 10 मेगावाट/किमी से अधिक बिजली घनत्व वाले कई2</उप>। यूके सरकार और यूरोपीय संघ दोनों ने ग्लोबल वार्मिंग से निपटने के लिए डिज़ाइन किए गए अंतरराष्ट्रीय स्तर पर बातचीत के समझौतों के लिए खुद को प्रतिबद्ध किया है। इस तरह के समझौतों का पालन करने के लिए नवीकरणीय संसाधनों से बड़े पैमाने पर बिजली उत्पादन में वृद्धि की आवश्यकता होगी। समुद्री धाराओं में भविष्य में यूरोपीय संघ की बिजली की जरूरतों का एक बड़ा हिस्सा आपूर्ति करने की क्षमता है।[3]यूरोपीय संघ में ज्वारीय टर्बाइनों के लिए 106 संभावित स्थलों के अध्ययन ने लगभग 50 TWH/वर्ष की बिजली उत्पादन की कुल क्षमता दिखाई। यदि इस संसाधन का सफलतापूर्वक उपयोग किया जाना है, तो आवश्यक तकनीक 21वीं सदी के लिए स्वच्छ ऊर्जा का उत्पादन करने के लिए एक प्रमुख नए उद्योग का आधार बन सकती है।[9] इन तकनीकों के समसामयिक अनुप्रयोग यहां देखे जा सकते हैं: टाइडल पावर स्टेशनों की सूची। चूंकि समुद्री धाराओं पर ज्वार के प्रभाव बहुत बड़े हैं, और उनके प्रवाह के पैटर्न काफी विश्वसनीय हैं, कई महासागर वर्तमान ऊर्जा निष्कर्षण संयंत्रों को उच्च ज्वारीय प्रवाह दर वाले क्षेत्रों में रखा गया है।[10] स्वीडन में उप्साला विश्वविद्यालय में, अन्य लोगों के साथ-साथ समुद्री वर्तमान शक्ति पर शोध किया जाता है, जहां एक सीधी ब्लेड वाली डैरियस प्रकार की टर्बाइन के साथ एक परीक्षण इकाई का निर्माण किया गया है और स्वीडन में डल नदी में रखा गया है।[11][12]


पर्यावरणीय प्रभाव

दुनिया भर के कई क्षेत्रों में जलवायु का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की वर्तमान ऊर्जा को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, फ़ारफ़ील्ड पर्यावरण पर वर्तमान ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट टर्बाइन मुद्दे अभी भी मौजूद हैं; हालाँकि, पशु प्रवास न उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान आगे अपतटीय हो सकते हैं और इसलिए लंबे समय तक बिजली के तारों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं।[13] टेथिस (डेटाबेस) समुद्र की वर्तमान ऊर्जा के संभावित पर्यावरणीय प्रभावों पर वैज्ञानिक साहित्य और सामान्य जानकारी तक पहुंच प्रदान करता है।[14]


यह भी देखें


संदर्भ

  1. Bahaj, A. S. (2013-01-14). "Marine current energy conversion: the dawn of a new era in electricity production". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (in English). 371 (1985): 20120500. Bibcode:2013RSPTA.37120500B. doi:10.1098/rsta.2012.0500. ISSN 1364-503X. PMID 23319714.
  2. Saad, Fouad (2016). The Shock of Energy Transition. Partridge Publishing Singapore. ISBN 9781482864953.
  3. 3.0 3.1 3.2 3.3 Ponta, F.L.; P.M. Jacovkis (April 2008). "Marine-current power generation by diffuser-augmented floating hydro-turbines". Renewable Energy. 33 (4): 665–673. doi:10.1016/j.renene.2007.04.008.
  4. Díaz‐Dorado, Eloy; Carrillo, Camilo; Cidras, Jose; Román, David; Grande, Javier (March 2021). "Performance evaluation and modelling of the Atir marine current turbine". IET Renewable Power Generation (in English). 15 (4): 821–838. doi:10.1049/rpg2.12071. ISSN 1752-1416 – via Elsevier Science Direct.
  5. Ueno, Tomohiro; Nagaya, Shigeki; Shimizu, Masayuki; Saito, Hiroyuki; Murata, Show; Handa, Norihisa (May 2018). "Development and Demonstration Test for Floating Type Ocean Current Turbine System Conducted in Kuroshio Current". 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Kobe: IEEE: 1–6. doi:10.1109/OCEANSKOBE.2018.8558792. ISBN 978-1-5386-1654-3.
  6. R. Itiki, P. R. Chowdhury, F. Kamal, M. Manjrekar, B. Chowdhury and G. G. Bonner (2021). "Method for Estimation of Marine Hydro-Kinetic Power based on High-frequency Radar Data". Retrieved March 11, 2022.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. Minerals Management Service Renewable Energy and Alternate Use Program U.S. Department of the Interior (May 2006). "OCEAN CURRENT ENERGY POTENTIAL ON THE U.S. OUTER CONTINENTAL SHELF". Retrieved May 29, 2019.
  8. Bahaj, A.S.; L.E. Myers (November 2003). "Fundamentals applicable to the utilisation of marine current turbines for energy production" (Article). Renewable Energy. 28 (14): 2205–2211. doi:10.1016/S0960-1481(03)00103-4. Retrieved 2011-04-12.
  9. Hammons, Thomas (2011). Electricity Infrastructures in the Global Marketplace. BoD – Books on Demand. ISBN 978-9533071558.
  10. Energy, Team Crowd. "Marine Current Power". CrowdEnergy.org (in English). Retrieved 2019-04-29.
  11. Yuan, Katarina; Lundin, Staffan; Grabbe, Mårten; Lalander, Emilia; Goude, Anders; Leijon, Mats (2011). "The Söderfors Project: Construction of an Experimental Hydrokinetic Power Station". 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
  12. Lundin, Staffan; Forslund, Johan; Carpman, Nicole; Grabbe, Mårten; Yuan, Katarina; Apelfröjd, Senad; Goude, Anders; Leijon, Mats (2013). "The Söderfors Project: Experimental Hydrokinetic Power Station Deployment and First Results". 10th European Wave and Tidal Energy Conference (EWTEC), 2–5 September 2013, Aalborg, Denmark.
  13. "Ocean Current". Tethys. PNNL.
  14. "Tethys". Archived from the original on 2015-11-05.