हाइड्रोलिक रैम: Difference between revisions

From Vigyanwiki
Line 119: Line 119:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/01/2023]]
[[Category:Created On 17/01/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:03, 30 January 2023

चित्र 1: जॉन ब्लेक का हाइड्रैम जो वैकल्पिक प्रौद्योगिकी केंद्र में फव्वारा चलाता है

हाइड्रोलिक रैम, या हाइड्रैम, जलविद्युत द्वारा संचालित चक्रीय जल पंप है। यह हाइड्रोलिक हेड (दबाव) और प्रवाह दर पर पानी लेता है, और उच्च हाइड्रोलिक हेड और कम प्रवाह दर पर पानी का उत्पादन करता है। डिवाइस दबाव विकसित करने के लिए वॉटर हैमर प्रभाव का उपयोग करता है जो इनपुट पानी के एक भाग को अनुमति देता है जो पंप को मूल रूप से प्रारंभ किए गए बिंदु से ऊपर उठाए जाने की शक्ति देता है। हाइड्रोलिक रैम का उपयोग कभी-कभी दूर के इलाकों में किया जाता है, जहां लो हेड जलविद्युत का स्रोत होता है और स्रोत की तुलना में ऊंचाई में उच्च स्थान पर पानी पंप करने की आवश्यकता होती है। इस स्थिति में, रैम अधिकांश उपयोगी होता है, क्योंकि इसे बहते पानी की गतिज ऊर्जा के अतिरिक्त किसी बाहरी स्रोत (भौतिकी) की आवश्यकता नहीं होती है।

इतिहास

गाड़ी , उत्तरी डेनमार्क क्षेत्र, डेनमार्क में रैम पंप

1238 ईस्वी के प्रारंभ में ग्रेनाडा के नासरी सुल्तान मुहम्मद इब्न अल-अहमर प्रथम द्वारा निर्मित अलहम्ब्रा ने पानी बढ़ाने के लिए हाइड्रैम का उपयोग किया। डारो नदी के चैनल द्वारा भरे गए पहले जलाशय के माध्यम से, पानी को बड़े ऊर्ध्वाधर चैनल के माध्यम से नीचे एक दूसरे जलाशय में खाली कर दिया गया, जिससे भंवर बन गया, जो छह मीटर तक बहुत छोटे पाइप के माध्यम से पानी को आगे बढ़ाता था, जबकि अधिकांश पानी थोड़े बड़े पाइप से एक सेकंड में निकल जाता था।[1]

1772 में, इंगलैंड के चे शायर के जॉन व्हाइटहर्स्ट ने हाइड्रोलिक रैम के मैन्युअल रूप से नियंत्रित अग्रदूत का आविष्कार किया, जिसे स्पंदन इंजन कहा जाता है और पानी को 4.9 metres (16 ft) ऊंचाई तक बढ़ाने के लिए ओल्टन, चेशायर में पहला स्थापित किया।[2][3] 1783 में, उन्होंने आयरलैंड में एक और स्थापित किया। उन्होंने इसे पेटेंट नहीं कराया था, और विवरण अस्पष्ट हैं, लेकिन यह ज्ञात है कि उनके पास एक हवाई पोत था।

पहले स्व-अभिनय रैम पंप का आविष्कार फ्रेंचमैन मोंटगॉल्फियर भाइयों (गर्म हवा के गुब्बारे के सह-आविष्कारक के रूप में जाना जाता है) द्वारा 1796 में वोइरोन में अपने पत्र मिल में पानी बढ़ाने के लिए किया गया था।[4] उनके दोस्त मैथ्यू बौल्टन ने 1797 में उनकी ओर से ब्रिटिश पेटेंट लिया।[5] मोंटगॉल्फियर के बेटों ने 1816 में उन्नत संस्करण के लिए ब्रिटिश पेटेंट प्राप्त किया,[6] और यह व्हाइटहर्स्ट के डिजाइन के साथ, 1820 में उलट-फेर में जन्मे इंजीनियर योशिय्याह ईस्टन द्वारा अधिग्रहित किया गया था, जो हाल ही में लंदन चले गए थे।

ईस्टन की फर्म, उनके बेटे जेम्स (1796-1871) द्वारा विरासत में मिली, उन्नीसवीं शताब्दी के समय एरीथ , केंट में बड़े काम के साथ इंग्लैंड में अधिक महत्वपूर्ण इंजीनियरिंग निर्माताओं में से एक बन गई। वे संसार में जल आपूर्ति और स्वच्छता सीवर प्रणालियों के साथ-साथ भूमि जल निकासी परियोजनाओं में भी विशेषज्ञ हैं। बड़े अंग्रेजी देशों के घरों, खेतों और ग्रैमीण समुदायों को पानी की आपूर्ति के उद्देश्यों के लिए ईस्टन्स का अच्छा व्यवसाय था। उनके कुछ प्रतिष्ठान 2004 तक जीवित रहे, ऐसा ही उदाहरण डोर्सेट में ग्रेट वेलमे के गांव में है। लगभग 1958 तक जब मुख्य पानी आया, ब्रिस्टल के दक्षिण में पूर्वी डंड्री के गांव में तीन काम करने वाले मेढ़े थे - उनका शोर प्रत्येक मिनट या रात और दिन घाटी के माध्यम से प्रतिध्वनित होता था: ये मेढ़े खेतों की सेवा करते थे जिन्हें अपने डेयरी झुंडों के लिए बहुत पानी की आवश्यकता होती थी .

फर्म 1909 में बंद हो गई, लेकिन जेम्स आर. ईस्टन द्वारा रैम व्यवसाय जारी रखा गया था। 1929 में, इसे ग्रीन एंड कार्टर द्वारा अधिग्रहित कर लिया गया था।[7] विनचेस्टर , हैम्पशायर के, जो वालकैन रैम और चरवाहे रैम के निर्माण और स्थापना में लगे हुए थे।

हाइड्रॉलिक रैम, सिस्टम लैम्बैक अब रोशाइडर हॉफ ओपन एयर म्यूजियम में है

पहला अमेरिकी पेटेंट 1809 में जोसेफ कर्नेउ (या कर्नेउ) और एटियेन सल्पिस हैलेट|स्टीफन (एटिने) एस. हैलेट (1755-1825) को जारी किया गया था।[8][9] हाइड्रोलिक मेढ़ों में अमेरिका ने 1840 के आसपास इसकी उपयोगिता समझी, क्योंकि आगे पेटेंट जारी किए गए और घरेलू कंपनियों ने मेढ़ों को बिक्री के लिए प्रस्तुत करना प्रारंभ कर दिया। 19वीं शताब्दी के अंत में, बिजली और बिजली के पंपों के व्यापक रूप से उपलब्ध होने के कारण इच्छा कम हो गई।

इडाहो में 1890 में बनाया गया प्रीस्टली का हाइड्रोलिक रैम, अद्भुत आविष्कार था, सामान्यतः स्वतंत्र था, जिसने पानी उठाया 110 feet (34 m) सिंचाई प्रदान करना। रैम जीवित रहता है और ऐतिहासिक स्थानों के अमेरिकी राष्ट्रीय रजिस्टर में सूचीबद्ध है।[10][11]

बीसवीं शताब्दी के अंत तक, विकासशील देशों में टिकाऊ प्रौद्योगिकी की आवश्कताओं और विकसित देशों में ऊर्जा संरक्षण के कारण, हाइड्रोलिक मेढ़ों में रुचि फिर से प्रारंभ हो गई है। उदाहरण फिलीपींस में एड फाउंडेशन इंटरनेशनल है, जिसने रैम पंपों को विकसित करने के अपने काम के लिए एशडन पुरस्कार जीता, जिसे दूर के गांवों में उपयोग के लिए आसानी से बनाए रखा जा सकता है।[12] तरंग शक्ति के दोहन के लिए कुछ प्रस्तावों में हाइड्रोलिक रैम सिद्धांत का उपयोग किया गया है, जिनमें से एक की चर्चा बहुत पहले 1931 में वाल्टर डी हास द्वारा की गई थी। हंस गुंथर ने अपनी पुस्तक इन हंडर्ट जेरेन में की थी।[13]

यूके में कुछ बाद के रैम डिज़ाइन जिन्हें कंपाउंड मेढ़े कहा जाता है, को अनुपचारित ड्राइव जल स्रोत का उपयोग करके उपचारित पानी को पंप करने के लिए डिज़ाइन किया गया था, जो खुली धारा से पेयजल प्राप्त करने की कुछ समस्याओं पर नियंत्रण पाता है।[14]

1996 में अंग्रेजी इंजीनियर फ्रेडरिक फिलिप सेल्विन ने अधिक कॉम्पैक्ट हाइड्रोलिक रैम पंप का पेटेंट कराया जहां अपशिष्ट वाल्व ने वेंटुरी प्रभाव का उपयोग किया और इनपुट पाइप के चारों ओर केंद्रित रूप से व्यवस्थित किया गया।[15] प्रारंभ में द्रव दबाव एम्पलीफायर के रूप में अपने अलग डिजाइन के कारण पेटेंट कराया गया, यह वर्तमान में पापा पंप के रूप में बेचा जाता है।[16]

इसके अतिरिक्त वेंटुरो पंप नामक बड़े पैमाने पर संस्करण [17] फिल की कंपनी द्वारा भी निर्मित किया जा रहा है।

पापा हाइड्रोलिक रैम पंप की वाल्व व्यवस्था

निर्माण और संचालन का सिद्धांत

एक पारंपरिक हाइड्रोलिक रैम में केवल दो चलने वाले भाग होते हैं, स्प्रिंग या वजन से भरा हुआ व्यर्थ वाल्व जिसे कभी-कभी क्लैक वाल्व और डिलीवरी चेक वाल्व के रूप में जाना जाता है, यह निर्माण के लिए सस्ता, बनाए रखने में आसान और बहुत विश्वसनीय है।

1947 के एनसाइक्लोपीडिया ब्रिटानिका में विस्तार से वर्णित प्रीस्टली के हाइड्रोलिक रैम में कोई हिलता हुआ भाग नहीं है।[10]


ऑपरेशन का क्रम

चित्र 2: हाइड्रोलिक रैम के मूलभूत घटक:
1. इनलेट - ड्राइव पाइप
2. अपशिष्ट वाल्व पर मुक्त प्रवाह3. आउटलेट - डिलीवरी पाइप
4. अपशिष्ट वाल्व
5. डिलीवरी चेक वाल्व
6. दबाव पोत

चित्र 2 में सरलीकृत हाइड्रोलिक रैम दिखाया गया है। प्रारंभ में, अपशिष्ट वाल्व [4] अपने वजन के कारण खुला (अर्थात् कम) होता है, और डिलीवरी वाल्व [5] आउटलेट से पानी के स्तंभ के दबाव में बंद होता है। [3]। इनलेट पाइप [1] में पानी गुरुत्वाकर्षण बल के अनुसार बहना प्रारंभ कर देता है और गति और गतिज ऊर्जा को तब तक बढ़ाता है जब तक कि बढ़ता हुआ ड्रैग (भौतिकी) बल बेकार वाल्व के वजन को उठाकर बंद नहीं कर देता। अब बंद अपशिष्ट वाल्व के खिलाफ इनलेट पाइप में पानी के प्रवाह की गति पानी के हथौड़े का कारण बनती है जो पंप में दबाव को आउटलेट से नीचे दबाने वाले पानी के स्तंभ के कारण दबाव से अधिक उठाती है। यह दबाव अंतर अब डिलीवरी वाल्व [5] खोलता है, और कुछ पानी को डिलीवरी पाइप [3] में प्रवाहित करने के लिए विवश करता है। क्योंकि इस पानी को स्रोत से नीचे की ओर गिरने की तुलना में वितरण पाइप के माध्यम से ऊपर की ओर धकेला जा रहा है, प्रवाह धीमा हो जाता है; जब प्रवाह उलट जाता है, तो डिलीवरी चेक वाल्व [5] बंद हो जाता है। इस बीच, अपशिष्ट वाल्व के बंद होने से पानी का हथौड़ा भी दबाव नाड़ी उत्पन्न करता है जो इनलेट पाइप को बैक अप करता है [18] उस स्रोत तक जहां यह सक्शन पल्स में परिवर्तित हो जाता है जो इनलेट पाइप के नीचे वापस फैलता है।[19] यह सक्शन पल्स, वाल्व पर वजन या वसंत के साथ, अपशिष्ट वाल्व को वापस खोलता है और प्रक्रिया को फिर से प्रारंभ करने की अनुमति देता है।

एक दबाव पोत [6] जिसमें एयर कुशन होता है, जब अपशिष्ट वाल्व बंद हो जाता है तो हाइड्रोलिक प्रेशर शॉक होता है, और यह डिलीवरी पाइप के माध्यम से अधिक निरंतर प्रवाह की अनुमति देकर पंपिंग दक्षता में भी सुधार करता है। यद्यपि पंप सिद्धांत रूप में इसके बिना काम कर सकता है, दक्षता में भारी गिरावट आएगी और पंप असाधारण तनावों के अधीन होगा जो इसके जीवन को काफी कम कर सकता है। समस्या यह है कि दबाव वाली हवा धीरे-धीरे पानी में तब तक घुलती रहेगी, जब तक कि कोई बचा नहीं रहता। इस समस्या का समाधान लोचदार डायाफ्रैम (एक विस्तार टैंक के समान) द्वारा हवा को पानी से अलग करना है; चूँकि, यह समाधान विकासशील देशों में समस्याग्रस्त हो सकता है जहाँ प्रतिस्थापन खरीदना मुश्किल है। अन्य समाधान डिलीवरी वाल्व के ड्राइव साइड के निकट स्थापित सूंघने का वाल्व है। प्रत्येक बार जब डिलीवरी वाल्व बंद होता है और आंशिक वैक्यूम विकसित होता है तो यह स्वचालित रूप से हवा की छोटी मात्रा में श्वास लेता है।[20] अन्य उपाय यह है कि कार या साइकिल के टायर की भीतरी ट्यूब को प्रेशर वेसल में डाला जाए जिसमें कुछ हवा हो और वाल्व बंद हो। यह ट्यूब डायाफ्रैम के समान प्रभाव में है, लेकिन इसे अधिक व्यापक रूप से उपलब्ध सामग्री के साथ लागू किया गया है। ट्यूब में हवा पानी के झटकों को ठीक करती है, जैसा कि अन्य विन्यासों में हवा करती है।

दक्षता

एक विशिष्ट ऊर्जा दक्षता 60% है, लेकिन 80% तक संभव है। यह वॉल्यूमेट्रिक दक्षता के साथ भ्रमित नहीं होना चाहिए, जो स्रोत से लिए गए कुल पानी में दिए गए पानी की मात्रा से संबंधित है। डिलीवरी पाइप पर उपलब्ध पानी का भाग डिलीवरी हेड के सप्लाई हेड के अनुपात से कम हो जाएगा। इस प्रकार यदि स्रोत रैम से 2 मीटर ऊपर है और पानी रैम से 10 मीटर ऊपर उठाया जाता है, तो आपूर्ति किए गए पानी का केवल 20% ही उपलब्ध हो सकता है, अन्य 80% अपशिष्ट वाल्व के माध्यम से फैल रहा है। ये अनुपात 100% ऊर्जा दक्षता मानते हैं। वितरित वास्तविक पानी ऊर्जा दक्षता कारक द्वारा और कम किया जाएगा। उपरोक्त उदाहरण में, यदि ऊर्जा दक्षता 70% है, तो वितरित पानी 20% का 70%, अर्थात् 14% होगा। 2-टू-1 सप्लाई-हेड-टू-डिलीवरी-हेड अनुपात और 70% दक्षता मानते हुए, वितरित पानी 50% का 70%, अर्थात् 35% होगा। सप्लाई हेड से डिलीवरी का बहुत अधिक अनुपात सामान्यतः कम ऊर्जा दक्षता का परिणाम होता है। मेढ़ों के आपूर्तिकर्ता अधिकांश वास्तविक परीक्षणों के आधार पर अपेक्षित आयतन अनुपात देने वाली तालिकाएँ प्रदान करते हैं।

ड्राइव और डिलीवरी पाइप डिजाइन

चूंकि क्षमता और विश्वसनीय चक्रण चलाना दोनों ही पानी के हथौड़े के प्रभाव पर निर्भर करते हैं इसलिए ड्राइव पाइप डिजाइन महत्वपूर्ण है।। यह स्रोत और रैम के बीच लंबवत दूरी से 3 से 7 गुना अधिक होना चाहिए। वाणिज्यिक मेढ़ों में इस इष्टतम ढलान को समायोजित करने के लिए डिज़ाइन की गई इनपुट फिटिंग हो सकती है।[21] आपूर्ति पाइप का व्यास सामान्यतः रैम पर इनपुट फिटिंग के व्यास से मेल खाता है, जो बदले में इसकी पम्पिंग क्षमता पर आधारित होता है। ड्राइव पाइप निरंतर व्यास और सामग्री का होना चाहिए, और जितना संभव हो उतना सीधा होना चाहिए। जहां झुकना आवश्यक हो, वे चिकने, बड़े व्यास वाले वक्र होने चाहिए। यहां तक ​​कि बड़े सर्पिल की अनुमति है, लेकिन कोहनी (पाइपिंग) से बचना चाहिए। पीवीसी कुछ प्रतिष्ठानों में काम करेगा, लेकिन स्टील पाइप को प्राथमिकता दी जाती है, चूंकि यह बहुत अधिक महंगा है। यदि वाल्व का उपयोग किया जाता है तो उन्हें मुक्त प्रवाह प्रकार होना चाहिए जैसे कि बॉल वाल्व या गेट वाल्व

डिलीवरी पाइप बहुत कम महत्वपूर्ण है क्योंकि दबाव पोत पानी के हथौड़े के प्रभावों को ऊपर जाने से रोकता है। इसका समग्र डिजाइन अपेक्षित प्रवाह के आधार पर स्वीकार्य दबाव ड्रॉप द्वारा निर्धारित किया जाएगा। सामान्यतः पाइप का आकार आपूर्ति पाइप का लगभग आधा होगा, लेकिन बहुत लंबे समय के लिए बड़े आकार का संकेत दिया जा सकता है। पीवीसी पाइप और कोई भी आवश्यक वाल्व कोई समस्या नहीं है।

ऑपरेशन प्रारंभ करना

एक रैम जिसे ऑपरेशन में रखा गया है या जिसने साइकिल चलाना बंद कर दिया है, यदि अपशिष्ट वाल्व का वजन या स्प्रिंग प्रेशर सही प्रकार से समायोजित किया जाता है, तो यह स्वचालित रूप से शुरू हो जाना चाहिए, लेकिन इसे निम्नानुसार फिर से प्रारंभ किया जा सकता है:[18] यदि अपशिष्ट वाल्व ऊपर (बंद) स्थिति में है, तो इसे मैन्युअल रूप से खुली स्थिति में नीचे धकेलना चाहिए और जारी करना चाहिए। यदि प्रवाह पर्याप्त है, तो यह कम से कम एक बार साइकिल चलाएगा। यदि यह साइकिल चलाना जारी नहीं रखता है, तो इसे बार-बार नीचे धकेलना चाहिए जब तक कि यह सामान्यतः तीन या चार मैनुअल चक्रों के बाद अपने आप लगातार चक्रित न हो जाए। यदि रैम डाउन (खुली) स्थिति में अपशिष्ट वाल्व के साथ बंद हो जाता है तो इसे मैन्युअल रूप से उठाया जाना चाहिए और आपूर्ति पाइप को पानी से भरने के लिए और किसी भी हवा के बुलबुले के लिए पाइप को स्रोत तक यात्रा करने के लिए आवश्यक होने तक ऊपर रखा जाना चाहिए। आपूर्ति पाइप की लंबाई और व्यास के आधार पर इसमें कुछ समय लग सकता है। फिर इसे ऊपर बताए अनुसार कुछ बार नीचे धकेल कर मैन्युअल रूप से प्रारंभ किया जा सकता है। रैम पर डिलीवरी पाइप पर वॉल्व होने से स्टार्टिंग आसान हो जाती है। वाल्व को तब तक बंद करना जब तक कि रैम साइकिल चलाना प्रारंभ न कर दे, फिर धीरे-धीरे इसे खोलकर डिलीवरी पाइप को भर दें। यदि बहुत जल्दी खोल दिया जाए तो यह चक्र को रोक देगा। एक बार डिलीवरी पाइप भर जाने के बाद वॉल्व को खुला छोड़ा जा सकता है।

सामान्य परिचालन समस्याएं

पर्याप्त पानी देने में विफलता अपशिष्ट वाल्व के अनुचित समायोजन के कारण हो सकती है, दबाव पोत में बहुत कम हवा होने या बस पानी को उस स्तर से ऊपर उठाने का प्रयास किया जा सकता है जिसके लिए रैम सक्षम है।

सर्दियों में जमने से मेढ़ क्षतिग्रस्त हो सकता है, या दबाव वाले बर्तन में हवा की कमी से मेढ़ के भागों पर अतिरिक्त तनाव हो सकता है। इन विफलताओं के लिए वेल्डिंग या अन्य मरम्मत विधियों और संभवतः भागों के प्रतिस्थापन की आवश्यकता होगी।

एक ऑपरेटिंग रैम के लिए कभी-कभी पुनरारंभ करने की आवश्यकता असामान्य नहीं है। अपशिष्ट वाल्व के खराब समायोजन, या स्रोत पर अपर्याप्त जल प्रवाह के कारण साइकिल चलाना बंद हो सकता है। यदि आपूर्ति जल स्तर आपूर्ति पाइप के इनपुट अंत से कम से कम कुछ इंच ऊपर नहीं है तो हवा प्रवेश कर सकती है। अन्य समस्याएं अवशिष्ट के साथ वाल्वों की रुकावट हैं, या अनुचित स्थापना, जैसे गैर-समान व्यास या सामग्री की आपूर्ति पाइप का उपयोग करना, तेज मोड़ या खुरदरा इंटीरियर, या जो ड्रॉप के लिए बहुत लंबा या छोटा है, या है अपर्याप्त रूप से कठोर सामग्री से बना है। कुछ प्रतिष्ठानों में पीवीसी आपूर्ति पाइप काम करेगा लेकिन स्टील पाइप श्रेष्ठ है।

यह भी देखें

संदर्भ

  1. The hidden world beneath the ancient Alhambra fortress. BBC 2020. Film Grenada, BBC and youtube
  2. Whitehurst, John (1775). "Account of a Machine for Raising Water, executed at Oulton, in Cheshire, in 1772". Philosophical Transactions of the Royal Society. 65: 277–279. doi:10.1098/rstl.1775.0026.
  3. Descriptions of Whitehurst's and Montgolfier's pumps appear in: James Ferguson and David Brewster, Lectures on Select Subjects, 3rd ed. (Edinburgh, Scotland: Stirling & Slade, etc., 1823), vol. 2, pages 287-292; plates, p. 421.
  4. de Montgolfier, J.M. (1803). "Note sur le bélier hydraulique, et sur la manière d'en calculer les effets" [Note on the hydraulic ram, and on the method of calculating its effects] (PDF). Journal des Mines, 13 (73) (in français). pp. 42–51.
  5. (Editorial staff) (1798). "Specification of the patent granted to Matthew Boulton, of Soho, in the county of Stafford, esquire; for his invention of improved apparatus and methods of raising water, and other fluids. ... Dated Dec. 13, 1797". The Repertory of Arts and Manufactures. 9 (51): 145–162.
  6. See, for example: "New Patents: Pierre François Montgolfier," The Annals of Philosophy, 7 (41) : 405 (May 1816).
  7. Green and Carter – Hydraulic Ram Pump inventors and patentees, www.greenandcarter.com, accessed 2 December 2022
  8. See:
    • Executive Documents of the House of Representatives at the Second Session of the Twenty-first Congress, vol. 2 (Washington, D.C.: Duff Green, 1831), pages 328 and 332.
    • Letter from Stephen S. Hallet to U.S. President James Madison, September 9, 1808. Available on-line at: U.S. National Archives.
  9. See also Robert Fulton's hydraulic ram pump: letter to Thomas Jefferson, March 28, 1810. Available on-line at: U.S. National Archives.
  10. 10.0 10.1 Thomas B. Renk (February 22, 1974). "National Register of Historic Places Inventory/Nomination: Priestly's Hydraulic Ram". National Park Service. Retrieved November 15, 2019. With accompanying two pictures from 1973
  11. NOTE: This pump claims to have no moving valves and uses high-pressure air, so it may actually be a pulser pump.
  12. "AID Foundation 2007 Ashden Award". Archived from the original on 2008-05-28. Retrieved 2008-07-09.
  13. Hanns Günther (Walter de Haas) (1931). In hundert Jahren. Kosmos.
  14. Interpretation board at the Lost Gardens of Heligan, Cornwall
  15. Frederick Philip Selwyn, pdfpiw.uspto.gov, "Fluid pressure amplifier", U.S. Patent no. 6,206,041 (filed: 2 April 1997; issued: 27 March 2001).
  16. "Papa Pump". Water Powered Technologies. Retrieved 2 December 2022.
  17. "Venturo Pump". Water Powered Technologies. Retrieved 2 December 2022.
  18. 18.0 18.1 Homemade Hydraulic Ram Pump for Livestock Water 2 September 2019 lgpress.clemson.edu, accessed 2 December 2022
  19. DTU Ram Pump Programme warwick.ac.uk, accessed 2 December 2022
  20. "Practical Answers: Hydraulic Ram Pumps" (PDF). Archived from the original (PDF) on 2009-08-06. Retrieved 2007-06-03.
  21. Hydraulic Ram Pumps, John Perkin
  22. Kypuros, Javier A.; Longoria, Raul G. (2004-01-29). "Model Synthesis for Design of Switched Systems Using a Variable Structure System Formulation". Journal of Dynamic Systems, Measurement, and Control. 125 (4): 618–629. doi:10.1115/1.1636774. ISSN 0022-0434. The hydraulic-ram pump ... structure parallels that of the boost converter making it a hydraulic analog
  23. Longoria, R.G.; Kypuros, J.A.; Raynter, H.M. (1997). "Bond graph and wave-scattering models of switched power conversion". 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Vol. 2. pp. 1522–1526. doi:10.1109/ICSMC.1997.638209. ISBN 978-0-7803-4053-4. S2CID 58941781. Indeed, this self-acting pump has much to offer in a parallel study with its electrical cousin.


आगे की पढाई


बाहरी कड़ियाँ