विशिष्ट आवेग: Difference between revisions
(→उदाहरण) |
No edit summary |
||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Change in velocity per amount of fuel}} | {{Short description|Change in velocity per amount of fuel}} | ||
{{Use dmy dates|date=March 2020}} | {{Use dmy dates|date=March 2020}} | ||
'''विशिष्ट आवेग''' (सामान्यतः संक्षिप्त {{math|1=''आई''<sub>एसपी</sub>}}) एक प्रतिक्रिया द्रव्यमान इंजन (ईंधन का उपयोग कर एक [[रॉकेट इंजन]] या ईंधन का उपयोग कर [[जेट इंजिन]]) कितनी कुशलता से थ्रस्ट देता है इसका एक उपाय है। इंजनों के लिए जिनकी प्रतिक्रिया द्रव्यमान केवल उनके द्वारा ले जाने वाला ईंधन है, विशिष्ट आवेग प्रभावी निकास गैस वेग के समानुपाती होता है। | |||
उच्च विशिष्ट आवेग वाली प्रणोदन प्रणाली प्रणोदक के द्रव्यमान का अधिक कुशलता से उपयोग करती है। रॉकेट के प्रकरण में, इसका मतलब है कि दिए गए [https://alpha.indicwiki.in/Index.php?title=%E0%A4%A1%E0%A5%87%E0%A4%B2%E0%A5%8D%E0%A4%9F%E0%A4%BE-%E0%A4%B5%E0%A5%80 डेल्टा-]वी के लिए कम प्रणोदक की आवश्यकता है,<ref name="QRG13">{{cite web|url=http://www.qrg.northwestern.edu/projects/vss/docs/propulsion/3-what-is-specific-impulse.html|title=विशिष्ट आवेग क्या है?|publisher=Qualitative Reasoning Group|access-date=22 December 2009}}</ref><ref name="ars201304143">{{cite web|last=Hutchinson|first=Lee |title=नया F-1B रॉकेट इंजन 1.8M lbs थ्रस्ट के साथ अपोलो-एरा डिज़ाइन को अपग्रेड करता है|url=https://arstechnica.com/science/2013/04/new-f-1b-rocket-engine-upgrades-apollo-era-deisgn-with-1-8m-lbs-of-thrust/ |access-date=15 April 2013 |website=[[Ars Technica]] |date=14 April 2013 |quote=रॉकेट की ईंधन प्रभावशीलता के माप को इसका विशिष्ट आवेग कहा जाता है (संक्षिप्त रूप में 'आईएसपी' - या अधिक उचित रूप से आईएसपी) .... 'द्रव्यमान विशिष्ट आवेग ... एक रासायनिक प्रतिक्रिया की जोर-उत्पादक प्रभावशीलता का वर्णन करता है और यह सबसे आसानी से होता है समय की एक इकाई में जलाए गए ईंधन और ऑक्सीडाइज़र प्रणोदक के प्रत्येक पाउंड (द्रव्यमान) द्वारा उत्पादित थ्रस्ट बल की मात्रा के रूप में माना जाता है। यह रॉकेट के लिए मील प्रति गैलन (mpg) के माप की तरह है।'}}</ref> ताकि इंजन से जुड़ा वाहन अधिक कुशलता से ऊंचाई और वेग प्राप्त कर सके। | |||
विशिष्ट आवेग | एक वायुमंडलीय संदर्भ में, विशिष्ट आवेग में बाहरी हवा के द्रव्यमान द्वारा प्रदान किए गए आवेग में योगदान शामिल हो सकता है जो किसी तरह से इंजन द्वारा त्वरित किया जाता है, जैसे कि आंतरिक टर्बोफैन या ईंधन दहन भागीदारी द्वारा ताप , फिर जोर विस्तार या बाहरी प्रोपेलर द्वारा। जेट इंजन दहन और बाय-पास दोनों के लिए बाहरी हवा में सांस लेते हैं, और इसलिए रॉकेट इंजनों की तुलना में बहुत अधिक विशिष्ट आवेग होते हैं। खर्च किए गए प्रणोदक द्रव्यमान के संदर्भ में विशिष्ट आवेग में प्रति समय दूरी की इकाइयाँ होती हैं, जो एक काल्पनिक वेग है जिसे प्रभावी निकास वेग कहा जाता है। यह वास्तविक निकास वेग से अधिक है क्योंकि दहन वायु के द्रव्यमान का हिसाब नहीं दिया जा रहा है। निर्वात में चलने वाले रॉकेट इंजनों में निकास का वास्तविक और प्रभावी वेग समान होता है। | ||
विशिष्ट आवेग संबंधआई<sub>एसपी</sub> = 1/(जो· एसएफसी) के लिए [[विशिष्ट ईंधन खपत]] (एसएफसी) के व्युत्क्रमानुपाती होता है, एसएफसी के लिए किग्रा/(एन·एस) में और आई<sub>एसपी</sub> = 3600/एसएफसी के लिए एलबी/(एलबीएफ·घंटा) में। | |||
== सामान्य विचार == | == सामान्य विचार == | ||
प्रणोदक की मात्रा या तो द्रव्यमान या भार की इकाइयों में मापी जा सकती है। यदि द्रव्यमान का उपयोग किया जाता है, तो विशिष्ट आवेग द्रव्यमान की प्रति इकाई एक [[आवेग (भौतिकी)]] है, जो [[विमीय विश्लेषण]] गति की इकाइयों को दिखाता है, विशेष रूप से '''प्रभावी निकास वेग'''। जैसा कि एसआई ( | प्रणोदक की मात्रा या तो द्रव्यमान या भार की इकाइयों में मापी जा सकती है। यदि द्रव्यमान का उपयोग किया जाता है, तो विशिष्ट आवेग द्रव्यमान की प्रति इकाई एक [[आवेग (भौतिकी)]] है, जो [[विमीय विश्लेषण]] गति की इकाइयों को दिखाता है, विशेष रूप से '''प्रभावी निकास वेग'''। जैसा कि एसआई (एसआई) प्रणाली द्रव्यमान आधारित है, इस प्रकार का विश्लेषण सामान्यतः मीटर प्रति सेकंड में किया जाता है। यदि एक बल-आधारित इकाई प्रणाली का उपयोग किया जाता है, तो आवेग को प्रणोदक भार (वजन बल का एक उपाय है) से विभाजित किया जाता है, जिसके परिणामस्वरूप समय (सेकंड) की इकाइयां होती हैं। ये दो योग पृथ्वी की सतह पर मानक [[गुरुत्वाकर्षण त्वरण]] (जी0) द्वारा एक दूसरे से भिन्न होते हैं। | ||
प्रति इकाई समय में एक रॉकेट (उसके प्रणोदक सहित) के संवेग परिवर्तन की दर थ्रस्ट के बराबर होती है। उच्च विशिष्ट आवेग, एक निश्चित समय के लिए दिए गए थ्रस्ट का उत्पादन करने के लिए कम प्रणोदक की आवश्यकता होती है और प्रणोदक अधिक कुशल होता है। यह [[ऊर्जा दक्षता (भौतिकी)]] की भौतिकी अवधारणा के साथ भ्रमित नहीं होना चाहिए, जो विशिष्ट आवेग में वृद्धि के रूप में घट सकता है, क्योंकि उच्च विशिष्ट आवेग देने वाले प्रणोदन प्रणालियों को ऐसा करने के लिए उच्च ऊर्जा की आवश्यकता होती है।<ref>{{cite web |url=http://www.geoffreylandis.com/laser_ion_pres.htp |title=लेजर-संचालित इंटरस्टेलर जांच (प्रस्तुति)|access-date=2013-11-16 |url-status=dead |archive-url=https://web.archive.org/web/20131002200923/http://www.geoffreylandis.com/laser_ion_pres.htp |archive-date=2 October 2013}}</ref> | प्रति इकाई समय में एक रॉकेट (उसके प्रणोदक सहित) के संवेग परिवर्तन की दर थ्रस्ट के बराबर होती है। उच्च विशिष्ट आवेग, एक निश्चित समय के लिए दिए गए थ्रस्ट का उत्पादन करने के लिए कम प्रणोदक की आवश्यकता होती है और प्रणोदक अधिक कुशल होता है। यह [[ऊर्जा दक्षता (भौतिकी)]] की भौतिकी अवधारणा के साथ भ्रमित नहीं होना चाहिए, जो विशिष्ट आवेग में वृद्धि के रूप में घट सकता है, क्योंकि उच्च विशिष्ट आवेग देने वाले प्रणोदन प्रणालियों को ऐसा करने के लिए उच्च ऊर्जा की आवश्यकता होती है।<ref>{{cite web |url=http://www.geoffreylandis.com/laser_ion_pres.htp |title=लेजर-संचालित इंटरस्टेलर जांच (प्रस्तुति)|access-date=2013-11-16 |url-status=dead |archive-url=https://web.archive.org/web/20131002200923/http://www.geoffreylandis.com/laser_ion_pres.htp |archive-date=2 October 2013}}</ref> | ||
[[जोर|थ्रस्ट]] और विशिष्ट आवेग भ्रमित नहीं होना चाहिए। थ्रस्ट इंजन द्वारा आपूर्ति किया गया बल है और इंजन के माध्यम से प्रवाहित प्रतिक्रिया द्रव्यमान की मात्रा पर निर्भर करता है। विशिष्ट आवेग प्रणोदक की प्रति इकाई उत्पन्न आवेग को मापता है और निकास वेग के समानुपाती होता है। थ्रस्ट और विशिष्ट आवेग प्रश्न में इंजन के बनावट और प्रणोदक से संबंधित हैं, लेकिन यह रिश्ता कमजोर है। उदाहरण के लिए, LH2/LO2 द्विप्रणोदक उच्च '' | [[जोर|थ्रस्ट]] और विशिष्ट आवेग भ्रमित नहीं होना चाहिए। थ्रस्ट इंजन द्वारा आपूर्ति किया गया बल है और इंजन के माध्यम से प्रवाहित प्रतिक्रिया द्रव्यमान की मात्रा पर निर्भर करता है। विशिष्ट आवेग प्रणोदक की प्रति इकाई उत्पन्न आवेग को मापता है और निकास वेग के समानुपाती होता है। थ्रस्ट और विशिष्ट आवेग प्रश्न में इंजन के बनावट और प्रणोदक से संबंधित हैं, लेकिन यह रिश्ता कमजोर है। उदाहरण के लिए, [[LH2/LO2|एलएच2/एलओ2]] द्विप्रणोदक उच्च ''आई''<sub>एसपी</sub> का उत्पादन करता है लेकिन [https://alpha.indicwiki.in/Index.php?title=%E0%A4%86%E0%A4%B0%E0%A4%AA%E0%A5%80-1/%E0%A4%8F%E0%A4%B2%E0%A4%932 आरपी-1/एलओ2] की तुलना में कम थ्रस्ट कम घनत्व और उच्च वेग ([[H2O|एच2ओ]] बनाम [[CO2|सीओ<sub>2</sub>]] और एच2ओ) वाले निकास गैसों के कारण होता है। कई मामलों में, बहुत उच्च विशिष्ट आवेग वाले प्रणोदन सिस्टम - कुछ [[आयन थ्रस्टर|आयन थ्रस्टर्स]] 10,000 सेकंड तक पहुंचते हैं - कम थ्रस्ट उत्पन्न करते हैं।<ref name="exploreMarsnow3">{{cite web|url=http://www.exploremarsnow.org/MissionOverview.html|title=मिशन अवलोकन|publisher=exploreMarsnow|access-date=23 December 2009}}</ref> | ||
विशिष्ट आवेग की गणना करते समय, उपयोग से पहले वाहन के साथ ले जाने वाले प्रणोदक को ही गिना जाता है। एक रासायनिक रॉकेट के लिए, प्रणोदक द्रव्यमान में ईंधन और [[ऑक्सीकारक]] दोनों | विशिष्ट आवेग की गणना करते समय, उपयोग से पहले वाहन के साथ ले जाने वाले प्रणोदक को ही गिना जाता है। एक रासायनिक रॉकेट के लिए, प्रणोदक द्रव्यमान में ईंधन और [[ऑक्सीकारक]] दोनों सम्मिलित होंगे। रॉकेटरी में, एक उच्च विशिष्ट आवेग वाला एक भारी इंजन कम विशिष्ट आवेग के साथ एक हल्के इंजन के रूप में ऊंचाई, दूरी या वेग प्राप्त करने में उतना प्रभावी नहीं हो सकता है, खासकर अगर बाद वाला इंजन उच्च [[थ्रस्ट-टू-वेट अनुपात]] रखता है। अधिकांश रॉकेट डिजाइनों के कई चरण होने का यह एक महत्वपूर्ण कारण है। पहले चरण को उच्च थ्रस्ट के लिए अनुकूलित किया गया है ताकि बाद के चरणों को उच्च विशिष्ट आवेग के साथ उच्च ऊंचाई पर बढ़ाया जा सके जहां वे अधिक कुशलता से प्रदर्शन कर सकें। | ||
वायु-श्वास इंजनों के लिए, केवल ईंधन का द्रव्यमान गिना जाता है, न कि इंजन से गुजरने वाली वायु का द्रव्यमान। वायु प्रतिरोध और इंजन की तेज जलने की दर पर एक उच्च विशिष्ट आवेग रखने में असमर्थता के कारण सभी प्रणोदक का उपयोग जितनी जल्दी हो सके नहीं किया जाता है। | वायु-श्वास इंजनों के लिए, केवल ईंधन का द्रव्यमान गिना जाता है, न कि इंजन से गुजरने वाली वायु का द्रव्यमान। वायु प्रतिरोध और इंजन की तेज जलने की दर पर एक उच्च विशिष्ट आवेग रखने में असमर्थता के कारण सभी प्रणोदक का उपयोग जितनी जल्दी हो सके नहीं किया जाता है। | ||
यदि यह वायु प्रतिरोध और उड़ान के दौरान प्रणोदक की कमी के लिए नहीं थे, तो विशिष्ट आवेग प्रणोदक भार या द्रव्यमान को आगे की गति में परिवर्तित करने में इंजन की प्रभावशीलता का प्रत्यक्ष उपाय होगा। | यदि यह वायु प्रतिरोध और उड़ान के दौरान प्रणोदक की कमी के लिए नहीं थे, तो विशिष्ट आवेग प्रणोदक भार या द्रव्यमान को आगे की गति में परिवर्तित करने में इंजन की प्रभावशीलता का प्रत्यक्ष उपाय होगा। | ||
== इकाइयां == | == इकाइयां == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ एसआई (SI) और अंग्रेजी अभियांत्रिकी इकाइयों में विभिन्न समतुल्य रॉकेट मोटर प्रदर्शन माप | |+ एसआई (SI) और अंग्रेजी अभियांत्रिकी इकाइयों में विभिन्न समतुल्य रॉकेट मोटर प्रदर्शन माप | ||
Line 29: | Line 27: | ||
! rowspan=2 | | ! rowspan=2 | | ||
! colspan=2 | विशिष्ट आवेग | ! colspan=2 | विशिष्ट आवेग | ||
! rowspan=2 | प्रभावी | ! rowspan=2 | प्रभावी | ||
निकास गति | निकास गति | ||
! rowspan=2 | विशिष्ट ईंधन | ! rowspan=2 | विशिष्ट ईंधन | ||
Line 39: | Line 37: | ||
! एसआई (SI) | ! एसआई (SI) | ||
| = {{math|''x''}} s | | = {{math|''x''}} s | ||
| = 9.80665·{{math|''x''}} | | = 9.80665·{{math|''x''}} एन·s/kg | ||
| = 9.80665·{{math|''x''}} m/s | | = 9.80665·{{math|''x''}} m/s | ||
| = 101,972/{{math|''x''}} g/( | | = 101,972/{{math|''x''}} g/(kएन·s) | ||
|- | |- | ||
! अंग्रेजी अभियांत्रिकी इकाइयों | ! अंग्रेजी अभियांत्रिकी इकाइयों | ||
Line 48: | Line 46: | ||
| = 32.17405·{{math|''x''}} ft/s | | = 32.17405·{{math|''x''}} ft/s | ||
| = 3,600/{{math|''x''}} lb/(lbf·hr) | | = 3,600/{{math|''x''}} lb/(lbf·hr) | ||
|} | |}विशिष्ट आवेग के लिए सबसे आम इकाई दूसरी है, क्योंकि मूल्य समान हैं चाहे गणना [[एसआई (SI)]], [[शाही]] या [[प्रथागत]] इकाइयों में की गई हो। लगभग सभी निर्माता सेकंड में अपने इंजन के प्रदर्शन को उद्धृत करते हैं, और इकाई विमान इंजन के प्रदर्शन को निर्दिष्ट करने के लिए भी उपयोगी होती है।।<ref>{{Cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/specimp.html|title=विशिष्ट आवेग|website=www.grc.nasa.gov}}</ref> | ||
विशिष्ट आवेग के लिए सबसे आम इकाई दूसरी है, क्योंकि मूल्य समान हैं चाहे गणना [[एसआई (SI)]], [[शाही]] या [[प्रथागत]] इकाइयों में की गई हो। लगभग सभी निर्माता सेकंड में अपने इंजन के प्रदर्शन को उद्धृत करते हैं, और इकाई विमान इंजन के प्रदर्शन को निर्दिष्ट करने के लिए भी उपयोगी होती है।।<ref>{{Cite web|url=https://www.grc.nasa.gov/WWW/k-12/airplane/specimp.html|title=विशिष्ट आवेग|website=www.grc.nasa.gov}}</ref> | |||
प्रभावी निकास वेग निर्दिष्ट करने के लिए [[प्रति सेकंड मीटर]] का उपयोग भी यथोचित सामान्य है। रॉकेट इंजनों का वर्णन करते समय इकाई सहज है, हालांकि इंजनों की प्रभावी निकास गति वास्तविक निकास गति से काफी भिन्न हो सकती है, विशेष रूप से [[गैस जनरेटर चक्र]] इंजनों में। [[हवा में सांस लेने वाला जेट इंजन]] के लिए, प्रभावी निकास वेग शारीरिक रूप से अर्थपूर्ण नहीं है, हालांकि इसका उपयोग तुलनात्मक उद्देश्यों के लिए किया जा सकता है।<ref>{{Cite web|url=https://www.qrg.northwestern.edu/projects/vss/docs/propulsion/3-what-is-specific-impulse.html|title=विशिष्ट आवेग क्या है?|website=www.qrg.northwestern.edu}}</ref> | प्रभावी निकास वेग निर्दिष्ट करने के लिए [[प्रति सेकंड मीटर]] का उपयोग भी यथोचित सामान्य है। रॉकेट इंजनों का वर्णन करते समय इकाई सहज है, हालांकि इंजनों की प्रभावी निकास गति वास्तविक निकास गति से काफी भिन्न हो सकती है, विशेष रूप से [[गैस जनरेटर चक्र]] इंजनों में। [[हवा में सांस लेने वाला जेट इंजन]] के लिए, प्रभावी निकास वेग शारीरिक रूप से अर्थपूर्ण नहीं है, हालांकि इसका उपयोग तुलनात्मक उद्देश्यों के लिए किया जा सकता है।<ref>{{Cite web|url=https://www.qrg.northwestern.edu/projects/vss/docs/propulsion/3-what-is-specific-impulse.html|title=विशिष्ट आवेग क्या है?|website=www.qrg.northwestern.edu}}</ref> | ||
मीटर प्रति सेकंड संख्यात्मक रूप से न्यूटन-सेकंड प्रति किग्रा ( | मीटर प्रति सेकंड संख्यात्मक रूप से न्यूटन-सेकंड प्रति किग्रा (एन·s/kg) के बराबर है, और विशिष्ट आवेग के एसआई (SI) माप को या तो इकाइयों के रूप में एक दूसरे के रूप में लिखा जा सकता है। यह इकाई प्रणोदक के प्रति इकाई द्रव्यमान के आवेग के रूप में विशिष्ट आवेग की परिभाषा पर प्रकाश डालती है। | ||
[[विशिष्ट ईंधन की खपत]] विशिष्ट आवेग के व्युत्क्रमानुपाती होती है और इसमें | [[विशिष्ट ईंधन की खपत]] विशिष्ट आवेग के व्युत्क्रमानुपाती होती है और इसमें जी/(केएन · एस) या एलबी/(एलबीएफ·घंटा) की इकाइयाँ होती हैं। वायु-श्वास जेट इंजनों के प्रदर्शन का वर्णन करने के लिए विशिष्ट ईंधन खपत का व्यापक रूप से उपयोग किया जाता है।<ref>{{Cite web|title=विशिष्ट ईंधन की खपत|url=https://www.grc.nasa.gov/WWW/k-12/airplane/sfc.html|access-date=2021-05-13|website=www.grc.nasa.gov}}</ref> | ||
=== सेकंड में विशिष्ट आवेग === | === सेकंड में विशिष्ट आवेग === | ||
विशिष्ट आवेग, जिसे सेकंड में मापा जाता है, प्रभावी रूप से इसका अर्थ है कि इस इंजन के साथ जोड़े जाने पर यह प्रणोदक कितने सेकंड में अपने स्वयं के प्रारंभिक द्रव्यमान को 1 ग्राम पर बढ़ा सकता है। जितना अधिक समय तक यह अपने स्वयं के द्रव्यमान को गति दे सकता है, उतना अधिक डेल्टा-वी यह पूरे सिस्टम को वितरित करता है। | |||
विशिष्ट आवेग, जिसे सेकंड में मापा जाता है, प्रभावी रूप से इसका अर्थ है कि इस इंजन के साथ जोड़े जाने पर यह प्रणोदक कितने सेकंड में अपने स्वयं के प्रारंभिक द्रव्यमान को | |||
दूसरे शब्दों में, एक विशेष इंजन और एक विशेष प्रणोदक के द्रव्यमान को देखते हुए, विशिष्ट आवेग मापता है कि इंजन कितने समय तक प्रणोदक के उस द्रव्यमान को पूरी तरह से जलाने तक निरंतर बल (थ्रस्ट) लगा सकता है। अधिक ऊर्जा-सघन प्रणोदक का दिया गया द्रव्यमान इंजन में जलते समय समान बल लगाने के लिए बनाए गए कुछ कम ऊर्जा-घने प्रणोदक की तुलना में अधिक समय तक जल सकता है। एक ही प्रणोदक को जलाने वाले विभिन्न इंजन डिजाइन उनके प्रणोदक की ऊर्जा को प्रभावी थ्रस्ट में निर्देशित करने में समान रूप से कुशल नहीं हो सकते हैं। | दूसरे शब्दों में, एक विशेष इंजन और एक विशेष प्रणोदक के द्रव्यमान को देखते हुए, विशिष्ट आवेग मापता है कि इंजन कितने समय तक प्रणोदक के उस द्रव्यमान को पूरी तरह से जलाने तक निरंतर बल (थ्रस्ट) लगा सकता है। अधिक ऊर्जा-सघन प्रणोदक का दिया गया द्रव्यमान इंजन में जलते समय समान बल लगाने के लिए बनाए गए कुछ कम ऊर्जा-घने प्रणोदक की तुलना में अधिक समय तक जल सकता है। एक ही प्रणोदक को जलाने वाले विभिन्न इंजन डिजाइन उनके प्रणोदक की ऊर्जा को प्रभावी थ्रस्ट में निर्देशित करने में समान रूप से कुशल नहीं हो सकते हैं। | ||
सभी वाहनों के लिए, सेकंड में विशिष्ट आवेग (प्रणोदक की प्रति इकाई वजन-पर-पृथ्वी पर आवेग) को निम्नलिखित समीकरण द्वारा परिभाषित किया जा सकता है:<ref name= | सभी वाहनों के लिए, सेकंड में विशिष्ट आवेग (प्रणोदक की प्रति इकाई वजन-पर-पृथ्वी पर आवेग) को निम्नलिखित समीकरण द्वारा परिभाषित किया जा सकता है:<ref name="sutton3">Rocket Propulsion Elements, 7th Edition by George P. Sutton, Oscar Biblarz</ref><math display="block">F_\text{thrust} = g_0 \cdot I_\text{sp} \cdot \dot m,</math> | ||
<math display="block">F_\text{thrust} = g_0 \cdot I_\text{sp} \cdot \dot m,</math> | |||
कहां: | कहां: | ||
*<math>F_\text{thrust}</math> इंजन से प्राप्त थ्रस्ट है ([[न्यूटन (इकाई)]] या [[पाउंड बल]]), | |||
*<math>F_\text{thrust}</math> इंजन से प्राप्त थ्रस्ट है ([[न्यूटन (इकाई)]] | |||
*<math>g_0</math> मानक गुरुत्व है, जो नाममात्र रूप से पृथ्वी की सतह पर गुरुत्व है (m/s<sup>2</sup> or ft/s<sup>2</sup>), | *<math>g_0</math> मानक गुरुत्व है, जो नाममात्र रूप से पृथ्वी की सतह पर गुरुत्व है (m/s<sup>2</sup> or ft/s<sup>2</sup>), | ||
*<math>I_\text{sp}</math> विशिष्ट आवेग मापा जाता है (सेकंड), | *<math>I_\text{sp}</math> विशिष्ट आवेग मापा जाता है (सेकंड), | ||
*<math>\dot m</math> खर्च किए गए प्रणोदक की [[द्रव्यमान प्रवाह दर]] है (kg/s या [[slugs]]/s) | *<math>\dot m</math> खर्च किए गए प्रणोदक की [[द्रव्यमान प्रवाह दर]] है (kg/s या [[slugs]]/s) | ||
स्लग की तुलना में अंग्रेजी इकाई पाउंड द्रव्यमान अधिक सामान्यतः उपयोग किया जाता है, और द्रव्यमान प्रवाह दर के लिए पाउंड प्रति सेकंड का उपयोग करते समय, रूपांतरण निरंतर ''g''<sub>0</sub> अनावश्यक हो जाता है, क्योंकि स्लग आयाम रूप से ''g''<sub>0</sub> द्वारा विभाजित पाउंड के बराबर होता है:<math display="block">F_\text{thrust} = I_\text{sp} \cdot \dot m \cdot \left(1 \mathrm{\frac{ft}{s^2}} \right).</math>''I''<sub>sp</sub> सेकंड में वह समय है जब एक रॉकेट इंजन प्रणोदक की मात्रा को देखते हुए प्रणोद उत्पन्न कर सकता है जिसका वजन इंजन के थ्रस्ट के बराबर होता है। दाहिनी ओर अंतिम पद, <math display="inline">\left(1 \mathrm{\frac{ft}{s^2}} \right)</math>, विमीय स्थिरता के लिए आवश्यक है (<math display="inline">\mathrm{lbf} \propto \mathrm{s} \cdot \mathrm{\frac{lbm}{s}} \cdot \mathrm{ \frac{ft}{s^2}}</math>) | |||
इस सूत्रीकरण का लाभ यह है कि इसका उपयोग रॉकेटों के लिए किया जा सकता है, जहां सभी प्रतिक्रिया द्रव्यमान को बोर्ड पर ले जाया जाता है, साथ ही हवाई जहाज, जहां अधिकांश प्रतिक्रिया द्रव्यमान वातावरण से लिया जाता है। इसके अलावा, यह एक परिणाम देता है जो उपयोग की गई इकाइयों से स्वतंत्र होता है (बशर्ते उपयोग किए गए समय की इकाई दूसरी हो)।[[File:Specific-impulse-kk-20090105.png|thumb|center|विभिन्न जेट इंजनों का विशिष्ट आवेग (SSME [[अंतरिक्ष यान का मुख्य इंजन]] है)|537x537px]] | |||
इस सूत्रीकरण का लाभ यह है कि इसका उपयोग रॉकेटों के लिए किया जा सकता है, जहां सभी प्रतिक्रिया द्रव्यमान को बोर्ड पर ले जाया जाता है, साथ ही हवाई जहाज, जहां अधिकांश प्रतिक्रिया द्रव्यमान वातावरण से लिया जाता है। इसके अलावा, यह एक परिणाम देता है जो उपयोग की गई इकाइयों से स्वतंत्र होता है (बशर्ते | |||
[[File:Specific-impulse-kk-20090105.png|thumb|center|विभिन्न जेट इंजनों का विशिष्ट आवेग (SSME [[अंतरिक्ष यान का मुख्य इंजन]] है)|537x537px]] | |||
====रॉकेटरी==== | ====रॉकेटरी==== | ||
रॉकेटरी में, केवल प्रतिक्रिया द्रव्यमान ही प्रणोदक होता है, इसलिए विशिष्ट आवेग की गणना एक वैकल्पिक विधि का उपयोग करके की जाती है, जो सेकंड की इकाइयों के साथ परिणाम देता है। विशिष्ट आवेग को प्रणोदक के पृथ्वी पर प्रति इकाई भार समय के साथ एकीकृत थ्रस्ट के रूप में परिभाषित किया गया है:<ref name=" | रॉकेटरी में, केवल प्रतिक्रिया द्रव्यमान ही प्रणोदक होता है, इसलिए विशिष्ट आवेग की गणना एक वैकल्पिक विधि का उपयोग करके की जाती है, जो सेकंड की इकाइयों के साथ परिणाम देता है। विशिष्ट आवेग को प्रणोदक के पृथ्वी पर प्रति इकाई भार समय के साथ एकीकृत थ्रस्ट के रूप में परिभाषित किया गया है:<ref name="SINasa3">{{cite web|url=http://www.grc.nasa.gov/WWW/K-12/airplane/specimp.html|title=विशिष्ट आवेग|last=Benson|first=Tom|date=11 July 2008|publisher=[[NASA]]|access-date=22 December 2009}}</ref><math display="block">I_\text{sp} = \frac{v_\text{e}}{g_0},</math> | ||
<math display="block">I_\text{sp} = \frac{v_\text{e}}{g_0},</math> | |||
कहां | कहां | ||
*<math>I_\text{sp}</math> विशिष्ट आवेग सेकंड में मापा जाता है, | *<math>I_\text{sp}</math> विशिष्ट आवेग सेकंड में मापा जाता है, | ||
*<math>v_\text{e}</math> इंजन की धुरी के साथ औसत निकास गति है (m/s या ft/s में), | *<math>v_\text{e}</math> इंजन की धुरी के साथ औसत निकास गति है (m/s या ft/s में), | ||
*<math>g_0</math> मानक गुरुत्व है (m/s<sup>2</sup> या ft/s<sup>2</sup> में). | *<math>g_0</math> मानक गुरुत्व है (m/s<sup>2</sup> या ft/s<sup>2</sup> में). | ||
रॉकेटों में, वायुमंडलीय प्रभावों के कारण, विशिष्ट आवेग ऊंचाई के साथ भिन्न होता है, एक निर्वात में अधिकतम तक पहुंचता है। ऐसा इसलिए है क्योंकि निकास वेग केवल कक्ष के दबाव का कार्य नहीं है, बल्कि [[Index.php?title=डी लवल नोजल|दहन कक्ष के आंतरिक और बाहरी के बीच के अंतर का एक कार्य]] है। मान सामान्यतः समुद्र स्तर ("एसएल") या वैक्यूम ("खाली") में संचालन के लिए दिए जाते हैं। | |||
रॉकेटों में, वायुमंडलीय प्रभावों के कारण, विशिष्ट आवेग ऊंचाई के साथ भिन्न होता है, एक निर्वात में अधिकतम तक पहुंचता है। ऐसा इसलिए है क्योंकि निकास वेग केवल कक्ष के दबाव का कार्य नहीं है, बल्कि [[Index.php?title=डी लवल नोजल|दहन कक्ष के आंतरिक और बाहरी के बीच के अंतर का एक कार्य]] है। मान | |||
==== प्रभावी निकास वेग के रूप में विशिष्ट आवेग ==== | ==== प्रभावी निकास वेग के रूप में विशिष्ट आवेग ==== | ||
विशिष्ट आवेग के लिए समीकरण में ''g''<sub>0</sub> के भूस्थैतिक कारक के कारण, कई वैकल्पिक परिभाषा पसंद करते हैं। एक रॉकेट के विशिष्ट आवेग को प्रणोदक के प्रति इकाई द्रव्यमान प्रवाह के जोर के संदर्भ में परिभाषित किया जा सकता है। यह रॉकेट प्रणोदक की प्रभावशीलता को परिभाषित करने का एक समान रूप से मान्य (और कुछ हद तक सरल) तरीका है। एक रॉकेट के लिए, इस तरह से परिभाषित विशिष्ट आवेग रॉकेट के सापेक्ष केवल प्रभावी निकास वेग है, v<sub>e</sub>। "वास्तविक रॉकेट नोजल में, निकास वेग पूरे निकास क्रॉस सेक्शन पर वास्तव में एक समान नहीं है और इस तरह के वेग प्रोफाइल को सटीक रूप से मापना मुश्किल है। एक समान अक्षीय वेग, v <sub>e</sub>, सभी गणनाओं के लिए माना जाता है जो एक आयामी समस्या विवरण को नियोजित करते हैं। यह प्रभावी निकास वेग औसत या द्रव्यमान समतुल्य वेग का प्रतिनिधित्व करता है जिस पर रॉकेट वाहन से प्रणोदक निकाला जा रहा है।"।<ref>{{cite book|author=George P. Sutton & Oscar Biblarz|title=रॉकेट प्रणोदन तत्व|url=https://books.google.com/books?id=2qehDQAAQBAJ|year=2016|publisher=John Wiley & Sons| isbn=978-1-118-75388-0|page=27}}</ref> विशिष्ट आवेग की दो परिभाषाएँ एक दूसरे के समानुपाती हैं, और एक दूसरे से संबंधित हैं::<math display="block">v_\text{e} = g_0 \cdot I_\text{sp},</math> | |||
विशिष्ट आवेग के लिए समीकरण में ''g''<sub>0</sub> के भूस्थैतिक कारक के कारण, कई वैकल्पिक परिभाषा पसंद करते हैं। एक रॉकेट के विशिष्ट आवेग को प्रणोदक के प्रति इकाई द्रव्यमान प्रवाह के जोर के संदर्भ में परिभाषित किया जा सकता है। यह रॉकेट प्रणोदक की प्रभावशीलता को परिभाषित करने का एक समान रूप से मान्य (और कुछ हद तक सरल) तरीका है। एक रॉकेट के लिए, इस तरह से परिभाषित विशिष्ट आवेग रॉकेट के सापेक्ष केवल प्रभावी निकास वेग है, v<sub>e</sub>। "वास्तविक रॉकेट नोजल में, निकास वेग पूरे निकास क्रॉस सेक्शन पर वास्तव में एक समान नहीं है और इस तरह के वेग प्रोफाइल को सटीक रूप से मापना मुश्किल है। एक समान अक्षीय वेग, v <sub>e</sub>, सभी गणनाओं के लिए माना जाता है जो एक आयामी समस्या विवरण को नियोजित करते हैं। यह प्रभावी निकास वेग औसत या द्रव्यमान समतुल्य वेग का प्रतिनिधित्व करता है जिस पर रॉकेट वाहन से प्रणोदक निकाला जा रहा है।"।<ref>{{cite book|author=George P. Sutton & Oscar Biblarz|title=रॉकेट प्रणोदन तत्व|url=https://books.google.com/books?id=2qehDQAAQBAJ|year=2016|publisher=John Wiley & Sons| isbn=978-1-118-75388-0|page=27}}</ref> विशिष्ट आवेग की दो परिभाषाएँ एक दूसरे के समानुपाती हैं, और एक दूसरे से संबंधित हैं:: | |||
<math display="block">v_\text{e} = g_0 \cdot I_\text{sp},</math> | |||
कहां | कहां | ||
*<math>I_\text{sp}</math> सेकंड में विशिष्ट आवेग है, | *<math>I_\text{sp}</math> सेकंड में विशिष्ट आवेग है, | ||
*<math>v_\text{e}</math> m/s में मापा गया विशिष्ट आवेग है, जो m/s में मापे गए प्रभावी निकास वेग के समान है (या ft/s यदि g ft/s<sup>2</sup> में है), | *<math>v_\text{e}</math> m/s में मापा गया विशिष्ट आवेग है, जो m/s में मापे गए प्रभावी निकास वेग के समान है (या ft/s यदि g ft/s<sup>2</sup> में है), | ||
*<math>g_0</math> [[मानक गुरुत्व]] है, 9.80665 m/s<sup>2</sup> ([[संयुक्त राज्य अमेरिका की प्रथागत इकाइयों]] में 32.174 ft/s<sup>2</sup>). | *<math>g_0</math> [[मानक गुरुत्व]] है, 9.80665 m/s<sup>2</sup> ([[संयुक्त राज्य अमेरिका की प्रथागत इकाइयों]] में 32.174 ft/s<sup>2</sup>). | ||
यह समीकरण वायु-साँस लेने वाले जेट इंजनों के लिए भी मान्य है, लेकिन व्यवहार में शायद ही कभी इसका उपयोग किया जाता है। | यह समीकरण वायु-साँस लेने वाले जेट इंजनों के लिए भी मान्य है, लेकिन व्यवहार में शायद ही कभी इसका उपयोग किया जाता है। | ||
(ध्यान दें कि कभी-कभी अलग-अलग प्रतीकों का उपयोग किया जाता है; उदाहरण के लिए, ''c'' को कभी-कभी निकास वेग के लिए भी देखा जाता है। जबकि प्रतीक <math>I_\text{sp}</math> की इकाइयों में विशिष्ट आवेग के लिए तार्किक रूप से | (ध्यान दें कि कभी-कभी अलग-अलग प्रतीकों का उपयोग किया जाता है; उदाहरण के लिए, ''c'' को कभी-कभी निकास वेग के लिए भी देखा जाता है। जबकि प्रतीक <math>I_\text{sp}</math> की इकाइयों में विशिष्ट आवेग के लिए तार्किक रूप से उपयोग किया जा सकता है (एन·s{{sup|3}})/(m·kg); भ्रम से बचने के लिए, सेकंड में मापे गए विशिष्ट आवेग के लिए इसे आरक्षित करना वांछनीय है।) | ||
यह समीकरण द्वारा रॉकेट पर [[थ्रस्ट]] या फॉरवर्ड फोर्स से संबंधित है:<ref>{{cite book|author=Thomas A. Ward | title=एयरोस्पेस प्रणोदन प्रणाली|url=https://books.google.com/books?id=KEPgEgX2BEEC&pg=PA68|year=2010|publisher=John Wiley & Sons |isbn=978-0-470-82497-9|page=68}}</ref> | यह समीकरण द्वारा रॉकेट पर [[थ्रस्ट]] या फॉरवर्ड फोर्स से संबंधित है:<ref>{{cite book|author=Thomas A. Ward | title=एयरोस्पेस प्रणोदन प्रणाली|url=https://books.google.com/books?id=KEPgEgX2BEEC&pg=PA68|year=2010|publisher=John Wiley & Sons |isbn=978-0-470-82497-9|page=68}}</ref><math display="block">F_\text{thrust} = v_\text{e} \cdot \dot m,</math>कहां <math>\dot m</math> प्रणोदक द्रव्यमान प्रवाह दर है, जो वाहन के द्रव्यमान में कमी की दर है। | ||
<math display="block">F_\text{thrust} = v_\text{e} \cdot \dot m,</math> | |||
कहां <math>\dot m</math> प्रणोदक द्रव्यमान प्रवाह दर है, जो वाहन के द्रव्यमान में कमी की दर है। | |||
एक रॉकेट को अपने सभी प्रणोदक को अपने साथ ले जाना चाहिए, इसलिए असंतुलित प्रणोदक के द्रव्यमान को रॉकेट के साथ ही तेज किया जाना चाहिए। प्रभावी रॉकेट के निर्माण के लिए [[वेग]] में दिए गए परिवर्तन को प्राप्त करने के लिए आवश्यक प्रणोदक के द्रव्यमान को कम करना महत्वपूर्ण है। [[Tsiolkovsky रॉकेट समीकरण]] से पता चलता है कि किसी दिए गए खाली द्रव्यमान और प्रणोदक की दी गई मात्रा वाले रॉकेट के लिए, [[वेग]] में कुल परिवर्तन प्रभावी निकास वेग के समानुपाती होता है। | एक रॉकेट को अपने सभी प्रणोदक को अपने साथ ले जाना चाहिए, इसलिए असंतुलित प्रणोदक के द्रव्यमान को रॉकेट के साथ ही तेज किया जाना चाहिए। प्रभावी रॉकेट के निर्माण के लिए [[वेग]] में दिए गए परिवर्तन को प्राप्त करने के लिए आवश्यक प्रणोदक के द्रव्यमान को कम करना महत्वपूर्ण है। [[Tsiolkovsky रॉकेट समीकरण|सियोलकोवस्की रॉकेट समीकरण]] से पता चलता है कि किसी दिए गए खाली द्रव्यमान और प्रणोदक की दी गई मात्रा वाले रॉकेट के लिए, [[वेग]] में कुल परिवर्तन प्रभावी निकास वेग के समानुपाती होता है। | ||
प्रणोदन के बिना एक अंतरिक्ष यान अपने प्रक्षेपवक्र और किसी भी गुरुत्वाकर्षण क्षेत्र द्वारा निर्धारित कक्षा का अनुसरण करता है। वांछित वेग परिवर्तन के विपरीत दिशा में निकास द्रव्यमान भेजकर संबंधित वेग पैटर्न से विचलन (इन्हें डेल्टा वी | प्रणोदन के बिना एक अंतरिक्ष यान अपने प्रक्षेपवक्र और किसी भी गुरुत्वाकर्षण क्षेत्र द्वारा निर्धारित कक्षा का अनुसरण करता है। वांछित वेग परिवर्तन के विपरीत दिशा में निकास द्रव्यमान भेजकर संबंधित वेग पैटर्न से विचलन (इन्हें डेल्टा वी [[Delta V|Δv]] कहा जाता है) प्राप्त किया जाता है। | ||
=== वास्तविक निकास गति बनाम प्रभावी निकास गति === | === वास्तविक निकास गति बनाम प्रभावी निकास गति === | ||
जब एक इंजन वायुमंडल के भीतर चलाया जाता है, तो वायुमंडलीय दबाव से निकास वेग कम हो जाता है, बदले में विशिष्ट आवेग को कम करता है। यह निर्वात स्थितियों में प्राप्त वास्तविक निकास वेग बनाम प्रभावी निकास वेग में कमी है। [[गैस-जनरेटर चक्र]] रॉकेट इंजन के प्रकरण में, एक से अधिक निकास गैस धारा मौजूद होती है क्योंकि [[टर्बोपंप]] निकास गैस एक अलग नोजल के माध्यम से बाहर निकलती है। प्रभावी निकास वेग की गणना करने के लिए दो द्रव्यमान प्रवाहों के साथ-साथ किसी भी वायुमंडलीय दबाव के लिए लेखांकन की आवश्यकता होती है।{{Citation needed|date=July 2011}} | |||
वायु-श्वास जेट इंजनों के लिए, विशेष रूप से [[टर्बोफैन]], वास्तविक निकास वेग और प्रभावी निकास वेग परिमाण के क्रम से भिन्न होते हैं। ऐसा कई कारणों से होता है। सबसे पहले, प्रतिक्रिया द्रव्यमान के रूप में हवा का उपयोग करके अतिरिक्त संवेग का एक अच्छा सौदा प्राप्त किया जाता है, जैसे कि निकास में दहन उत्पादों में जले हुए ईंधन की तुलना में अधिक द्रव्यमान होता है। अगला, वायुमंडल में अक्रिय गैसें दहन से गर्मी को अवशोषित करती हैं, और परिणामी विस्तार के माध्यम से अतिरिक्त बल प्रदान करती हैं। अंत में, टर्बोफैन और अन्य डिजाइनों के लिए इनटेक एयर के खिलाफ धक्का देकर और भी अधिक थ्रस्ट दिया जाता है जो सीधे दहन को कभी नहीं देखता है। ये सभी एयरस्पीड और निकास गति के बीच एक बेहतर मेल की अनुमति देने के लिए गठबंधन करते हैं, जो ऊर्जा/प्रणोदक को बचाता है और वास्तविक निकास वेग को कम करते हुए प्रभावी निकास वेग को बढ़ाता है।{{Citation needed|date=July 2011}} फिर से, ऐसा इसलिए है क्योंकि हवा के द्रव्यमान को विशिष्ट आवेग गणना में नहीं गिना जाता है, इस प्रकार निकास के ईंधन घटक के द्रव्यमान के लिए सभी थ्रस्ट की गति को उत्तरदायी ठहराया जाता है, और प्रतिक्रिया द्रव्यमान, निष्क्रिय गैस और संचालित प्रभाव को छोड़ दिया जाता है। विचार से समग्र इंजन दक्षता पर पंखे। | |||
वायु-श्वास जेट इंजनों के लिए, विशेष रूप से [[टर्बोफैन]], वास्तविक निकास वेग और प्रभावी निकास वेग परिमाण के क्रम से भिन्न होते हैं। ऐसा कई कारणों से होता है। सबसे पहले, प्रतिक्रिया द्रव्यमान के रूप में हवा का उपयोग करके अतिरिक्त संवेग का एक अच्छा सौदा प्राप्त किया जाता है, जैसे कि निकास में दहन उत्पादों में जले हुए ईंधन की तुलना में अधिक द्रव्यमान होता है। अगला, वायुमंडल में अक्रिय गैसें दहन से गर्मी को अवशोषित करती हैं, और परिणामी विस्तार के माध्यम से अतिरिक्त बल प्रदान करती हैं। अंत में, टर्बोफैन और अन्य डिजाइनों के लिए इनटेक एयर के खिलाफ धक्का देकर और भी अधिक थ्रस्ट दिया जाता है जो सीधे दहन को कभी नहीं देखता है। ये सभी एयरस्पीड और निकास गति के बीच एक बेहतर मेल की अनुमति देने के लिए गठबंधन करते हैं, जो ऊर्जा/प्रणोदक को बचाता है और वास्तविक निकास वेग को कम करते हुए प्रभावी निकास वेग को बढ़ाता है।{{Citation needed|date=July 2011}} फिर से, ऐसा इसलिए है क्योंकि हवा के द्रव्यमान को विशिष्ट आवेग गणना में नहीं गिना जाता है, इस प्रकार निकास के ईंधन घटक के द्रव्यमान के लिए सभी थ्रस्ट की गति को | |||
अनिवार्य रूप से, इंजन निकास की गति में केवल ईंधन की तुलना में बहुत अधिक सम्मिलित है, लेकिन विशिष्ट आवेग गणना ईंधन को छोड़कर सब कुछ अनदेखा करती है। भले ही वायु-श्वास इंजन के लिए प्रभावी निकास वेग वास्तविक निकास वेग के संदर्भ में निरर्थक लगता है, फिर भी यह विभिन्न इंजनों की पूर्ण ईंधन दक्षता की तुलना करने के लिए उपयोगी है। | |||
=== घनत्व विशिष्ट आवेग === | === घनत्व विशिष्ट आवेग === | ||
एक संबंधित माप, '''घनत्व विशिष्ट आवेग''', जिसे कभी-कभी '''घनत्व आवेग''' भी कहा जाता है और सामान्यतः संक्षिप्त रूप में {{math|''I''<sub>s</sub>''d''}} किसी दिए गए प्रणोदक मिश्रण और विशिष्ट आवेग के औसत विशिष्ट गुरुत्व का उत्पाद है।<ref>{{cite encyclopedia |url=https://encyclopedia2.thefreedictionary.com/density+specific+impulse |website=encyclopedia2.thefreedictionary.com |title=घनत्व विशिष्ट आवेग|access-date=20 September 2022}}</ref> जबकि विशिष्ट आवेग से कम महत्वपूर्ण, लॉन्च वाहन डिजाइन में यह एक महत्वपूर्ण उपाय है, क्योंकि कम विशिष्ट आवेग का तात्पर्य है कि प्रणोदक को स्टोर करने के लिए बड़े टैंकों की आवश्यकता होगी, जो बदले में लॉन्च वाहन के [[द्रव्यमान अनुपात]] पर हानिकारक प्रभाव डालेगा।<ref>{{cite web |title=रॉकेट प्रणोदक|url=http://www.braeunig.us/space/propel.htm |website=braeunig.us |access-date=20 September 2022}}</ref> | |||
एक संबंधित माप, '''घनत्व विशिष्ट आवेग''', जिसे कभी-कभी '''घनत्व आवेग''' भी कहा जाता है और | |||
== उदाहरण == | == उदाहरण == | ||
{{main list| | {{main list|अंतरिक्ष यान प्रणोदन # विधियों की तालिका}} | ||
{| class="wikitable sortable mw-collapsible" | {| class="wikitable sortable mw-collapsible" | ||
|- | |- | ||
! colspan="8" | | ! colspan="8" |[[वैक्यूम]] में [[रॉकेट इंजन]] | ||
|- | |- | ||
! rowspan="2" | | ! rowspan="2" |मॉडल | ||
! rowspan="2" | | ! rowspan="2" |प्रकार | ||
! rowspan="2" | | ! rowspan="2" |पहला निष्पादन | ||
! rowspan="2" |उपयोग | |||
! rowspan="2" | | ! colspan="2" |[[TSFC]] | ||
! colspan="2" |TSFC | ![[Isp|I<sub>sp</sub>]] <small>(वज़न द्वारा)</small> | ||
!I<sub>sp</sub> <small>( | !I<sub>sp</sub> <small>(वज़न द्वारा)</small> | ||
!I<sub>sp</sub> <small>( | |||
|- | |- | ||
!lb/lbf·h | !lb/lbf·h | ||
!g/ | !g/kएन·s | ||
!s | !s | ||
!m/s | !m/s | ||
|- | |- | ||
| | |[[P80|एवियो P80]] | ||
| | |[[ठोस ईंधन]] | ||
|2006 | |2006 | ||
| | |[[वेगा]] चरण 1 | ||
|13 | |13 | ||
|360 | |360 | ||
Line 156: | Line 127: | ||
|2700 | |2700 | ||
|- | |- | ||
| | |[[जेफिरो|एविओ जेफिरो 23]] | ||
| | |ठोस ईंधन | ||
|2006 | |2006 | ||
| | |वेगा चरण 2 | ||
|12.52 | |12.52 | ||
|354.7 | |354.7 | ||
Line 165: | Line 136: | ||
|2819 | |2819 | ||
|- | |- | ||
| | |[[जेफिरो|एविओ जेफिरो 9ऐ]] | ||
| | |ठोस ईंधन | ||
|2008 | |2008 | ||
| | |वेगा चरण 3 | ||
|12.20 | |12.20 | ||
|345.4 | |345.4 | ||
Line 174: | Line 145: | ||
|2895 | |2895 | ||
|- | |- | ||
|RD-843 | |[[RD-843|आरडी-843]] | ||
| | |[[तरल ईंधन]] | ||
| | | | ||
| | |वेगा ऊपरी चरण | ||
|11.41 | |11.41 | ||
|323.2 | |323.2 | ||
Line 183: | Line 154: | ||
|3094 | |3094 | ||
|- | |- | ||
| | |[[NK-33|कुज़नेत्सोव एनK-33]] | ||
| | |तरल ईंधन | ||
|1970s | |1970s | ||
|N-1F, | |[[N-1F|एन-1एफ]], [[सोयुज-2-1v|सोयुज-2-1वि]] चरण 1 | ||
|10.9 | |10.9 | ||
|308 | |308 | ||
Line 192: | Line 163: | ||
|3250 | |3250 | ||
|- | |- | ||
| | |एनPO एनर्जीमैश RD-171M | ||
| | |तरल ईंधन | ||
| | | | ||
| | |[[जेनिट-2M|जेनिट-2एम]] , [[-3SL|-3]][[-3SLB|एसएल]], [[-3SLB|-3एसएलबी]], [[-3F|-3एफ]] स्टेज 1 | ||
|10.7 | |10.7 | ||
|303 | |303 | ||
Line 201: | Line 172: | ||
|3300 | |3300 | ||
|- | |- | ||
|LE-7A | |[[LE-7A|एलई-7ए]] | ||
| | |क्रायोजेनिक | ||
| | | | ||
|H-IIA, | |[[H-IIA|एच-आईआईए, एच-आईआईबी]], चरण 1 | ||
|8.22 | |8.22 | ||
|233 | |233 | ||
Line 210: | Line 181: | ||
|4300 | |4300 | ||
|- | |- | ||
| | |स्नेकमा [[HM-7B|एचएम-7बी]] | ||
| | |क्रायोजेनिक | ||
| | | | ||
| | |[[एरियन 2]], [[एरियन 3|3]], [[एरियन 4|4]], [[एरियन 5|5]] ईसीए ऊपरी चरण | ||
|8.097 | |8.097 | ||
|229.4 | |229.4 | ||
Line 219: | Line 190: | ||
|4360 | |4360 | ||
|- | |- | ||
|LE-5B-2 | |[[LE-5B-2|एलई-5बी-2]] | ||
| | |क्रायोजेनिक | ||
| | | | ||
| | |एच-आईआईए, एच-आईआईबी ऊपरी चरण | ||
|8.05 | |8.05 | ||
|228 | |228 | ||
Line 228: | Line 199: | ||
|4380 | |4380 | ||
|- | |- | ||
| | |एयरोजेट रॉकेटडाइन रुपये-25 | ||
| | |क्रायोजेनिक | ||
|1981 | |1981 | ||
| | |[[स्पेस शटल]], [[SLS|एसएलएस]] चरण 1 | ||
|7.95 | |7.95 | ||
|225 | |225 | ||
Line 237: | Line 208: | ||
|4440 | |4440 | ||
|- | |- | ||
| | |एयरोजेट रॉकेटडाइन आरएल-10बी-2 | ||
| | |क्रायोजेनिक | ||
| | | | ||
| | |[[डेल्टा III]], [[डेल्टा IV]], एसएलएस ऊपरी चरण | ||
|7.734 | |7.734 | ||
|219.1 | |219.1 | ||
Line 246: | Line 217: | ||
|4565 | |4565 | ||
|- | |- | ||
| | |नर्वा एनआरएक्स ए 6 | ||
| | |[[न्यूक्लियर]] | ||
|1967 | |1967 | ||
| | | | ||
Line 255: | Line 226: | ||
|} | |} | ||
{| class="wikitable sortable mw-collapsible mw-collapsed" | {| class="wikitable sortable mw-collapsible mw-collapsed" | ||
! colspan="8" | | ! colspan="8" |रिहीट, स्थिर, समुद्र तल के साथ जेट इंजन | ||
|- | |- | ||
! rowspan="2" | | ! rowspan="2" |मॉडल | ||
! rowspan="2" | | ! rowspan="2" |प्रकार | ||
! rowspan="2" | | ! rowspan="2" |पहला | ||
निष्पादन | |||
! rowspan="2" | | ! rowspan="2" |उपयोग | ||
! colspan="2" |TSFC | ! colspan="2" |TSFC | ||
!I<sub>sp</sub> <small>( | ![[Isp|I<sub>sp</sub>]] <small>(वज़न द्वारा)</small> | ||
!I<sub>sp</sub> <small>( | !I<sub>sp</sub> <small>(वज़न द्वारा)</small> | ||
|- | |- | ||
!lb/lbf·h | !lb/lbf·h | ||
!g/ | !g/kएन·s | ||
!s | !s | ||
!m/s | !m/s | ||
|- | |- | ||
| | |टर्बो-यूनियन RB.199 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |बवंडर | ||
|2.5 | |2.5 | ||
|70.8 | |70.8 | ||
Line 280: | Line 251: | ||
|14120 | |14120 | ||
|- | |- | ||
| | |जीई F101-जीई-102 | ||
| | |टर्बोफैन | ||
|1970s | |1970s | ||
| | |बी-1बी | ||
|2.46 | |2.46 | ||
|70 | |70 | ||
Line 289: | Line 260: | ||
|14400 | |14400 | ||
|- | |- | ||
| | |तुमांस्की आर-25-300 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिग-21बीस | ||
|2.206 | |2.206 | ||
|62.5 | |62.5 | ||
Line 298: | Line 269: | ||
|16000 | |16000 | ||
|- | |- | ||
| | |जीई J85-जीई-21 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एफ-5ई/एफ | ||
|2.13 | |2.13 | ||
|60.3 | |60.3 | ||
Line 307: | Line 278: | ||
|16570 | |16570 | ||
|- | |- | ||
| | |जीई F110-जीई-132 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-16ई/एफ | ||
|2.09 | |2.09 | ||
|59.2 | |59.2 | ||
Line 316: | Line 287: | ||
|16890 | |16890 | ||
|- | |- | ||
| | |हनीवेल/आईटीईसी एफ125 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-सीके-1 | ||
|2.06 | |2.06 | ||
|58.4 | |58.4 | ||
Line 325: | Line 296: | ||
|17140 | |17140 | ||
|- | |- | ||
| | |स्नेकमा एम53-पी2 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |मिराज 2000सी/डी/एन | ||
|2.05 | |2.05 | ||
|58.1 | |58.1 | ||
Line 334: | Line 305: | ||
|17220 | |17220 | ||
|- | |- | ||
| | |स्नेकमा अतर 09सी | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिराज III | ||
|2.03 | |2.03 | ||
|57.5 | |57.5 | ||
Line 343: | Line 314: | ||
|17400 | |17400 | ||
|- | |- | ||
| | |स्नेकमा अतर 09के-50 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिराज IV, 50, F1 | ||
|1.991 | |1.991 | ||
|56.4 | |56.4 | ||
Line 352: | Line 323: | ||
|17730 | |17730 | ||
|- | |- | ||
| | |जीई जे79-जीई-15 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एफ-4ई/ईजे/एफ/जी, आरएफ-4ई | ||
|1.965 | |1.965 | ||
|55.7 | |55.7 | ||
Line 361: | Line 332: | ||
|17970 | |17970 | ||
|- | |- | ||
| | |सैटर्न एएल-31एफ | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एसयू-27/पी/के | ||
|1.96 | |1.96 | ||
|55.5 | |55.5 | ||
Line 370: | Line 341: | ||
|18010 | |18010 | ||
|- | |- | ||
| | |जीई एफ110-जीई-129 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-16सी/डी, एफ-15ईएक्स | ||
|1.9 | |1.9 | ||
|53.8 | |53.8 | ||
Line 379: | Line 350: | ||
|18580 | |18580 | ||
|- | |- | ||
| | |सोलोविएव डी-30 एफ 6 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |मिग-31, एस-37/एसयू-47 | ||
|1.863 | |1.863 | ||
|52.8 | |52.8 | ||
Line 388: | Line 359: | ||
|18950 | |18950 | ||
|- | |- | ||
| | |ल्युल्का ए एल-21 एफ-3 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एसयू-17, एसयू-22 | ||
|1.86 | |1.86 | ||
|52.7 | |52.7 | ||
Line 397: | Line 368: | ||
|18980 | |18980 | ||
|- | |- | ||
| | |क्लिमोव आरडी-33 | ||
| | |टर्बोफैन | ||
|1974 | |1974 | ||
| | |मिग 29 | ||
|1.85 | |1.85 | ||
|52.4 | |52.4 | ||
Line 406: | Line 377: | ||
|19080 | |19080 | ||
|- | |- | ||
| | |सैटर्न एएल-41 एफ-1एस | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एसयू-35एस/टी-10बीएम | ||
|1.819 | |1.819 | ||
|51.5 | |51.5 | ||
Line 415: | Line 386: | ||
|19410 | |19410 | ||
|- | |- | ||
| | |वोल्वो आरएम12 | ||
| | |टर्बोफैन | ||
|1978 | |1978 | ||
| | |ग्रिपेन ए/बी/सी/डी | ||
|1.78 | |1.78 | ||
|50.4 | |50.4 | ||
Line 424: | Line 395: | ||
|19830 | |19830 | ||
|- | |- | ||
| | |जीई एफ404-जीई-402 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ/ए-18सी/डी | ||
|1.74 | |1.74 | ||
|49 | |49 | ||
Line 433: | Line 404: | ||
|20300 | |20300 | ||
|- | |- | ||
| | |कुज़नेत्सोव एनके-32 | ||
| | |टर्बोफैन | ||
|1980 | |1980 | ||
| | |टीयू-144LL, टीयू-160 | ||
|1.7 | |1.7 | ||
|48 | |48 | ||
Line 442: | Line 413: | ||
|21000 | |21000 | ||
|- | |- | ||
| | |स्नेकमा एम88-2 | ||
| | |टर्बोफैन | ||
|1989 | |1989 | ||
| | |गोलीकांड | ||
|1.663 | |1.663 | ||
|47.11 | |47.11 | ||
Line 451: | Line 422: | ||
|21230 | |21230 | ||
|- | |- | ||
| | |यूरोजेट ईजे200 | ||
| | |टर्बोफैन | ||
|1991 | |1991 | ||
| | |यूरोफाइटर | ||
|1.66–1.73 | |1.66–1.73 | ||
|47–49 | |47–49 | ||
Line 461: | Line 432: | ||
|} | |} | ||
{| class="wikitable sortable mw-collapsible mw-collapsed" | {| class="wikitable sortable mw-collapsible mw-collapsed" | ||
! colspan="8" | | ! colspan="8" |ड्राई जेट इंजन, स्थिर, समुद्र तल | ||
|- | |- | ||
! rowspan="2" | | ! rowspan="2" |मॉडल | ||
! rowspan="2" | | ! rowspan="2" |प्रकार | ||
! rowspan="2" | | ! rowspan="2" |पहला | ||
निष्पादन | |||
! rowspan="2" | | ! rowspan="2" |उपयोग | ||
! colspan="2" |TSFC | ! colspan="2" |TSFC | ||
!I<sub>sp</sub> <small>( | ![[Isp|I<sub>sp</sub>]] <small>(वज़न द्वारा)</small> | ||
!I<sub>sp</sub> <small>( | !I<sub>sp</sub> <small>(वज़न द्वारा)</small> | ||
|- | |- | ||
!lb/lbf·h | !lb/lbf·h | ||
!g/ | !g/kएन·s | ||
!s | !s | ||
!m/s | !m/s | ||
|- | |- | ||
| | |जीई जे85-जीई-21 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एफ-5ई/एफ | ||
|1.24 | |1.24 | ||
|35.1 | |35.1 | ||
Line 486: | Line 457: | ||
|28500 | |28500 | ||
|- | |- | ||
| | |स्नेकमा अतर 09सी | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिराज III | ||
|1.01 | |1.01 | ||
|28.6 | |28.6 | ||
Line 495: | Line 466: | ||
|35000 | |35000 | ||
|- | |- | ||
| | |स्नेकमा अतर 09के -50 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिराज IV, 50, एफ1 | ||
|0.981 | |0.981 | ||
|27.8 | |27.8 | ||
Line 504: | Line 475: | ||
|36000 | |36000 | ||
|- | |- | ||
| | |स्नेकमा अतर 08के -50 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |सुपर एटेंडर्ड | ||
|0.971 | |0.971 | ||
|27.5 | |27.5 | ||
Line 513: | Line 484: | ||
|36400 | |36400 | ||
|- | |- | ||
| | |तुमांस्की आर-25-300 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |मिग-21 बिस | ||
|0.961 | |0.961 | ||
|27.2 | |27.2 | ||
Line 522: | Line 493: | ||
|36700 | |36700 | ||
|- | |- | ||
| | |ल्युल्का ऐL-21एफ-3 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एसयू-17, एसयू-22 | ||
|0.86 | |0.86 | ||
|24.4 | |24.4 | ||
Line 531: | Line 502: | ||
|41100 | |41100 | ||
|- | |- | ||
| | |जीई जे 79-जीई-15 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |एफ-4ई/ईजे/एफ/जी, आरएफ-4ई | ||
|0.85 | |0.85 | ||
|24.1 | |24.1 | ||
Line 540: | Line 511: | ||
|41500 | |41500 | ||
|- | |- | ||
| | |स्नेकमा एम53-पी 2 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |मिराज 2000सी/डी/एन | ||
|0.85 | |0.85 | ||
|24.1 | |24.1 | ||
Line 549: | Line 520: | ||
|41500 | |41500 | ||
|- | |- | ||
| | |वोल्वो आरएम 12 | ||
| | |टर्बोफैन | ||
|1978 | |1978 | ||
| | |ग्रिपेन ए/बी/सी/डी | ||
|0.824 | |0.824 | ||
|23.3 | |23.3 | ||
Line 558: | Line 529: | ||
|42800 | |42800 | ||
|- | |- | ||
| | |आरआर टर्बोमेका एडोर | ||
| | |टर्बोफैन | ||
|1999 | |1999 | ||
| | |जगुआर रेट्रोफिट | ||
|0.81 | |0.81 | ||
|23 | |23 | ||
Line 567: | Line 538: | ||
|44000 | |44000 | ||
|- | |- | ||
| | |हनीवेल/आईटीईसी एफ 124 | ||
| | |टर्बोफैन | ||
|1979 | |1979 | ||
| | |एल-159, एक्स-45 | ||
|0.81 | |0.81 | ||
|22.9 | |22.9 | ||
Line 576: | Line 547: | ||
|43600 | |43600 | ||
|- | |- | ||
| | |हनीवेल/आईटीईसी एफ 125 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-सीके-1 | ||
|0.8 | |0.8 | ||
|22.7 | |22.7 | ||
Line 585: | Line 556: | ||
|44100 | |44100 | ||
|- | |- | ||
| | |पीडब्लू जे 52-पी-408 | ||
| | |टर्बोजेट | ||
| | | | ||
| | |ए-4एम/एन, टीए-4केयू, ईए-6बी | ||
|0.79 | |0.79 | ||
|22.4 | |22.4 | ||
Line 594: | Line 565: | ||
|44700 | |44700 | ||
|- | |- | ||
| | |सैटर्न ए एल-41 एफ-1एस | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एसयू-35एस/टी-10बीएम | ||
|0.79 | |0.79 | ||
|22.4 | |22.4 | ||
Line 603: | Line 574: | ||
|44700 | |44700 | ||
|- | |- | ||
| | |स्नेकमा एम 88-2 | ||
| | |टर्बोफैन | ||
|1989 | |1989 | ||
| | |गोलीकांड | ||
|0.782 | |0.782 | ||
|22.14 | |22.14 | ||
Line 612: | Line 583: | ||
|45100 | |45100 | ||
|- | |- | ||
| | |क्लिमोव आरडी -33 | ||
| | |टर्बोफैन | ||
|1974 | |1974 | ||
| | |मिग 29 | ||
|0.77 | |0.77 | ||
|21.8 | |21.8 | ||
Line 621: | Line 592: | ||
|45800 | |45800 | ||
|- | |- | ||
| | |आरआर पेगासस 11-61 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एवी-8बी+ | ||
|0.76 | |0.76 | ||
|21.5 | |21.5 | ||
Line 630: | Line 601: | ||
|46500 | |46500 | ||
|- | |- | ||
| | |यूरोजेट ईजे 200 | ||
| | |टर्बोफैन | ||
|1991 | |1991 | ||
| | |यूरोफाइटर | ||
|0.74–0.81 | |0.74–0.81 | ||
|21–23 | |21–23 | ||
Line 639: | Line 610: | ||
|44000–48000 | |44000–48000 | ||
|- | |- | ||
| | |जीई एफ 414-जीई-400 | ||
| | |टर्बोफैन | ||
|1993 | |1993 | ||
| | |एफ/ए-18ई/एफ | ||
|0.724 | |0.724 | ||
|20.5 | |20.5 | ||
Line 648: | Line 619: | ||
|48800 | |48800 | ||
|- | |- | ||
| | |कुज़नेत्सोव एनके -32 | ||
| | |टर्बोफैन | ||
|1980 | |1980 | ||
| | |टीयू-144एलएल, टीयू-160 | ||
|0.72-0.73 | |0.72-0.73 | ||
|20–21 | |20–21 | ||
Line 657: | Line 628: | ||
|48000–49000 | |48000–49000 | ||
|- | |- | ||
| | |सोलोविएव डी-30एफ6 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |मिग-31, एस-37/एसयू-47 | ||
|0.716 | |0.716 | ||
|20.3 | |20.3 | ||
Line 666: | Line 637: | ||
|49300 | |49300 | ||
|- | |- | ||
| | |स्नेकमा लार्ज़ैक | ||
| | |टर्बोफैन | ||
|1972 | |1972 | ||
| | |अल्फा जेट | ||
|0.716 | |0.716 | ||
|20.3 | |20.3 | ||
Line 675: | Line 646: | ||
|49300 | |49300 | ||
|- | |- | ||
| | |आईएचआई एफ3 | ||
| | |टर्बोफैन | ||
|1981 | |1981 | ||
| | |कावासाकी टी-4 | ||
|0.7 | |0.7 | ||
|19.8 | |19.8 | ||
Line 684: | Line 655: | ||
|50400 | |50400 | ||
|- | |- | ||
| | |सैटर्न ए एल-31एफ | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एसयू-27 /पी/के | ||
|0.666-0.78 | |0.666-0.78 | ||
|18.9–22.1 | |18.9–22.1 | ||
Line 693: | Line 664: | ||
|45300–53000 | |45300–53000 | ||
|- | |- | ||
| | |आरआर स्पाई आरबी.168 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एएमएक्स | ||
|0.66 | |0.66 | ||
|18.7 | |18.7 | ||
Line 702: | Line 673: | ||
|53500 | |53500 | ||
|- | |- | ||
| | |जीई एफ 110-जीई-129 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-16सी/डी, एफ-15 | ||
|0.64 | |0.64 | ||
|18 | |18 | ||
Line 711: | Line 682: | ||
|55000 | |55000 | ||
|- | |- | ||
| | |जीई एफ 110-जीई-132 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एफ-16ई/एफ | ||
|0.64 | |0.64 | ||
|18 | |18 | ||
Line 720: | Line 691: | ||
|55000 | |55000 | ||
|- | |- | ||
| | |टर्बो-यूनियन आरबी.199 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |बवंडर ईसीआर | ||
|0.637 | |0.637 | ||
|18.0 | |18.0 | ||
Line 729: | Line 700: | ||
|55400 | |55400 | ||
|- | |- | ||
| | |पीडब्लू एफ 119-पीडब्लू-100 | ||
| | |टर्बोफैन | ||
|1992 | |1992 | ||
| | |एफ-22 | ||
|0.61 | |0.61 | ||
|17.3 | |17.3 | ||
Line 738: | Line 709: | ||
|57900 | |57900 | ||
|- | |- | ||
| | |टर्बो-यूनियन आरबी.199 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |बवंडर | ||
|0.598 | |0.598 | ||
|16.9 | |16.9 | ||
Line 747: | Line 718: | ||
|59000 | |59000 | ||
|- | |- | ||
| | |जीई एफ 101-जीई-102 | ||
| | |टर्बोफैन | ||
|1970s | |1970s | ||
| | |बी-1बी | ||
|0.562 | |0.562 | ||
|15.9 | |15.9 | ||
Line 756: | Line 727: | ||
|62800 | |62800 | ||
|- | |- | ||
| | |पीडब्लू टीएफ33-पी-3 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |बी-52एच, एनबी-52एच | ||
|0.52 | |0.52 | ||
|14.7 | |14.7 | ||
Line 765: | Line 736: | ||
|67900 | |67900 | ||
|- | |- | ||
| | |आरआर एई 3007एच | ||
| | |टर्बोफैन | ||
| | | | ||
| | |आरक्यू-4, एमक्यू-4सी | ||
|0.39 | |0.39 | ||
|11.0 | |11.0 | ||
Line 774: | Line 745: | ||
|91000 | |91000 | ||
|- | |- | ||
| | |जीई एफ 118-जीई-100 | ||
| | |टर्बोफैन | ||
|1980s | |1980s | ||
| | |बी-2 | ||
|0.375 | |0.375 | ||
|10.6 | |10.6 | ||
Line 783: | Line 754: | ||
|94000 | |94000 | ||
|- | |- | ||
| | |जीई एफ 118-जीई-101 | ||
| | |टर्बोफैन | ||
|1980s | |1980s | ||
| | |यू-2S | ||
|0.375 | |0.375 | ||
|10.6 | |10.6 | ||
Line 792: | Line 763: | ||
|94000 | |94000 | ||
|- | |- | ||
| | |सीएफएम सीएफ 6-50सी2 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ए300, डीसी-10-30 | ||
|0.371 | |0.371 | ||
|10.5 | |10.5 | ||
Line 801: | Line 772: | ||
|95000 | |95000 | ||
|- | |- | ||
| | |जीई टीएफ 34-जीई-100 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ए-10 | ||
|0.37 | |0.37 | ||
|10.5 | |10.5 | ||
Line 810: | Line 781: | ||
|95000 | |95000 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-2 बी1 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |सी-135, आर सी-135 | ||
|0.36 | |0.36 | ||
|10 | |10 | ||
Line 819: | Line 790: | ||
|98000 | |98000 | ||
|- | |- | ||
| | |प्रगति डी-18टी | ||
| | |टर्बोफैन | ||
|1980 | |1980 | ||
| | |एएन-124, एएन-225 | ||
|0.345 | |0.345 | ||
|9.8 | |9.8 | ||
Line 828: | Line 799: | ||
|102000 | |102000 | ||
|- | |- | ||
| | |पीडब्लू एफ 117-पीडब्लू-100 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |सी-17 | ||
|0.34 | |0.34 | ||
|9.6 | |9.6 | ||
Line 837: | Line 808: | ||
|104000 | |104000 | ||
|- | |- | ||
| | |पीडब्लू पीडब्लू2040 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |बोइंग 757 | ||
|0.33 | |0.33 | ||
|9.3 | |9.3 | ||
Line 846: | Line 817: | ||
|107000 | |107000 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-3सी1 | ||
| | |टर्बोफैन | ||
| | | | ||
|737 | |737 क्लासिक | ||
|0.33 | |0.33 | ||
|9.3 | |9.3 | ||
Line 855: | Line 826: | ||
|110000 | |110000 | ||
|- | |- | ||
| | |जीई सीएफ 6-80सी2 | ||
| | |टर्बोफैन | ||
| | | | ||
|744, 767, | |744, 767, एमडी-11, ए300/310, सी-5एम | ||
|0.307-0.344 | |0.307-0.344 | ||
|8.7–9.7 | |8.7–9.7 | ||
Line 864: | Line 835: | ||
|103000–115000 | |103000–115000 | ||
|- | |- | ||
| | |ईए जीपी7270 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |380-861 | ||
|0.299 | |0.299 | ||
|8.5 | |8.5 | ||
Line 873: | Line 844: | ||
|118000 | |118000 | ||
|- | |- | ||
| | |जीई जीई90-85बी | ||
| | |टर्बोफैन | ||
| | | | ||
|777-200/ | |777-200/200ईआर/300 | ||
|0.298 | |0.298 | ||
|8.44 | |8.44 | ||
Line 882: | Line 853: | ||
|118500 | |118500 | ||
|- | |- | ||
| | |जीई जीई90-94बी | ||
| | |टर्बोफैन | ||
| | | | ||
|777-200/ | |777-200/200ईआर/300 | ||
|0.2974 | |0.2974 | ||
|8.42 | |8.42 | ||
Line 891: | Line 862: | ||
|118700 | |118700 | ||
|- | |- | ||
| | |आरआर ट्रेंट 970-84 | ||
| | |टर्बोफैन | ||
|2003 | |2003 | ||
| | |ए380-841 | ||
|0.295 | |0.295 | ||
|8.36 | |8.36 | ||
Line 900: | Line 871: | ||
|119700 | |119700 | ||
|- | |- | ||
| | |जीई जीईएनएक्स -1बी70 | ||
| | |टर्बोफैन | ||
| | | | ||
|787-8 | |787-8 | ||
Line 909: | Line 880: | ||
|124100 | |124100 | ||
|- | |- | ||
| | |आरआर ट्रेंट 1000सी | ||
| | |टर्बोफैन | ||
|2006 | |2006 | ||
|787-9 | |787-9 | ||
Line 919: | Line 890: | ||
|} | |} | ||
{| class="wikitable sortable mw-collapsible mw-collapsed" | {| class="wikitable sortable mw-collapsible mw-collapsed" | ||
! colspan="8" | | ! colspan="8" |जेट इंजन, क्रूज | ||
|- | |- | ||
! rowspan="2" | | ! rowspan="2" |मॉडल | ||
! rowspan="2" | | ! rowspan="2" |प्रकार | ||
! rowspan="2" | | ! rowspan="2" |पहला | ||
निष्पादन | |||
! rowspan="2" | | ! rowspan="2" |उपयोग | ||
! colspan="2" |TSFC | ! colspan="2" |TSFC | ||
!I<sub>sp</sub> <small>( | ![[Isp|I<sub>sp</sub>]] <small>(वज़न द्वारा)</small> | ||
!I<sub>sp</sub> <small>( | !I<sub>sp</sub> <small>(वज़न द्वारा)</small> | ||
|- | |- | ||
!lb/lbf·h | !lb/lbf·h | ||
!g/ | !g/kएन·s | ||
!s | !s | ||
!m/s | !m/s | ||
|- | |- | ||
| | | | ||
| | |रामजेट | ||
| | | | ||
| | |मच 1 | ||
|4.5 | |4.5 | ||
|130 | |130 | ||
Line 944: | Line 915: | ||
|7800 | |7800 | ||
|- | |- | ||
| | |जे-58 | ||
| | |टर्बोजेट | ||
|1958 | |1958 | ||
| | |एसआर-71 ऐट मच 3.2 (गरम करना) | ||
|1.9 | |1.9 | ||
|53.8 | |53.8 | ||
Line 953: | Line 924: | ||
|18580 | |18580 | ||
|- | |- | ||
| | |आरआर / स्नेक्मा ओलिंप | ||
| | |टर्बोजेट | ||
|1966 | |1966 | ||
| | |कोएनकॉर्ड ऐट मैक 2 | ||
|1.195 | |1.195 | ||
|33.8 | |33.8 | ||
Line 962: | Line 933: | ||
|29500 | |29500 | ||
|- | |- | ||
| | |पीडब्लू जेटी8डी-9 | ||
| | |टर्बोफैन | ||
| | | | ||
|737 | |737 ओरिजिनऐल | ||
|0.8 | |0.8 | ||
|22.7 | |22.7 | ||
Line 971: | Line 942: | ||
|44100 | |44100 | ||
|- | |- | ||
| | |हनीवेल एएलएफ502 आर-5 | ||
| | |जीटीएफ | ||
| | | | ||
| | |बीएई 146 | ||
|0.72 | |0.72 | ||
|20.4 | |20.4 | ||
Line 980: | Line 951: | ||
|49000 | |49000 | ||
|- | |- | ||
| | |सोलोविएव डी-30केपी-2 | ||
| | |टर्बोफैन | ||
| | | | ||
|Il-76, Il-78 | |Il-76, Il-78 | ||
Line 989: | Line 960: | ||
|49400 | |49400 | ||
|- | |- | ||
| | |सोलोविएव डी-30 केयू-154 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |टीयू-154 एम | ||
|0.705 | |0.705 | ||
|20.0 | |20.0 | ||
Line 998: | Line 969: | ||
|50100 | |50100 | ||
|- | |- | ||
| | |आरआर तय आरबी.183 | ||
| | |टर्बोफैन | ||
|1984 | |1984 | ||
| | |फोकक एसई 70, फ़ोक एससी 100 | ||
|0.69 | |0.69 | ||
|19.5 | |19.5 | ||
Line 1,007: | Line 978: | ||
|51200 | |51200 | ||
|- | |- | ||
| | |जीई सीएफ 34-3 | ||
| | |टर्बोफैन | ||
|1982 | |1982 | ||
| | |चैलेंज ईआर, सीआरजे100/200 | ||
|0.69 | |0.69 | ||
|19.5 | |19.5 | ||
Line 1,016: | Line 987: | ||
|51200 | |51200 | ||
|- | |- | ||
| | |जीई सीएफ 34-8ई | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ई170/175 | ||
|0.68 | |0.68 | ||
|19.3 | |19.3 | ||
Line 1,025: | Line 996: | ||
|51900 | |51900 | ||
|- | |- | ||
| | |हनीवेल टीएफई 731-60 | ||
| | |जीटीएफ | ||
| | | | ||
| | |फेल्कोएन 900 | ||
|0.679 | |0.679 | ||
|19.2 | |19.2 | ||
Line 1,034: | Line 1,005: | ||
|52000 | |52000 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-2सी1 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |डीसी-8 सुपर यर 70 | ||
|0.671 | |0.671 | ||
|19.0 | |19.0 | ||
Line 1,043: | Line 1,014: | ||
|52600 | |52600 | ||
|- | |- | ||
| | |जीई सीएफ 34-8सी | ||
| | |टर्बोफैन | ||
| | | | ||
| | |सीआरजे700/900/1000 | ||
|0.67-0.68 | |0.67-0.68 | ||
|19–19 | |19–19 | ||
Line 1,052: | Line 1,023: | ||
|52000–53000 | |52000–53000 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-3सी1 | ||
| | |टर्बोफैन | ||
| | | | ||
|737 | |737 क्लासिक | ||
|0.667 | |0.667 | ||
|18.9 | |18.9 | ||
Line 1,061: | Line 1,032: | ||
|52900 | |52900 | ||
|- | |- | ||
| | |सीएफएम सीएफएम56-2ए2 | ||
| | |टर्बोफैन | ||
|1974 | |1974 | ||
| | |ई-3, ई-6 | ||
|0.66 | |0.66 | ||
|18.7 | |18.7 | ||
Line 1,070: | Line 1,041: | ||
|53500 | |53500 | ||
|- | |- | ||
| | |आरआर बीआर 725 | ||
| | |टर्बोफैन | ||
|2008 | |2008 | ||
| | |जी650/ईआर | ||
|0.657 | |0.657 | ||
|18.6 | |18.6 | ||
Line 1,079: | Line 1,050: | ||
|53700 | |53700 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-2बी1 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |सी-135, आर सी-135 | ||
|0.65 | |0.65 | ||
|18.4 | |18.4 | ||
Line 1,088: | Line 1,059: | ||
|54300 | |54300 | ||
|- | |- | ||
| | |जीई सीएफ 34-10ए | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एआरजे21 | ||
|0.65 | |0.65 | ||
|18.4 | |18.4 | ||
Line 1,097: | Line 1,068: | ||
|54300 | |54300 | ||
|- | |- | ||
| | |सीएफई सीएफई738-1-1बी | ||
| | |टर्बोफैन | ||
|1990 | |1990 | ||
| | |फाल्कन 2000 | ||
|0.645 | |0.645 | ||
|18.3 | |18.3 | ||
Line 1,106: | Line 1,077: | ||
|54700 | |54700 | ||
|- | |- | ||
| | |आरआर बीआर710 | ||
| | |टर्बोफैन | ||
|1995 | |1995 | ||
| | |जी. वी/जी 550, ग्लोबल एक्सप्रेस | ||
|0.64 | |0.64 | ||
|18 | |18 | ||
Line 1,115: | Line 1,086: | ||
|55000 | |55000 | ||
|- | |- | ||
| | |जीई सीएफ 34-10ई | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ई190/195 | ||
|0.64 | |0.64 | ||
|18 | |18 | ||
Line 1,124: | Line 1,095: | ||
|55000 | |55000 | ||
|- | |- | ||
| | |सीएफएम सीएफ 6-50सी2 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ऐ300बी2/बी4/सी4/एफ4, डीसी-10-30 | ||
|0.63 | |0.63 | ||
|17.8 | |17.8 | ||
Line 1,133: | Line 1,104: | ||
|56000 | |56000 | ||
|- | |- | ||
| | |पावरजेट सैम146 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |सुपरजेट एलआर | ||
|0.629 | |0.629 | ||
|17.8 | |17.8 | ||
Line 1,142: | Line 1,113: | ||
|56100 | |56100 | ||
|- | |- | ||
| | |सीएफएम सीएफएम56-7बी24 | ||
| | |टर्बोफैन | ||
| | | | ||
|737 | |737 एनजी | ||
|0.627 | |0.627 | ||
|17.8 | |17.8 | ||
Line 1,151: | Line 1,122: | ||
|56300 | |56300 | ||
|- | |- | ||
| | |आरआर बीआर715 | ||
| | |टर्बोफैन | ||
|1997 | |1997 | ||
|717 | |717 | ||
Line 1,160: | Line 1,131: | ||
|56900 | |56900 | ||
|- | |- | ||
| | |जीई सीएफ 6-80सी2-बी1एफ | ||
| | |टर्बोफैन | ||
| | | | ||
|747-400 | |747-400 | ||
Line 1,169: | Line 1,140: | ||
|58400 | |58400 | ||
|- | |- | ||
| | |सीएफएम सीएफएम56-5ए1 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ऐ320 | ||
|0.596 | |0.596 | ||
|16.9 | |16.9 | ||
Line 1,178: | Line 1,149: | ||
|59200 | |59200 | ||
|- | |- | ||
| | |एवियाडविगेटल पीएस -90ए1 | ||
| | |टर्बोफैन | ||
| | | | ||
|Il-96-400 | |Il-96-400 | ||
Line 1,187: | Line 1,158: | ||
|59300 | |59300 | ||
|- | |- | ||
| | |पीडब्लू पीडब्लू 2040 | ||
| | |टर्बोफैन | ||
| | | | ||
|757-200 | |757-200 | ||
Line 1,196: | Line 1,167: | ||
|60700 | |60700 | ||
|- | |- | ||
| | |पीडब्लू पीडब्लू 4098 | ||
| | |टर्बोफैन | ||
| | | | ||
|777-300 | |777-300 | ||
Line 1,205: | Line 1,176: | ||
|60800 | |60800 | ||
|- | |- | ||
| | |जीई सीएफ 6-80सी2-बी2 | ||
| | |टर्बोफैन | ||
| | | | ||
|767 | |767 | ||
Line 1,214: | Line 1,185: | ||
|61300 | |61300 | ||
|- | |- | ||
| | |आईएई वी 2525-डी5 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |एमडी-90 | ||
|0.574 | |0.574 | ||
|16.3 | |16.3 | ||
Line 1,223: | Line 1,194: | ||
|61500 | |61500 | ||
|- | |- | ||
| | |आईएई वी 2533-ए5 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ऐ321-231 | ||
|0.574 | |0.574 | ||
|16.3 | |16.3 | ||
Line 1,232: | Line 1,203: | ||
|61500 | |61500 | ||
|- | |- | ||
| | |आरआर ट्रेंट 700 | ||
| | |टर्बोफैन | ||
|1992 | |1992 | ||
| | |ऐ330 | ||
|0.562 | |0.562 | ||
|15.9 | |15.9 | ||
Line 1,241: | Line 1,212: | ||
|62800 | |62800 | ||
|- | |- | ||
| | |आरआर ट्रेंट 800 | ||
| | |टर्बोफैन | ||
|1993 | |1993 | ||
|777-200/ | |777-200/200ईआर/300 | ||
|0.560 | |0.560 | ||
|15.9 | |15.9 | ||
Line 1,250: | Line 1,221: | ||
|63000 | |63000 | ||
|- | |- | ||
| | |प्रगति डी-18टी | ||
| | |टर्बोफैन | ||
|1980 | |1980 | ||
| | |ऐएन-124, ऐएन-225 | ||
|0.546 | |0.546 | ||
|15.5 | |15.5 | ||
Line 1,259: | Line 1,230: | ||
|64700 | |64700 | ||
|- | |- | ||
| | |सीएफएम सीएफएम56-5बी4 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ऐ320-214 | ||
|0.545 | |0.545 | ||
|15.4 | |15.4 | ||
Line 1,268: | Line 1,239: | ||
|64800 | |64800 | ||
|- | |- | ||
| | |सीएफएम सीएफएम 56-5सी2 | ||
| | |टर्बोफैन | ||
| | | | ||
| | |ऐ340-211 | ||
|0.545 | |0.545 | ||
|15.4 | |15.4 | ||
Line 1,277: | Line 1,248: | ||
|64800 | |64800 | ||
|- | |- | ||
| | |आरआर ट्रेंट 500 | ||
| | |टर्बोफैन | ||
|1999 | |1999 | ||
| | |ऐ340-500/600 | ||
|0.542 | |0.542 | ||
|15.4 | |15.4 | ||
Line 1,286: | Line 1,257: | ||
|65100 | |65100 | ||
|- | |- | ||
| | |सीएफएम लीप-1बी | ||
| | |टर्बोफैन | ||
|2014 | |2014 | ||
| | |737मैक्स | ||
|0.53-0.56 | |0.53-0.56 | ||
|15–16 | |15–16 | ||
Line 1,295: | Line 1,266: | ||
|63000–67000 | |63000–67000 | ||
|- | |- | ||
| | |एवियाडविगेटल पीडी-14 | ||
| | |टर्बोफैन | ||
|2014 | |2014 | ||
| | |एमसी-21-310 | ||
|0.526 | |0.526 | ||
|14.9 | |14.9 | ||
Line 1,304: | Line 1,275: | ||
|67100 | |67100 | ||
|- | |- | ||
| | |आरआर ट्रेंट 900 | ||
| | |टर्बोफैन | ||
|2003 | |2003 | ||
| | |ऐ380 | ||
|0.522 | |0.522 | ||
|14.8 | |14.8 | ||
Line 1,313: | Line 1,284: | ||
|67600 | |67600 | ||
|- | |- | ||
| | |जीई जीई90-85बी | ||
| | |टर्बोफैन | ||
| | | | ||
|777-200/ | |777-200/200ईआर | ||
|0.52 | |0.52 | ||
|14.7 | |14.7 | ||
Line 1,322: | Line 1,293: | ||
|67900 | |67900 | ||
|- | |- | ||
| | |जीई जीईएनएक्स -1बी76 | ||
| | |टर्बोफैन | ||
|2006 | |2006 | ||
|787-10 | |787-10 | ||
Line 1,331: | Line 1,302: | ||
|69000 | |69000 | ||
|- | |- | ||
| | |पीडब्लू पीडब्लू 1400 जी | ||
| | |जीटीएफ | ||
| | | | ||
| | |एमसी-21 | ||
|0.51 | |0.51 | ||
|14.4 | |14.4 | ||
Line 1,340: | Line 1,311: | ||
|69000 | |69000 | ||
|- | |- | ||
| | |सीएफएम लीप-1सी | ||
| | |टर्बोफैन | ||
|2013 | |2013 | ||
| | |सी919 | ||
|0.51 | |0.51 | ||
|14.4 | |14.4 | ||
Line 1,349: | Line 1,320: | ||
|69000 | |69000 | ||
|- | |- | ||
| | |सीएफएम लीप-1ए | ||
| | |टर्बोफैन | ||
|2013 | |2013 | ||
| | |ऐ320नव परिवार | ||
|0.51 | |0.51 | ||
|14.4 | |14.4 | ||
Line 1,358: | Line 1,329: | ||
|69000 | |69000 | ||
|- | |- | ||
| | |आरआर ट्रेंट 7000 | ||
| | |टर्बोफैन | ||
|2015 | |2015 | ||
| | |ऐ330नव | ||
|0.506 | |0.506 | ||
|14.3 | |14.3 | ||
Line 1,367: | Line 1,338: | ||
|69800 | |69800 | ||
|- | |- | ||
| | |आरआर ट्रेंट 1000 | ||
| | |टर्बोफैन | ||
|2006 | |2006 | ||
|787 | |787 | ||
Line 1,376: | Line 1,347: | ||
|69800 | |69800 | ||
|- | |- | ||
| | |आरआर ट्रेंट एक्सडब्ल्यूबी -97 | ||
| | |टर्बोफैन | ||
|2014 | |2014 | ||
| | |ऐ350-1000 | ||
|0.478 | |0.478 | ||
|13.5 | |13.5 | ||
Line 1,385: | Line 1,356: | ||
|73900 | |73900 | ||
|- | |- | ||
| | |पीडब्लू 1127 जी | ||
| | |जीटीएफ | ||
|2012 | |2012 | ||
| | |ऐ320नव | ||
|0.463 | |0.463 | ||
|13.1 | |13.1 | ||
Line 1,395: | Line 1,366: | ||
|} | |} | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|+ | |+विभिन्न प्रणोदन प्रौद्योगिकियों का विशिष्ट आवेग | ||
! | !इंजन | ||
! | !प्रभावी निकास | ||
वेग (m/s) | |||
! | !विशिष्ट आवेग (s) | ||
!निकास विशिष्ट | |||
! | ऊर्जा (MJ/kg) | ||
|- | |- | ||
| | |[[टर्बोफैन जेट इंजन]] | ||
( | (वास्तविक V ~300 m/s है) | ||
|29,000 | |29,000 | ||
|3,000 | |3,000 | ||
|<abbr> | |<abbr>लगभग</abbr> 0.05 | ||
|- | |- | ||
| | |[[स्पेस शटल सॉलिड रॉकेट बूस्टर]] | ||
|2,500 | |2,500 | ||
|250 | |250 | ||
|3 | |3 | ||
|- | |- | ||
| | |[[तरल ऑक्सीजन-तरल हाइड्रोजन]] | ||
|4,400 | |4,400 | ||
|450 | |450 | ||
|9.7 | |9.7 | ||
|- | |- | ||
|NSTAR | |[[NSTAR|एनस्टार]] इलेक्ट्रोस्टैटिक क्सीनन आयन थ्रस्टर | ||
|20,000-30,000 | |20,000-30,000 | ||
|1,950-3,100 | |1,950-3,100 | ||
| | | | ||
|- | |- | ||
|NEXT | |[[NEXT|नेक्स्ट]] इलेक्ट्रोस्टैटिक क्सीनन आयन थ्रस्टर | ||
|40,000 | |40,000 | ||
|1,320-4,170 | |1,320-4,170 | ||
| | | | ||
|- | |- | ||
| | |वीएएसआईएमआर भविष्यवाणी | ||
|30,000–120,000 | |30,000–120,000 | ||
|3,000–12,000 | |3,000–12,000 | ||
|1,400 | |1,400 | ||
|- | |- | ||
|DS4G | |[[DS4G इलेक्ट्रोस्टैटिक आयन थ्रस्टर|डीएस4जी इलेक्ट्रोस्टैटिक आयन थ्रस्टर]] | ||
|210,000 | |210,000 | ||
|21,400 | |21,400 | ||
|22,500 | |22,500 | ||
|- | |- | ||
| | |आदर्श [[फोटोनिक रॉकेट]] | ||
|299,792,458 | |299,792,458 | ||
|30,570,000 | |30,570,000 | ||
|89,875,517,874 | |89,875,517,874 | ||
|} | |}समय में मापे गए विशिष्ट आवेग का एक उदाहरण 453 सेकंड है, जो के [[प्रभावी निकास वेग]] के बराबर है {{cvt|4.440|km/s|ft/s}}, [[RS-25]] इंजन के लिए जब वैक्यूम में काम कर रहा हो।<ref>{{Cite web|url=http://www.astronautix.com/engines/ssme.htm|title=एसएसएमई|website=www.astronautix.com|url-status=dead|archive-url=https://web.archive.org/web/20160303190701/http://www.astronautix.com/engines/ssme.htm|archive-date=March 3, 2016}}{{cbignore|bot=medic}}</ref> एक वायु-श्वास जेट इंजन में सामान्यतः रॉकेट की तुलना में बहुत बड़ा विशिष्ट आवेग होता है; उदाहरण के लिए एक [[टर्बोफैन]] जेट इंजन में समुद्र तल पर 6,000 सेकंड या उससे अधिक का विशिष्ट आवेग हो सकता है जबकि एक रॉकेट 200 और 400 सेकंड के बीच होगा।<ref>{{Cite web|url=http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node85.html|title=11.6 जेट इंजन का प्रदर्शन|website=web.mit.edu}}</ref> | ||
समय में मापे गए विशिष्ट आवेग का एक उदाहरण | |||
एक वायु-श्वास इंजन एक रॉकेट इंजन की तुलना में बहुत अधिक प्रणोदक कुशल है, क्योंकि हवा दहन के लिए प्रतिक्रिया द्रव्यमान और ऑक्सीकारक के रूप में कार्य करती है जिसे प्रणोदक के रूप में ले जाने की आवश्यकता नहीं होती है, और वास्तविक निकास गति बहुत कम होती है, इसलिए गतिज ऊर्जा निकास कम होता है और इस प्रकार जेट इंजन थ्रस्ट उत्पन्न करने के लिए बहुत कम ऊर्जा का उपयोग करता है।<ref>{{cite web|last=Dunn|first=Bruce P.|date=2001|title=डन की रीडमी|url=http://www.dunnspace.com/isp.htm|url-status=dead|archive-url=https://web.archive.org/web/20131020061623/http://www.dunnspace.com/isp.htm|archive-date=20 October 2013|access-date=2014-07-12}}</ref> जबकि वायु-श्वास इंजनों के लिए वास्तविक निकास वेग कम है, जेट इंजनों के लिए प्रभावी निकास वेग बहुत अधिक है। ऐसा इसलिए है क्योंकि प्रभावी निकास वेग गणना मानती है कि प्रणोदक सभी प्रतिक्रिया द्रव्यमान और सभी थ्रस्ट प्रदान कर रहा है। इसलिए प्रभावी निकास वेग वायु-श्वास इंजनों के लिए भौतिक रूप से अर्थपूर्ण नहीं है; फिर भी, यह अन्य प्रकार के इंजनों के साथ तुलना करने के लिए उपयोगी है।<ref>{{Cite web|url=https://www.britannica.com/technology/effective-exhaust-velocity|title=प्रभावी निकास वेग | अभियांत्रिकी|website=Encyclopedia Britannica}}</ref> | एक वायु-श्वास इंजन एक रॉकेट इंजन की तुलना में बहुत अधिक प्रणोदक कुशल है, क्योंकि हवा दहन के लिए प्रतिक्रिया द्रव्यमान और ऑक्सीकारक के रूप में कार्य करती है जिसे प्रणोदक के रूप में ले जाने की आवश्यकता नहीं होती है, और वास्तविक निकास गति बहुत कम होती है, इसलिए गतिज ऊर्जा निकास कम होता है और इस प्रकार जेट इंजन थ्रस्ट उत्पन्न करने के लिए बहुत कम ऊर्जा का उपयोग करता है।<ref>{{cite web|last=Dunn|first=Bruce P.|date=2001|title=डन की रीडमी|url=http://www.dunnspace.com/isp.htm|url-status=dead|archive-url=https://web.archive.org/web/20131020061623/http://www.dunnspace.com/isp.htm|archive-date=20 October 2013|access-date=2014-07-12}}</ref> जबकि वायु-श्वास इंजनों के लिए वास्तविक निकास वेग कम है, जेट इंजनों के लिए प्रभावी निकास वेग बहुत अधिक है। ऐसा इसलिए है क्योंकि प्रभावी निकास वेग गणना मानती है कि प्रणोदक सभी प्रतिक्रिया द्रव्यमान और सभी थ्रस्ट प्रदान कर रहा है। इसलिए प्रभावी निकास वेग वायु-श्वास इंजनों के लिए भौतिक रूप से अर्थपूर्ण नहीं है; फिर भी, यह अन्य प्रकार के इंजनों के साथ तुलना करने के लिए उपयोगी है।<ref>{{Cite web|url=https://www.britannica.com/technology/effective-exhaust-velocity|title=प्रभावी निकास वेग | अभियांत्रिकी|website=Encyclopedia Britannica}}</ref> | ||
Line 1,451: | Line 1,420: | ||
एक रॉकेट इंजन में परीक्षण किए गए रासायनिक प्रणोदक के लिए अब तक का उच्चतम विशिष्ट आवेग था {{convert|542|isp}} [[लिथियम]], [[एक अधातु तत्त्व]] और [[हाइड्रोजन]] के [[त्रिप्रणोदक रॉकेट]] के साथ। हालाँकि, यह संयोजन अव्यवहारिक है। लिथियम और फ्लोरीन दोनों अत्यंत संक्षारक हैं, लिथियम हवा के संपर्क में आने पर प्रज्वलित होता है, फ्लोरीन अधिकांश ईंधन के संपर्क में आने पर प्रज्वलित होता है, और हाइड्रोजन, जबकि हाइपरगोलिक नहीं, एक विस्फोटक खतरा है। निकास में फ्लोरीन और हाइड्रोजन फ्लोराइड (एचएफ) बहुत जहरीले होते हैं, जो पर्यावरण को नुकसान पहुंचाते हैं, लॉन्च पैड के आसपास काम करना मुश्किल बनाते हैं, और लॉन्च लाइसेंस प्राप्त करना और भी कठिन बना देता है। रॉकेट का निकास भी आयनित होता है, जो रॉकेट के साथ रेडियो संचार में हस्तक्षेप करेगा।<ref>{{Cite web|url=https://space.stackexchange.com/questions/19852/where-is-the-lithium-fluorine-hydrogen-tripropellant-currently|title=ईंधन - वर्तमान में लिथियम-फ्लोरीन-हाइड्रोजन ट्राइप्रोपेलेंट कहां है?|website=Space Exploration Stack Exchange}}</ref><ref>{{Cite book|chapter-url=https://dx.doi.org/10.2514/6.1968-618|doi = 10.2514/6.1968-618|chapter = Investigation of the lithium-fluorine-hydrogen tripropellant system|title = चौथा प्रणोदन संयुक्त विशेषज्ञ सम्मेलन|year = 1968|last1 = Arbit|first1 = H.|last2 = Clapp|first2 = S.|last3 = Nagai|first3 = C.}}</ref><ref>ARBIT, H. A., CLAPP, S. D., NAGAI, C. K., [https://archive.org/details/nasa_techdoc_19700018655 Lithium-fluorine-hydrogen propellant investigation Final report] NASA, 1 May 1970.</ref> | एक रॉकेट इंजन में परीक्षण किए गए रासायनिक प्रणोदक के लिए अब तक का उच्चतम विशिष्ट आवेग था {{convert|542|isp}} [[लिथियम]], [[एक अधातु तत्त्व]] और [[हाइड्रोजन]] के [[त्रिप्रणोदक रॉकेट]] के साथ। हालाँकि, यह संयोजन अव्यवहारिक है। लिथियम और फ्लोरीन दोनों अत्यंत संक्षारक हैं, लिथियम हवा के संपर्क में आने पर प्रज्वलित होता है, फ्लोरीन अधिकांश ईंधन के संपर्क में आने पर प्रज्वलित होता है, और हाइड्रोजन, जबकि हाइपरगोलिक नहीं, एक विस्फोटक खतरा है। निकास में फ्लोरीन और हाइड्रोजन फ्लोराइड (एचएफ) बहुत जहरीले होते हैं, जो पर्यावरण को नुकसान पहुंचाते हैं, लॉन्च पैड के आसपास काम करना मुश्किल बनाते हैं, और लॉन्च लाइसेंस प्राप्त करना और भी कठिन बना देता है। रॉकेट का निकास भी आयनित होता है, जो रॉकेट के साथ रेडियो संचार में हस्तक्षेप करेगा।<ref>{{Cite web|url=https://space.stackexchange.com/questions/19852/where-is-the-lithium-fluorine-hydrogen-tripropellant-currently|title=ईंधन - वर्तमान में लिथियम-फ्लोरीन-हाइड्रोजन ट्राइप्रोपेलेंट कहां है?|website=Space Exploration Stack Exchange}}</ref><ref>{{Cite book|chapter-url=https://dx.doi.org/10.2514/6.1968-618|doi = 10.2514/6.1968-618|chapter = Investigation of the lithium-fluorine-hydrogen tripropellant system|title = चौथा प्रणोदन संयुक्त विशेषज्ञ सम्मेलन|year = 1968|last1 = Arbit|first1 = H.|last2 = Clapp|first2 = S.|last3 = Nagai|first3 = C.}}</ref><ref>ARBIT, H. A., CLAPP, S. D., NAGAI, C. K., [https://archive.org/details/nasa_techdoc_19700018655 Lithium-fluorine-hydrogen propellant investigation Final report] NASA, 1 May 1970.</ref> | ||
[[परमाणु तापीय रॉकेट]] इंजन पारंपरिक रॉकेट इंजनों से भिन्न होते हैं जिसमें प्रणोदकों को दहन की गर्मी के बजाय बाहरी परमाणु ताप स्रोत द्वारा ऊर्जा की आपूर्ति की जाती है।<ref>{{Cite web |url=http://trajectory.grc.nasa.gov/projects/ntp/index.shtml |title=अंतरिक्ष प्रणोदन और मिशन विश्लेषण कार्यालय|access-date=20 July 2011 |archive-date=12 April 2011 |archive-url=https://web.archive.org/web/20110412093255/http://trajectory.grc.nasa.gov/projects/ntp/index.shtml |url-status=dead }}</ref> परमाणु रॉकेट | [[परमाणु तापीय रॉकेट]] इंजन पारंपरिक रॉकेट इंजनों से भिन्न होते हैं जिसमें प्रणोदकों को दहन की गर्मी के बजाय बाहरी परमाणु ताप स्रोत द्वारा ऊर्जा की आपूर्ति की जाती है।<ref>{{Cite web |url=http://trajectory.grc.nasa.gov/projects/ntp/index.shtml |title=अंतरिक्ष प्रणोदन और मिशन विश्लेषण कार्यालय|access-date=20 July 2011 |archive-date=12 April 2011 |archive-url=https://web.archive.org/web/20110412093255/http://trajectory.grc.nasa.gov/projects/ntp/index.shtml |url-status=dead }}</ref> परमाणु रॉकेट सामान्यतः एक ऑपरेटिंग परमाणु रिएक्टर के माध्यम से तरल हाइड्रोजन गैस पास करके संचालित होता है। 1960 के दशक में परीक्षण से लगभग 850 सेकंड (8,340मी/सेकेंड) के विशिष्ट आवेग प्राप्त हुए, जो स्पेस शटल इंजनों की तुलना में लगभग दोगुने थे।<ref>{{Citation|last=National Aeronautics and Space Administration|title=Nuclear Propulsion in Space|url=https://www.youtube.com/watch?v=eDNX65d-FBY |archive-url=https://ghostarchive.org/varchive/youtube/20211211/eDNX65d-FBY| archive-date=2021-12-11 |url-status=live|language=en|access-date=2021-02-24}}{{cbignore}}</ref> | ||
कई अन्य रॉकेट प्रणोदन विधियों, जैसे [[आयन थ्रस्टर्स]], बहुत अधिक विशिष्ट आवेग देते हैं लेकिन बहुत कम थ्रस्ट के साथ; उदाहरण के लिए [[SMART-1|स्मार्ट-1]] उपग्रह पर [[हॉल-इफेक्ट थ्रस्टर]] का एक विशिष्ट आवेग है {{cvt|1640|isp}} लेकिन केवल का अधिकतम थ्रस्ट {{cvt|68|mN|lbf}}.<ref>{{Cite web |url=http://www.mendeley.com/research/characterization-of-a-high-specific-impulse-xenon-hall-effect-thruster/ |title=एक उच्च विशिष्ट आवेग क्सीनन हॉल इफेक्ट थ्रस्टर की विशेषता | मेंडेली|access-date=20 July 2011 |archive-date=24 March 2012 |archive-url=https://web.archive.org/web/20120324114628/http://www.mendeley.com/research/characterization-of-a-high-specific-impulse-xenon-hall-effect-thruster/ |url-status=dead }}</ref> [[चर विशिष्ट आवेग मैग्नेटोप्लाज्मा रॉकेट]] (वीएएसआईएमआर) इंजन वर्तमान में विकास में सैद्धांतिक रूप से उपज देगा {{cvt|20|to|300|km/s|ft/s}}, और का अधिकतम थ्रस्ट {{cvt|5.7|N|lbf}}.<ref>{{Cite web|last=Ad Astra|date=November 23, 2010|title=VASIMR® VX-200 ने पूर्ण शक्ति दक्षता मील का पत्थर पूरा किया|url=http://www.adastrarocket.com/AdAstra%20Release%2023Nov2010final.pdf|url-status=dead|access-date=23 June 2014|archive-date=30 October 2012|archive-url=https://web.archive.org/web/20121030193000/http://www.adastrarocket.com/AdAstra%20Release%2023Nov2010final.pdf}}</ref> | |||
== यह भी देखें == | == यह भी देखें == | ||
{{div col|colwidth=30em}} | {{div col|colwidth=30em}} | ||
Line 1,475: | Line 1,441: | ||
Line 1,482: | Line 1,456: | ||
{{Reflist}} | {{Reflist}} | ||
{{reflist|group=lower-alpha}} | {{reflist|group=lower-alpha}} | ||
* | * | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
*[http://software.lpre.de/ RPA - | *[http://software.lpre.de/ आरपीए (RPA) - लिक्विड रॉकेट इंजन विश्लेषण के लिए डिजाइन टूल] | ||
*[http://www.braeunig.us/space/propel.htm | *[http://www.braeunig.us/space/propel.htm विभिन्न रॉकेट ईंधनों के विशिष्ट आवेगों की सूची] | ||
{{DEFAULTSORT:Specific Impulse}} | {{DEFAULTSORT:Specific Impulse}} | ||
[[Category: Machine Translated Page]] | [[Category:All articles with unsourced statements|Specific Impulse]] | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Specific Impulse]] | ||
[[Category:Articles with invalid date parameter in template|Specific Impulse]] | |||
[[Category:Articles with unsourced statements from July 2011|Specific Impulse]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 errors|Specific Impulse]] | |||
[[Category:Lua-based templates|Specific Impulse]] | |||
[[Category:Machine Translated Page|Specific Impulse]] | |||
[[Category:Multi-column templates|Specific Impulse]] | |||
[[Category:Pages using div col with small parameter|Specific Impulse]] | |||
[[Category:Pages with script errors|Specific Impulse]] | |||
[[Category:Short description with empty Wikidata description|Specific Impulse]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready|Specific Impulse]] | |||
[[Category:Templates that add a tracking category|Specific Impulse]] | |||
[[Category:Templates that generate short descriptions|Specific Impulse]] | |||
[[Category:Templates using TemplateData|Specific Impulse]] | |||
[[Category:Templates using under-protected Lua modules|Specific Impulse]] | |||
[[Category:Use dmy dates from March 2020|Specific Impulse]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:अंतरिक्ष यान प्रणोदन|Specific Impulse]] | |||
[[Category:इंजन प्रौद्योगिकी|Specific Impulse]] | |||
[[Category:भौतिक मात्रा|Specific Impulse]] | |||
[[Category:रॉकेट प्रणोदन|Specific Impulse]] | |||
[[Category:शास्त्रीय यांत्रिकी|Specific Impulse]] |
Latest revision as of 19:18, 31 January 2023
विशिष्ट आवेग (सामान्यतः संक्षिप्त आईएसपी) एक प्रतिक्रिया द्रव्यमान इंजन (ईंधन का उपयोग कर एक रॉकेट इंजन या ईंधन का उपयोग कर जेट इंजिन) कितनी कुशलता से थ्रस्ट देता है इसका एक उपाय है। इंजनों के लिए जिनकी प्रतिक्रिया द्रव्यमान केवल उनके द्वारा ले जाने वाला ईंधन है, विशिष्ट आवेग प्रभावी निकास गैस वेग के समानुपाती होता है।
उच्च विशिष्ट आवेग वाली प्रणोदन प्रणाली प्रणोदक के द्रव्यमान का अधिक कुशलता से उपयोग करती है। रॉकेट के प्रकरण में, इसका मतलब है कि दिए गए डेल्टा-वी के लिए कम प्रणोदक की आवश्यकता है,[1][2] ताकि इंजन से जुड़ा वाहन अधिक कुशलता से ऊंचाई और वेग प्राप्त कर सके।
एक वायुमंडलीय संदर्भ में, विशिष्ट आवेग में बाहरी हवा के द्रव्यमान द्वारा प्रदान किए गए आवेग में योगदान शामिल हो सकता है जो किसी तरह से इंजन द्वारा त्वरित किया जाता है, जैसे कि आंतरिक टर्बोफैन या ईंधन दहन भागीदारी द्वारा ताप , फिर जोर विस्तार या बाहरी प्रोपेलर द्वारा। जेट इंजन दहन और बाय-पास दोनों के लिए बाहरी हवा में सांस लेते हैं, और इसलिए रॉकेट इंजनों की तुलना में बहुत अधिक विशिष्ट आवेग होते हैं। खर्च किए गए प्रणोदक द्रव्यमान के संदर्भ में विशिष्ट आवेग में प्रति समय दूरी की इकाइयाँ होती हैं, जो एक काल्पनिक वेग है जिसे प्रभावी निकास वेग कहा जाता है। यह वास्तविक निकास वेग से अधिक है क्योंकि दहन वायु के द्रव्यमान का हिसाब नहीं दिया जा रहा है। निर्वात में चलने वाले रॉकेट इंजनों में निकास का वास्तविक और प्रभावी वेग समान होता है।
विशिष्ट आवेग संबंधआईएसपी = 1/(जो· एसएफसी) के लिए विशिष्ट ईंधन खपत (एसएफसी) के व्युत्क्रमानुपाती होता है, एसएफसी के लिए किग्रा/(एन·एस) में और आईएसपी = 3600/एसएफसी के लिए एलबी/(एलबीएफ·घंटा) में।
सामान्य विचार
प्रणोदक की मात्रा या तो द्रव्यमान या भार की इकाइयों में मापी जा सकती है। यदि द्रव्यमान का उपयोग किया जाता है, तो विशिष्ट आवेग द्रव्यमान की प्रति इकाई एक आवेग (भौतिकी) है, जो विमीय विश्लेषण गति की इकाइयों को दिखाता है, विशेष रूप से प्रभावी निकास वेग। जैसा कि एसआई (एसआई) प्रणाली द्रव्यमान आधारित है, इस प्रकार का विश्लेषण सामान्यतः मीटर प्रति सेकंड में किया जाता है। यदि एक बल-आधारित इकाई प्रणाली का उपयोग किया जाता है, तो आवेग को प्रणोदक भार (वजन बल का एक उपाय है) से विभाजित किया जाता है, जिसके परिणामस्वरूप समय (सेकंड) की इकाइयां होती हैं। ये दो योग पृथ्वी की सतह पर मानक गुरुत्वाकर्षण त्वरण (जी0) द्वारा एक दूसरे से भिन्न होते हैं।
प्रति इकाई समय में एक रॉकेट (उसके प्रणोदक सहित) के संवेग परिवर्तन की दर थ्रस्ट के बराबर होती है। उच्च विशिष्ट आवेग, एक निश्चित समय के लिए दिए गए थ्रस्ट का उत्पादन करने के लिए कम प्रणोदक की आवश्यकता होती है और प्रणोदक अधिक कुशल होता है। यह ऊर्जा दक्षता (भौतिकी) की भौतिकी अवधारणा के साथ भ्रमित नहीं होना चाहिए, जो विशिष्ट आवेग में वृद्धि के रूप में घट सकता है, क्योंकि उच्च विशिष्ट आवेग देने वाले प्रणोदन प्रणालियों को ऐसा करने के लिए उच्च ऊर्जा की आवश्यकता होती है।[3]
थ्रस्ट और विशिष्ट आवेग भ्रमित नहीं होना चाहिए। थ्रस्ट इंजन द्वारा आपूर्ति किया गया बल है और इंजन के माध्यम से प्रवाहित प्रतिक्रिया द्रव्यमान की मात्रा पर निर्भर करता है। विशिष्ट आवेग प्रणोदक की प्रति इकाई उत्पन्न आवेग को मापता है और निकास वेग के समानुपाती होता है। थ्रस्ट और विशिष्ट आवेग प्रश्न में इंजन के बनावट और प्रणोदक से संबंधित हैं, लेकिन यह रिश्ता कमजोर है। उदाहरण के लिए, एलएच2/एलओ2 द्विप्रणोदक उच्च आईएसपी का उत्पादन करता है लेकिन आरपी-1/एलओ2 की तुलना में कम थ्रस्ट कम घनत्व और उच्च वेग (एच2ओ बनाम सीओ2 और एच2ओ) वाले निकास गैसों के कारण होता है। कई मामलों में, बहुत उच्च विशिष्ट आवेग वाले प्रणोदन सिस्टम - कुछ आयन थ्रस्टर्स 10,000 सेकंड तक पहुंचते हैं - कम थ्रस्ट उत्पन्न करते हैं।[4]
विशिष्ट आवेग की गणना करते समय, उपयोग से पहले वाहन के साथ ले जाने वाले प्रणोदक को ही गिना जाता है। एक रासायनिक रॉकेट के लिए, प्रणोदक द्रव्यमान में ईंधन और ऑक्सीकारक दोनों सम्मिलित होंगे। रॉकेटरी में, एक उच्च विशिष्ट आवेग वाला एक भारी इंजन कम विशिष्ट आवेग के साथ एक हल्के इंजन के रूप में ऊंचाई, दूरी या वेग प्राप्त करने में उतना प्रभावी नहीं हो सकता है, खासकर अगर बाद वाला इंजन उच्च थ्रस्ट-टू-वेट अनुपात रखता है। अधिकांश रॉकेट डिजाइनों के कई चरण होने का यह एक महत्वपूर्ण कारण है। पहले चरण को उच्च थ्रस्ट के लिए अनुकूलित किया गया है ताकि बाद के चरणों को उच्च विशिष्ट आवेग के साथ उच्च ऊंचाई पर बढ़ाया जा सके जहां वे अधिक कुशलता से प्रदर्शन कर सकें।
वायु-श्वास इंजनों के लिए, केवल ईंधन का द्रव्यमान गिना जाता है, न कि इंजन से गुजरने वाली वायु का द्रव्यमान। वायु प्रतिरोध और इंजन की तेज जलने की दर पर एक उच्च विशिष्ट आवेग रखने में असमर्थता के कारण सभी प्रणोदक का उपयोग जितनी जल्दी हो सके नहीं किया जाता है।
यदि यह वायु प्रतिरोध और उड़ान के दौरान प्रणोदक की कमी के लिए नहीं थे, तो विशिष्ट आवेग प्रणोदक भार या द्रव्यमान को आगे की गति में परिवर्तित करने में इंजन की प्रभावशीलता का प्रत्यक्ष उपाय होगा।
इकाइयां
विशिष्ट आवेग | प्रभावी
निकास गति |
विशिष्ट ईंधन
उपभोग | ||
---|---|---|---|---|
वज़न द्वारा | द्रव्यमान द्वारा | |||
एसआई (SI) | = x s | = 9.80665·x एन·s/kg | = 9.80665·x m/s | = 101,972/x g/(kएन·s) |
अंग्रेजी अभियांत्रिकी इकाइयों | = x s | = x lbf·s/lb | = 32.17405·x ft/s | = 3,600/x lb/(lbf·hr) |
विशिष्ट आवेग के लिए सबसे आम इकाई दूसरी है, क्योंकि मूल्य समान हैं चाहे गणना एसआई (SI), शाही या प्रथागत इकाइयों में की गई हो। लगभग सभी निर्माता सेकंड में अपने इंजन के प्रदर्शन को उद्धृत करते हैं, और इकाई विमान इंजन के प्रदर्शन को निर्दिष्ट करने के लिए भी उपयोगी होती है।।[5]
प्रभावी निकास वेग निर्दिष्ट करने के लिए प्रति सेकंड मीटर का उपयोग भी यथोचित सामान्य है। रॉकेट इंजनों का वर्णन करते समय इकाई सहज है, हालांकि इंजनों की प्रभावी निकास गति वास्तविक निकास गति से काफी भिन्न हो सकती है, विशेष रूप से गैस जनरेटर चक्र इंजनों में। हवा में सांस लेने वाला जेट इंजन के लिए, प्रभावी निकास वेग शारीरिक रूप से अर्थपूर्ण नहीं है, हालांकि इसका उपयोग तुलनात्मक उद्देश्यों के लिए किया जा सकता है।[6]
मीटर प्रति सेकंड संख्यात्मक रूप से न्यूटन-सेकंड प्रति किग्रा (एन·s/kg) के बराबर है, और विशिष्ट आवेग के एसआई (SI) माप को या तो इकाइयों के रूप में एक दूसरे के रूप में लिखा जा सकता है। यह इकाई प्रणोदक के प्रति इकाई द्रव्यमान के आवेग के रूप में विशिष्ट आवेग की परिभाषा पर प्रकाश डालती है।
विशिष्ट ईंधन की खपत विशिष्ट आवेग के व्युत्क्रमानुपाती होती है और इसमें जी/(केएन · एस) या एलबी/(एलबीएफ·घंटा) की इकाइयाँ होती हैं। वायु-श्वास जेट इंजनों के प्रदर्शन का वर्णन करने के लिए विशिष्ट ईंधन खपत का व्यापक रूप से उपयोग किया जाता है।[7]
सेकंड में विशिष्ट आवेग
विशिष्ट आवेग, जिसे सेकंड में मापा जाता है, प्रभावी रूप से इसका अर्थ है कि इस इंजन के साथ जोड़े जाने पर यह प्रणोदक कितने सेकंड में अपने स्वयं के प्रारंभिक द्रव्यमान को 1 ग्राम पर बढ़ा सकता है। जितना अधिक समय तक यह अपने स्वयं के द्रव्यमान को गति दे सकता है, उतना अधिक डेल्टा-वी यह पूरे सिस्टम को वितरित करता है।
दूसरे शब्दों में, एक विशेष इंजन और एक विशेष प्रणोदक के द्रव्यमान को देखते हुए, विशिष्ट आवेग मापता है कि इंजन कितने समय तक प्रणोदक के उस द्रव्यमान को पूरी तरह से जलाने तक निरंतर बल (थ्रस्ट) लगा सकता है। अधिक ऊर्जा-सघन प्रणोदक का दिया गया द्रव्यमान इंजन में जलते समय समान बल लगाने के लिए बनाए गए कुछ कम ऊर्जा-घने प्रणोदक की तुलना में अधिक समय तक जल सकता है। एक ही प्रणोदक को जलाने वाले विभिन्न इंजन डिजाइन उनके प्रणोदक की ऊर्जा को प्रभावी थ्रस्ट में निर्देशित करने में समान रूप से कुशल नहीं हो सकते हैं।
सभी वाहनों के लिए, सेकंड में विशिष्ट आवेग (प्रणोदक की प्रति इकाई वजन-पर-पृथ्वी पर आवेग) को निम्नलिखित समीकरण द्वारा परिभाषित किया जा सकता है:[8]
- इंजन से प्राप्त थ्रस्ट है (न्यूटन (इकाई) या पाउंड बल),
- मानक गुरुत्व है, जो नाममात्र रूप से पृथ्वी की सतह पर गुरुत्व है (m/s2 or ft/s2),
- विशिष्ट आवेग मापा जाता है (सेकंड),
- खर्च किए गए प्रणोदक की द्रव्यमान प्रवाह दर है (kg/s या slugs/s)
स्लग की तुलना में अंग्रेजी इकाई पाउंड द्रव्यमान अधिक सामान्यतः उपयोग किया जाता है, और द्रव्यमान प्रवाह दर के लिए पाउंड प्रति सेकंड का उपयोग करते समय, रूपांतरण निरंतर g0 अनावश्यक हो जाता है, क्योंकि स्लग आयाम रूप से g0 द्वारा विभाजित पाउंड के बराबर होता है:
इस सूत्रीकरण का लाभ यह है कि इसका उपयोग रॉकेटों के लिए किया जा सकता है, जहां सभी प्रतिक्रिया द्रव्यमान को बोर्ड पर ले जाया जाता है, साथ ही हवाई जहाज, जहां अधिकांश प्रतिक्रिया द्रव्यमान वातावरण से लिया जाता है। इसके अलावा, यह एक परिणाम देता है जो उपयोग की गई इकाइयों से स्वतंत्र होता है (बशर्ते उपयोग किए गए समय की इकाई दूसरी हो)।
रॉकेटरी
रॉकेटरी में, केवल प्रतिक्रिया द्रव्यमान ही प्रणोदक होता है, इसलिए विशिष्ट आवेग की गणना एक वैकल्पिक विधि का उपयोग करके की जाती है, जो सेकंड की इकाइयों के साथ परिणाम देता है। विशिष्ट आवेग को प्रणोदक के पृथ्वी पर प्रति इकाई भार समय के साथ एकीकृत थ्रस्ट के रूप में परिभाषित किया गया है:[9]
- विशिष्ट आवेग सेकंड में मापा जाता है,
- इंजन की धुरी के साथ औसत निकास गति है (m/s या ft/s में),
- मानक गुरुत्व है (m/s2 या ft/s2 में).
रॉकेटों में, वायुमंडलीय प्रभावों के कारण, विशिष्ट आवेग ऊंचाई के साथ भिन्न होता है, एक निर्वात में अधिकतम तक पहुंचता है। ऐसा इसलिए है क्योंकि निकास वेग केवल कक्ष के दबाव का कार्य नहीं है, बल्कि दहन कक्ष के आंतरिक और बाहरी के बीच के अंतर का एक कार्य है। मान सामान्यतः समुद्र स्तर ("एसएल") या वैक्यूम ("खाली") में संचालन के लिए दिए जाते हैं।
प्रभावी निकास वेग के रूप में विशिष्ट आवेग
विशिष्ट आवेग के लिए समीकरण में g0 के भूस्थैतिक कारक के कारण, कई वैकल्पिक परिभाषा पसंद करते हैं। एक रॉकेट के विशिष्ट आवेग को प्रणोदक के प्रति इकाई द्रव्यमान प्रवाह के जोर के संदर्भ में परिभाषित किया जा सकता है। यह रॉकेट प्रणोदक की प्रभावशीलता को परिभाषित करने का एक समान रूप से मान्य (और कुछ हद तक सरल) तरीका है। एक रॉकेट के लिए, इस तरह से परिभाषित विशिष्ट आवेग रॉकेट के सापेक्ष केवल प्रभावी निकास वेग है, ve। "वास्तविक रॉकेट नोजल में, निकास वेग पूरे निकास क्रॉस सेक्शन पर वास्तव में एक समान नहीं है और इस तरह के वेग प्रोफाइल को सटीक रूप से मापना मुश्किल है। एक समान अक्षीय वेग, v e, सभी गणनाओं के लिए माना जाता है जो एक आयामी समस्या विवरण को नियोजित करते हैं। यह प्रभावी निकास वेग औसत या द्रव्यमान समतुल्य वेग का प्रतिनिधित्व करता है जिस पर रॉकेट वाहन से प्रणोदक निकाला जा रहा है।"।[10] विशिष्ट आवेग की दो परिभाषाएँ एक दूसरे के समानुपाती हैं, और एक दूसरे से संबंधित हैं::
- सेकंड में विशिष्ट आवेग है,
- m/s में मापा गया विशिष्ट आवेग है, जो m/s में मापे गए प्रभावी निकास वेग के समान है (या ft/s यदि g ft/s2 में है),
- मानक गुरुत्व है, 9.80665 m/s2 (संयुक्त राज्य अमेरिका की प्रथागत इकाइयों में 32.174 ft/s2).
यह समीकरण वायु-साँस लेने वाले जेट इंजनों के लिए भी मान्य है, लेकिन व्यवहार में शायद ही कभी इसका उपयोग किया जाता है।
(ध्यान दें कि कभी-कभी अलग-अलग प्रतीकों का उपयोग किया जाता है; उदाहरण के लिए, c को कभी-कभी निकास वेग के लिए भी देखा जाता है। जबकि प्रतीक की इकाइयों में विशिष्ट आवेग के लिए तार्किक रूप से उपयोग किया जा सकता है (एन·s3)/(m·kg); भ्रम से बचने के लिए, सेकंड में मापे गए विशिष्ट आवेग के लिए इसे आरक्षित करना वांछनीय है।)
यह समीकरण द्वारा रॉकेट पर थ्रस्ट या फॉरवर्ड फोर्स से संबंधित है:[11]
एक रॉकेट को अपने सभी प्रणोदक को अपने साथ ले जाना चाहिए, इसलिए असंतुलित प्रणोदक के द्रव्यमान को रॉकेट के साथ ही तेज किया जाना चाहिए। प्रभावी रॉकेट के निर्माण के लिए वेग में दिए गए परिवर्तन को प्राप्त करने के लिए आवश्यक प्रणोदक के द्रव्यमान को कम करना महत्वपूर्ण है। सियोलकोवस्की रॉकेट समीकरण से पता चलता है कि किसी दिए गए खाली द्रव्यमान और प्रणोदक की दी गई मात्रा वाले रॉकेट के लिए, वेग में कुल परिवर्तन प्रभावी निकास वेग के समानुपाती होता है।
प्रणोदन के बिना एक अंतरिक्ष यान अपने प्रक्षेपवक्र और किसी भी गुरुत्वाकर्षण क्षेत्र द्वारा निर्धारित कक्षा का अनुसरण करता है। वांछित वेग परिवर्तन के विपरीत दिशा में निकास द्रव्यमान भेजकर संबंधित वेग पैटर्न से विचलन (इन्हें डेल्टा वी Δv कहा जाता है) प्राप्त किया जाता है।
वास्तविक निकास गति बनाम प्रभावी निकास गति
जब एक इंजन वायुमंडल के भीतर चलाया जाता है, तो वायुमंडलीय दबाव से निकास वेग कम हो जाता है, बदले में विशिष्ट आवेग को कम करता है। यह निर्वात स्थितियों में प्राप्त वास्तविक निकास वेग बनाम प्रभावी निकास वेग में कमी है। गैस-जनरेटर चक्र रॉकेट इंजन के प्रकरण में, एक से अधिक निकास गैस धारा मौजूद होती है क्योंकि टर्बोपंप निकास गैस एक अलग नोजल के माध्यम से बाहर निकलती है। प्रभावी निकास वेग की गणना करने के लिए दो द्रव्यमान प्रवाहों के साथ-साथ किसी भी वायुमंडलीय दबाव के लिए लेखांकन की आवश्यकता होती है।[citation needed]
वायु-श्वास जेट इंजनों के लिए, विशेष रूप से टर्बोफैन, वास्तविक निकास वेग और प्रभावी निकास वेग परिमाण के क्रम से भिन्न होते हैं। ऐसा कई कारणों से होता है। सबसे पहले, प्रतिक्रिया द्रव्यमान के रूप में हवा का उपयोग करके अतिरिक्त संवेग का एक अच्छा सौदा प्राप्त किया जाता है, जैसे कि निकास में दहन उत्पादों में जले हुए ईंधन की तुलना में अधिक द्रव्यमान होता है। अगला, वायुमंडल में अक्रिय गैसें दहन से गर्मी को अवशोषित करती हैं, और परिणामी विस्तार के माध्यम से अतिरिक्त बल प्रदान करती हैं। अंत में, टर्बोफैन और अन्य डिजाइनों के लिए इनटेक एयर के खिलाफ धक्का देकर और भी अधिक थ्रस्ट दिया जाता है जो सीधे दहन को कभी नहीं देखता है। ये सभी एयरस्पीड और निकास गति के बीच एक बेहतर मेल की अनुमति देने के लिए गठबंधन करते हैं, जो ऊर्जा/प्रणोदक को बचाता है और वास्तविक निकास वेग को कम करते हुए प्रभावी निकास वेग को बढ़ाता है।[citation needed] फिर से, ऐसा इसलिए है क्योंकि हवा के द्रव्यमान को विशिष्ट आवेग गणना में नहीं गिना जाता है, इस प्रकार निकास के ईंधन घटक के द्रव्यमान के लिए सभी थ्रस्ट की गति को उत्तरदायी ठहराया जाता है, और प्रतिक्रिया द्रव्यमान, निष्क्रिय गैस और संचालित प्रभाव को छोड़ दिया जाता है। विचार से समग्र इंजन दक्षता पर पंखे।
अनिवार्य रूप से, इंजन निकास की गति में केवल ईंधन की तुलना में बहुत अधिक सम्मिलित है, लेकिन विशिष्ट आवेग गणना ईंधन को छोड़कर सब कुछ अनदेखा करती है। भले ही वायु-श्वास इंजन के लिए प्रभावी निकास वेग वास्तविक निकास वेग के संदर्भ में निरर्थक लगता है, फिर भी यह विभिन्न इंजनों की पूर्ण ईंधन दक्षता की तुलना करने के लिए उपयोगी है।
घनत्व विशिष्ट आवेग
एक संबंधित माप, घनत्व विशिष्ट आवेग, जिसे कभी-कभी घनत्व आवेग भी कहा जाता है और सामान्यतः संक्षिप्त रूप में Isd किसी दिए गए प्रणोदक मिश्रण और विशिष्ट आवेग के औसत विशिष्ट गुरुत्व का उत्पाद है।[12] जबकि विशिष्ट आवेग से कम महत्वपूर्ण, लॉन्च वाहन डिजाइन में यह एक महत्वपूर्ण उपाय है, क्योंकि कम विशिष्ट आवेग का तात्पर्य है कि प्रणोदक को स्टोर करने के लिए बड़े टैंकों की आवश्यकता होगी, जो बदले में लॉन्च वाहन के द्रव्यमान अनुपात पर हानिकारक प्रभाव डालेगा।[13]
उदाहरण
वैक्यूम में रॉकेट इंजन | |||||||
---|---|---|---|---|---|---|---|
मॉडल | प्रकार | पहला निष्पादन | उपयोग | TSFC | Isp (वज़न द्वारा) | Isp (वज़न द्वारा) | |
lb/lbf·h | g/kएन·s | s | m/s | ||||
एवियो P80 | ठोस ईंधन | 2006 | वेगा चरण 1 | 13 | 360 | 280 | 2700 |
एविओ जेफिरो 23 | ठोस ईंधन | 2006 | वेगा चरण 2 | 12.52 | 354.7 | 287.5 | 2819 |
एविओ जेफिरो 9ऐ | ठोस ईंधन | 2008 | वेगा चरण 3 | 12.20 | 345.4 | 295.2 | 2895 |
आरडी-843 | तरल ईंधन | वेगा ऊपरी चरण | 11.41 | 323.2 | 315.5 | 3094 | |
कुज़नेत्सोव एनK-33 | तरल ईंधन | 1970s | एन-1एफ, सोयुज-2-1वि चरण 1 | 10.9 | 308 | 331 | 3250 |
एनPO एनर्जीमैश RD-171M | तरल ईंधन | जेनिट-2एम , -3एसएल, -3एसएलबी, -3एफ स्टेज 1 | 10.7 | 303 | 337 | 3300 | |
एलई-7ए | क्रायोजेनिक | एच-आईआईए, एच-आईआईबी, चरण 1 | 8.22 | 233 | 438 | 4300 | |
स्नेकमा एचएम-7बी | क्रायोजेनिक | एरियन 2, 3, 4, 5 ईसीए ऊपरी चरण | 8.097 | 229.4 | 444.6 | 4360 | |
एलई-5बी-2 | क्रायोजेनिक | एच-आईआईए, एच-आईआईबी ऊपरी चरण | 8.05 | 228 | 447 | 4380 | |
एयरोजेट रॉकेटडाइन रुपये-25 | क्रायोजेनिक | 1981 | स्पेस शटल, एसएलएस चरण 1 | 7.95 | 225 | 453 | 4440 |
एयरोजेट रॉकेटडाइन आरएल-10बी-2 | क्रायोजेनिक | डेल्टा III, डेल्टा IV, एसएलएस ऊपरी चरण | 7.734 | 219.1 | 465.5 | 4565 | |
नर्वा एनआरएक्स ए 6 | न्यूक्लियर | 1967 | 869 |
रिहीट, स्थिर, समुद्र तल के साथ जेट इंजन | |||||||
---|---|---|---|---|---|---|---|
मॉडल | प्रकार | पहला
निष्पादन |
उपयोग | TSFC | Isp (वज़न द्वारा) | Isp (वज़न द्वारा) | |
lb/lbf·h | g/kएन·s | s | m/s | ||||
टर्बो-यूनियन RB.199 | टर्बोफैन | बवंडर | 2.5 | 70.8 | 1440 | 14120 | |
जीई F101-जीई-102 | टर्बोफैन | 1970s | बी-1बी | 2.46 | 70 | 1460 | 14400 |
तुमांस्की आर-25-300 | टर्बोजेट | मिग-21बीस | 2.206 | 62.5 | 1632 | 16000 | |
जीई J85-जीई-21 | टर्बोजेट | एफ-5ई/एफ | 2.13 | 60.3 | 1690 | 16570 | |
जीई F110-जीई-132 | टर्बोफैन | एफ-16ई/एफ | 2.09 | 59.2 | 1722 | 16890 | |
हनीवेल/आईटीईसी एफ125 | टर्बोफैन | एफ-सीके-1 | 2.06 | 58.4 | 1748 | 17140 | |
स्नेकमा एम53-पी2 | टर्बोफैन | मिराज 2000सी/डी/एन | 2.05 | 58.1 | 1756 | 17220 | |
स्नेकमा अतर 09सी | टर्बोजेट | मिराज III | 2.03 | 57.5 | 1770 | 17400 | |
स्नेकमा अतर 09के-50 | टर्बोजेट | मिराज IV, 50, F1 | 1.991 | 56.4 | 1808 | 17730 | |
जीई जे79-जीई-15 | टर्बोजेट | एफ-4ई/ईजे/एफ/जी, आरएफ-4ई | 1.965 | 55.7 | 1832 | 17970 | |
सैटर्न एएल-31एफ | टर्बोफैन | एसयू-27/पी/के | 1.96 | 55.5 | 1837 | 18010 | |
जीई एफ110-जीई-129 | टर्बोफैन | एफ-16सी/डी, एफ-15ईएक्स | 1.9 | 53.8 | 1895 | 18580 | |
सोलोविएव डी-30 एफ 6 | टर्बोफैन | मिग-31, एस-37/एसयू-47 | 1.863 | 52.8 | 1932 | 18950 | |
ल्युल्का ए एल-21 एफ-3 | टर्बोजेट | एसयू-17, एसयू-22 | 1.86 | 52.7 | 1935 | 18980 | |
क्लिमोव आरडी-33 | टर्बोफैन | 1974 | मिग 29 | 1.85 | 52.4 | 1946 | 19080 |
सैटर्न एएल-41 एफ-1एस | टर्बोफैन | एसयू-35एस/टी-10बीएम | 1.819 | 51.5 | 1979 | 19410 | |
वोल्वो आरएम12 | टर्बोफैन | 1978 | ग्रिपेन ए/बी/सी/डी | 1.78 | 50.4 | 2022 | 19830 |
जीई एफ404-जीई-402 | टर्बोफैन | एफ/ए-18सी/डी | 1.74 | 49 | 2070 | 20300 | |
कुज़नेत्सोव एनके-32 | टर्बोफैन | 1980 | टीयू-144LL, टीयू-160 | 1.7 | 48 | 2100 | 21000 |
स्नेकमा एम88-2 | टर्बोफैन | 1989 | गोलीकांड | 1.663 | 47.11 | 2165 | 21230 |
यूरोजेट ईजे200 | टर्बोफैन | 1991 | यूरोफाइटर | 1.66–1.73 | 47–49 | 2080–2170 | 20400–21300 |
ड्राई जेट इंजन, स्थिर, समुद्र तल | |||||||
---|---|---|---|---|---|---|---|
मॉडल | प्रकार | पहला
निष्पादन |
उपयोग | TSFC | Isp (वज़न द्वारा) | Isp (वज़न द्वारा) | |
lb/lbf·h | g/kएन·s | s | m/s | ||||
जीई जे85-जीई-21 | टर्बोजेट | एफ-5ई/एफ | 1.24 | 35.1 | 2900 | 28500 | |
स्नेकमा अतर 09सी | टर्बोजेट | मिराज III | 1.01 | 28.6 | 3560 | 35000 | |
स्नेकमा अतर 09के -50 | टर्बोजेट | मिराज IV, 50, एफ1 | 0.981 | 27.8 | 3670 | 36000 | |
स्नेकमा अतर 08के -50 | टर्बोजेट | सुपर एटेंडर्ड | 0.971 | 27.5 | 3710 | 36400 | |
तुमांस्की आर-25-300 | टर्बोजेट | मिग-21 बिस | 0.961 | 27.2 | 3750 | 36700 | |
ल्युल्का ऐL-21एफ-3 | टर्बोजेट | एसयू-17, एसयू-22 | 0.86 | 24.4 | 4190 | 41100 | |
जीई जे 79-जीई-15 | टर्बोजेट | एफ-4ई/ईजे/एफ/जी, आरएफ-4ई | 0.85 | 24.1 | 4240 | 41500 | |
स्नेकमा एम53-पी 2 | टर्बोफैन | मिराज 2000सी/डी/एन | 0.85 | 24.1 | 4240 | 41500 | |
वोल्वो आरएम 12 | टर्बोफैन | 1978 | ग्रिपेन ए/बी/सी/डी | 0.824 | 23.3 | 4370 | 42800 |
आरआर टर्बोमेका एडोर | टर्बोफैन | 1999 | जगुआर रेट्रोफिट | 0.81 | 23 | 4400 | 44000 |
हनीवेल/आईटीईसी एफ 124 | टर्बोफैन | 1979 | एल-159, एक्स-45 | 0.81 | 22.9 | 4440 | 43600 |
हनीवेल/आईटीईसी एफ 125 | टर्बोफैन | एफ-सीके-1 | 0.8 | 22.7 | 4500 | 44100 | |
पीडब्लू जे 52-पी-408 | टर्बोजेट | ए-4एम/एन, टीए-4केयू, ईए-6बी | 0.79 | 22.4 | 4560 | 44700 | |
सैटर्न ए एल-41 एफ-1एस | टर्बोफैन | एसयू-35एस/टी-10बीएम | 0.79 | 22.4 | 4560 | 44700 | |
स्नेकमा एम 88-2 | टर्बोफैन | 1989 | गोलीकांड | 0.782 | 22.14 | 4600 | 45100 |
क्लिमोव आरडी -33 | टर्बोफैन | 1974 | मिग 29 | 0.77 | 21.8 | 4680 | 45800 |
आरआर पेगासस 11-61 | टर्बोफैन | एवी-8बी+ | 0.76 | 21.5 | 4740 | 46500 | |
यूरोजेट ईजे 200 | टर्बोफैन | 1991 | यूरोफाइटर | 0.74–0.81 | 21–23 | 4400–4900 | 44000–48000 |
जीई एफ 414-जीई-400 | टर्बोफैन | 1993 | एफ/ए-18ई/एफ | 0.724 | 20.5 | 4970 | 48800 |
कुज़नेत्सोव एनके -32 | टर्बोफैन | 1980 | टीयू-144एलएल, टीयू-160 | 0.72-0.73 | 20–21 | 4900–5000 | 48000–49000 |
सोलोविएव डी-30एफ6 | टर्बोफैन | मिग-31, एस-37/एसयू-47 | 0.716 | 20.3 | 5030 | 49300 | |
स्नेकमा लार्ज़ैक | टर्बोफैन | 1972 | अल्फा जेट | 0.716 | 20.3 | 5030 | 49300 |
आईएचआई एफ3 | टर्बोफैन | 1981 | कावासाकी टी-4 | 0.7 | 19.8 | 5140 | 50400 |
सैटर्न ए एल-31एफ | टर्बोफैन | एसयू-27 /पी/के | 0.666-0.78 | 18.9–22.1 | 4620–5410 | 45300–53000 | |
आरआर स्पाई आरबी.168 | टर्बोफैन | एएमएक्स | 0.66 | 18.7 | 5450 | 53500 | |
जीई एफ 110-जीई-129 | टर्बोफैन | एफ-16सी/डी, एफ-15 | 0.64 | 18 | 5600 | 55000 | |
जीई एफ 110-जीई-132 | टर्बोफैन | एफ-16ई/एफ | 0.64 | 18 | 5600 | 55000 | |
टर्बो-यूनियन आरबी.199 | टर्बोफैन | बवंडर ईसीआर | 0.637 | 18.0 | 5650 | 55400 | |
पीडब्लू एफ 119-पीडब्लू-100 | टर्बोफैन | 1992 | एफ-22 | 0.61 | 17.3 | 5900 | 57900 |
टर्बो-यूनियन आरबी.199 | टर्बोफैन | बवंडर | 0.598 | 16.9 | 6020 | 59000 | |
जीई एफ 101-जीई-102 | टर्बोफैन | 1970s | बी-1बी | 0.562 | 15.9 | 6410 | 62800 |
पीडब्लू टीएफ33-पी-3 | टर्बोफैन | बी-52एच, एनबी-52एच | 0.52 | 14.7 | 6920 | 67900 | |
आरआर एई 3007एच | टर्बोफैन | आरक्यू-4, एमक्यू-4सी | 0.39 | 11.0 | 9200 | 91000 | |
जीई एफ 118-जीई-100 | टर्बोफैन | 1980s | बी-2 | 0.375 | 10.6 | 9600 | 94000 |
जीई एफ 118-जीई-101 | टर्बोफैन | 1980s | यू-2S | 0.375 | 10.6 | 9600 | 94000 |
सीएफएम सीएफ 6-50सी2 | टर्बोफैन | ए300, डीसी-10-30 | 0.371 | 10.5 | 9700 | 95000 | |
जीई टीएफ 34-जीई-100 | टर्बोफैन | ए-10 | 0.37 | 10.5 | 9700 | 95000 | |
सीएफएम सीएफएम 56-2 बी1 | टर्बोफैन | सी-135, आर सी-135 | 0.36 | 10 | 10000 | 98000 | |
प्रगति डी-18टी | टर्बोफैन | 1980 | एएन-124, एएन-225 | 0.345 | 9.8 | 10400 | 102000 |
पीडब्लू एफ 117-पीडब्लू-100 | टर्बोफैन | सी-17 | 0.34 | 9.6 | 10600 | 104000 | |
पीडब्लू पीडब्लू2040 | टर्बोफैन | बोइंग 757 | 0.33 | 9.3 | 10900 | 107000 | |
सीएफएम सीएफएम 56-3सी1 | टर्बोफैन | 737 क्लासिक | 0.33 | 9.3 | 11000 | 110000 | |
जीई सीएफ 6-80सी2 | टर्बोफैन | 744, 767, एमडी-11, ए300/310, सी-5एम | 0.307-0.344 | 8.7–9.7 | 10500–11700 | 103000–115000 | |
ईए जीपी7270 | टर्बोफैन | 380-861 | 0.299 | 8.5 | 12000 | 118000 | |
जीई जीई90-85बी | टर्बोफैन | 777-200/200ईआर/300 | 0.298 | 8.44 | 12080 | 118500 | |
जीई जीई90-94बी | टर्बोफैन | 777-200/200ईआर/300 | 0.2974 | 8.42 | 12100 | 118700 | |
आरआर ट्रेंट 970-84 | टर्बोफैन | 2003 | ए380-841 | 0.295 | 8.36 | 12200 | 119700 |
जीई जीईएनएक्स -1बी70 | टर्बोफैन | 787-8 | 0.2845 | 8.06 | 12650 | 124100 | |
आरआर ट्रेंट 1000सी | टर्बोफैन | 2006 | 787-9 | 0.273 | 7.7 | 13200 | 129000 |
जेट इंजन, क्रूज | |||||||
---|---|---|---|---|---|---|---|
मॉडल | प्रकार | पहला
निष्पादन |
उपयोग | TSFC | Isp (वज़न द्वारा) | Isp (वज़न द्वारा) | |
lb/lbf·h | g/kएन·s | s | m/s | ||||
रामजेट | मच 1 | 4.5 | 130 | 800 | 7800 | ||
जे-58 | टर्बोजेट | 1958 | एसआर-71 ऐट मच 3.2 (गरम करना) | 1.9 | 53.8 | 1895 | 18580 |
आरआर / स्नेक्मा ओलिंप | टर्बोजेट | 1966 | कोएनकॉर्ड ऐट मैक 2 | 1.195 | 33.8 | 3010 | 29500 |
पीडब्लू जेटी8डी-9 | टर्बोफैन | 737 ओरिजिनऐल | 0.8 | 22.7 | 4500 | 44100 | |
हनीवेल एएलएफ502 आर-5 | जीटीएफ | बीएई 146 | 0.72 | 20.4 | 5000 | 49000 | |
सोलोविएव डी-30केपी-2 | टर्बोफैन | Il-76, Il-78 | 0.715 | 20.3 | 5030 | 49400 | |
सोलोविएव डी-30 केयू-154 | टर्बोफैन | टीयू-154 एम | 0.705 | 20.0 | 5110 | 50100 | |
आरआर तय आरबी.183 | टर्बोफैन | 1984 | फोकक एसई 70, फ़ोक एससी 100 | 0.69 | 19.5 | 5220 | 51200 |
जीई सीएफ 34-3 | टर्बोफैन | 1982 | चैलेंज ईआर, सीआरजे100/200 | 0.69 | 19.5 | 5220 | 51200 |
जीई सीएफ 34-8ई | टर्बोफैन | ई170/175 | 0.68 | 19.3 | 5290 | 51900 | |
हनीवेल टीएफई 731-60 | जीटीएफ | फेल्कोएन 900 | 0.679 | 19.2 | 5300 | 52000 | |
सीएफएम सीएफएम 56-2सी1 | टर्बोफैन | डीसी-8 सुपर यर 70 | 0.671 | 19.0 | 5370 | 52600 | |
जीई सीएफ 34-8सी | टर्बोफैन | सीआरजे700/900/1000 | 0.67-0.68 | 19–19 | 5300–5400 | 52000–53000 | |
सीएफएम सीएफएम 56-3सी1 | टर्बोफैन | 737 क्लासिक | 0.667 | 18.9 | 5400 | 52900 | |
सीएफएम सीएफएम56-2ए2 | टर्बोफैन | 1974 | ई-3, ई-6 | 0.66 | 18.7 | 5450 | 53500 |
आरआर बीआर 725 | टर्बोफैन | 2008 | जी650/ईआर | 0.657 | 18.6 | 5480 | 53700 |
सीएफएम सीएफएम 56-2बी1 | टर्बोफैन | सी-135, आर सी-135 | 0.65 | 18.4 | 5540 | 54300 | |
जीई सीएफ 34-10ए | टर्बोफैन | एआरजे21 | 0.65 | 18.4 | 5540 | 54300 | |
सीएफई सीएफई738-1-1बी | टर्बोफैन | 1990 | फाल्कन 2000 | 0.645 | 18.3 | 5580 | 54700 |
आरआर बीआर710 | टर्बोफैन | 1995 | जी. वी/जी 550, ग्लोबल एक्सप्रेस | 0.64 | 18 | 5600 | 55000 |
जीई सीएफ 34-10ई | टर्बोफैन | ई190/195 | 0.64 | 18 | 5600 | 55000 | |
सीएफएम सीएफ 6-50सी2 | टर्बोफैन | ऐ300बी2/बी4/सी4/एफ4, डीसी-10-30 | 0.63 | 17.8 | 5710 | 56000 | |
पावरजेट सैम146 | टर्बोफैन | सुपरजेट एलआर | 0.629 | 17.8 | 5720 | 56100 | |
सीएफएम सीएफएम56-7बी24 | टर्बोफैन | 737 एनजी | 0.627 | 17.8 | 5740 | 56300 | |
आरआर बीआर715 | टर्बोफैन | 1997 | 717 | 0.62 | 17.6 | 5810 | 56900 |
जीई सीएफ 6-80सी2-बी1एफ | टर्बोफैन | 747-400 | 0.605 | 17.1 | 5950 | 58400 | |
सीएफएम सीएफएम56-5ए1 | टर्बोफैन | ऐ320 | 0.596 | 16.9 | 6040 | 59200 | |
एवियाडविगेटल पीएस -90ए1 | टर्बोफैन | Il-96-400 | 0.595 | 16.9 | 6050 | 59300 | |
पीडब्लू पीडब्लू 2040 | टर्बोफैन | 757-200 | 0.582 | 16.5 | 6190 | 60700 | |
पीडब्लू पीडब्लू 4098 | टर्बोफैन | 777-300 | 0.581 | 16.5 | 6200 | 60800 | |
जीई सीएफ 6-80सी2-बी2 | टर्बोफैन | 767 | 0.576 | 16.3 | 6250 | 61300 | |
आईएई वी 2525-डी5 | टर्बोफैन | एमडी-90 | 0.574 | 16.3 | 6270 | 61500 | |
आईएई वी 2533-ए5 | टर्बोफैन | ऐ321-231 | 0.574 | 16.3 | 6270 | 61500 | |
आरआर ट्रेंट 700 | टर्बोफैन | 1992 | ऐ330 | 0.562 | 15.9 | 6410 | 62800 |
आरआर ट्रेंट 800 | टर्बोफैन | 1993 | 777-200/200ईआर/300 | 0.560 | 15.9 | 6430 | 63000 |
प्रगति डी-18टी | टर्बोफैन | 1980 | ऐएन-124, ऐएन-225 | 0.546 | 15.5 | 6590 | 64700 |
सीएफएम सीएफएम56-5बी4 | टर्बोफैन | ऐ320-214 | 0.545 | 15.4 | 6610 | 64800 | |
सीएफएम सीएफएम 56-5सी2 | टर्बोफैन | ऐ340-211 | 0.545 | 15.4 | 6610 | 64800 | |
आरआर ट्रेंट 500 | टर्बोफैन | 1999 | ऐ340-500/600 | 0.542 | 15.4 | 6640 | 65100 |
सीएफएम लीप-1बी | टर्बोफैन | 2014 | 737मैक्स | 0.53-0.56 | 15–16 | 6400–6800 | 63000–67000 |
एवियाडविगेटल पीडी-14 | टर्बोफैन | 2014 | एमसी-21-310 | 0.526 | 14.9 | 6840 | 67100 |
आरआर ट्रेंट 900 | टर्बोफैन | 2003 | ऐ380 | 0.522 | 14.8 | 6900 | 67600 |
जीई जीई90-85बी | टर्बोफैन | 777-200/200ईआर | 0.52 | 14.7 | 6920 | 67900 | |
जीई जीईएनएक्स -1बी76 | टर्बोफैन | 2006 | 787-10 | 0.512 | 14.5 | 7030 | 69000 |
पीडब्लू पीडब्लू 1400 जी | जीटीएफ | एमसी-21 | 0.51 | 14.4 | 7100 | 69000 | |
सीएफएम लीप-1सी | टर्बोफैन | 2013 | सी919 | 0.51 | 14.4 | 7100 | 69000 |
सीएफएम लीप-1ए | टर्बोफैन | 2013 | ऐ320नव परिवार | 0.51 | 14.4 | 7100 | 69000 |
आरआर ट्रेंट 7000 | टर्बोफैन | 2015 | ऐ330नव | 0.506 | 14.3 | 7110 | 69800 |
आरआर ट्रेंट 1000 | टर्बोफैन | 2006 | 787 | 0.506 | 14.3 | 7110 | 69800 |
आरआर ट्रेंट एक्सडब्ल्यूबी -97 | टर्बोफैन | 2014 | ऐ350-1000 | 0.478 | 13.5 | 7530 | 73900 |
पीडब्लू 1127 जी | जीटीएफ | 2012 | ऐ320नव | 0.463 | 13.1 | 7780 | 76300 |
इंजन | प्रभावी निकास
वेग (m/s) |
विशिष्ट आवेग (s) | निकास विशिष्ट
ऊर्जा (MJ/kg) |
---|---|---|---|
टर्बोफैन जेट इंजन
(वास्तविक V ~300 m/s है) |
29,000 | 3,000 | लगभग 0.05 |
स्पेस शटल सॉलिड रॉकेट बूस्टर | 2,500 | 250 | 3 |
तरल ऑक्सीजन-तरल हाइड्रोजन | 4,400 | 450 | 9.7 |
एनस्टार इलेक्ट्रोस्टैटिक क्सीनन आयन थ्रस्टर | 20,000-30,000 | 1,950-3,100 | |
नेक्स्ट इलेक्ट्रोस्टैटिक क्सीनन आयन थ्रस्टर | 40,000 | 1,320-4,170 | |
वीएएसआईएमआर भविष्यवाणी | 30,000–120,000 | 3,000–12,000 | 1,400 |
डीएस4जी इलेक्ट्रोस्टैटिक आयन थ्रस्टर | 210,000 | 21,400 | 22,500 |
आदर्श फोटोनिक रॉकेट | 299,792,458 | 30,570,000 | 89,875,517,874 |
समय में मापे गए विशिष्ट आवेग का एक उदाहरण 453 सेकंड है, जो के प्रभावी निकास वेग के बराबर है 4.440 km/s (14,570 ft/s), RS-25 इंजन के लिए जब वैक्यूम में काम कर रहा हो।[14] एक वायु-श्वास जेट इंजन में सामान्यतः रॉकेट की तुलना में बहुत बड़ा विशिष्ट आवेग होता है; उदाहरण के लिए एक टर्बोफैन जेट इंजन में समुद्र तल पर 6,000 सेकंड या उससे अधिक का विशिष्ट आवेग हो सकता है जबकि एक रॉकेट 200 और 400 सेकंड के बीच होगा।[15]
एक वायु-श्वास इंजन एक रॉकेट इंजन की तुलना में बहुत अधिक प्रणोदक कुशल है, क्योंकि हवा दहन के लिए प्रतिक्रिया द्रव्यमान और ऑक्सीकारक के रूप में कार्य करती है जिसे प्रणोदक के रूप में ले जाने की आवश्यकता नहीं होती है, और वास्तविक निकास गति बहुत कम होती है, इसलिए गतिज ऊर्जा निकास कम होता है और इस प्रकार जेट इंजन थ्रस्ट उत्पन्न करने के लिए बहुत कम ऊर्जा का उपयोग करता है।[16] जबकि वायु-श्वास इंजनों के लिए वास्तविक निकास वेग कम है, जेट इंजनों के लिए प्रभावी निकास वेग बहुत अधिक है। ऐसा इसलिए है क्योंकि प्रभावी निकास वेग गणना मानती है कि प्रणोदक सभी प्रतिक्रिया द्रव्यमान और सभी थ्रस्ट प्रदान कर रहा है। इसलिए प्रभावी निकास वेग वायु-श्वास इंजनों के लिए भौतिक रूप से अर्थपूर्ण नहीं है; फिर भी, यह अन्य प्रकार के इंजनों के साथ तुलना करने के लिए उपयोगी है।[17]
एक रॉकेट इंजन में परीक्षण किए गए रासायनिक प्रणोदक के लिए अब तक का उच्चतम विशिष्ट आवेग था 542 seconds (5.32 km/s) लिथियम, एक अधातु तत्त्व और हाइड्रोजन के त्रिप्रणोदक रॉकेट के साथ। हालाँकि, यह संयोजन अव्यवहारिक है। लिथियम और फ्लोरीन दोनों अत्यंत संक्षारक हैं, लिथियम हवा के संपर्क में आने पर प्रज्वलित होता है, फ्लोरीन अधिकांश ईंधन के संपर्क में आने पर प्रज्वलित होता है, और हाइड्रोजन, जबकि हाइपरगोलिक नहीं, एक विस्फोटक खतरा है। निकास में फ्लोरीन और हाइड्रोजन फ्लोराइड (एचएफ) बहुत जहरीले होते हैं, जो पर्यावरण को नुकसान पहुंचाते हैं, लॉन्च पैड के आसपास काम करना मुश्किल बनाते हैं, और लॉन्च लाइसेंस प्राप्त करना और भी कठिन बना देता है। रॉकेट का निकास भी आयनित होता है, जो रॉकेट के साथ रेडियो संचार में हस्तक्षेप करेगा।[18][19][20]
परमाणु तापीय रॉकेट इंजन पारंपरिक रॉकेट इंजनों से भिन्न होते हैं जिसमें प्रणोदकों को दहन की गर्मी के बजाय बाहरी परमाणु ताप स्रोत द्वारा ऊर्जा की आपूर्ति की जाती है।[21] परमाणु रॉकेट सामान्यतः एक ऑपरेटिंग परमाणु रिएक्टर के माध्यम से तरल हाइड्रोजन गैस पास करके संचालित होता है। 1960 के दशक में परीक्षण से लगभग 850 सेकंड (8,340मी/सेकेंड) के विशिष्ट आवेग प्राप्त हुए, जो स्पेस शटल इंजनों की तुलना में लगभग दोगुने थे।[22]
कई अन्य रॉकेट प्रणोदन विधियों, जैसे आयन थ्रस्टर्स, बहुत अधिक विशिष्ट आवेग देते हैं लेकिन बहुत कम थ्रस्ट के साथ; उदाहरण के लिए स्मार्ट-1 उपग्रह पर हॉल-इफेक्ट थ्रस्टर का एक विशिष्ट आवेग है 1,640 s (16.1 km/s) लेकिन केवल का अधिकतम थ्रस्ट 68 mN (0.015 lbf).[23] चर विशिष्ट आवेग मैग्नेटोप्लाज्मा रॉकेट (वीएएसआईएमआर) इंजन वर्तमान में विकास में सैद्धांतिक रूप से उपज देगा 20 to 300 km/s (66,000 to 984,000 ft/s), और का अधिकतम थ्रस्ट 5.7 N (1.3 lbf).[24]
यह भी देखें
- जेट इंजिन
- आवेग (भौतिकी)
- Tsiolkovsky रॉकेट समीकरण
- सिस्टम-विशिष्ट आवेग
- विशिष्ट ऊर्जा
- मानक गुरुत्वाकर्षण
- जोर विशिष्ट ईंधन की खपत - प्रति यूनिट जोर ईंधन की खपत
- विशिष्ट थ्रस्ट - डक्ट इंजन के लिए हवा की प्रति यूनिट थ्रस्ट
- उष्णता मान
- ऊर्जा घनत्व
- डेल्टा-वी (भौतिकी)
- रॉकेट प्रणोदक
- तरल रॉकेट प्रणोदक
संदर्भ
- ↑ "विशिष्ट आवेग क्या है?". Qualitative Reasoning Group. Retrieved 22 December 2009.
- ↑ Hutchinson, Lee (14 April 2013). "नया F-1B रॉकेट इंजन 1.8M lbs थ्रस्ट के साथ अपोलो-एरा डिज़ाइन को अपग्रेड करता है". Ars Technica. Retrieved 15 April 2013.
रॉकेट की ईंधन प्रभावशीलता के माप को इसका विशिष्ट आवेग कहा जाता है (संक्षिप्त रूप में 'आईएसपी' - या अधिक उचित रूप से आईएसपी) .... 'द्रव्यमान विशिष्ट आवेग ... एक रासायनिक प्रतिक्रिया की जोर-उत्पादक प्रभावशीलता का वर्णन करता है और यह सबसे आसानी से होता है समय की एक इकाई में जलाए गए ईंधन और ऑक्सीडाइज़र प्रणोदक के प्रत्येक पाउंड (द्रव्यमान) द्वारा उत्पादित थ्रस्ट बल की मात्रा के रूप में माना जाता है। यह रॉकेट के लिए मील प्रति गैलन (mpg) के माप की तरह है।'
- ↑ "लेजर-संचालित इंटरस्टेलर जांच (प्रस्तुति)". Archived from the original on 2 October 2013. Retrieved 16 November 2013.
- ↑ "मिशन अवलोकन". exploreMarsnow. Retrieved 23 December 2009.
- ↑ "विशिष्ट आवेग". www.grc.nasa.gov.
- ↑ "विशिष्ट आवेग क्या है?". www.qrg.northwestern.edu.
- ↑ "विशिष्ट ईंधन की खपत". www.grc.nasa.gov. Retrieved 13 May 2021.
- ↑ Rocket Propulsion Elements, 7th Edition by George P. Sutton, Oscar Biblarz
- ↑ Benson, Tom (11 July 2008). "विशिष्ट आवेग". NASA. Retrieved 22 December 2009.
- ↑ George P. Sutton & Oscar Biblarz (2016). रॉकेट प्रणोदन तत्व. John Wiley & Sons. p. 27. ISBN 978-1-118-75388-0.
- ↑ Thomas A. Ward (2010). एयरोस्पेस प्रणोदन प्रणाली. John Wiley & Sons. p. 68. ISBN 978-0-470-82497-9.
- ↑ घनत्व विशिष्ट आवेग. Retrieved 20 September 2022.
{{cite encyclopedia}}
:|website=
ignored (help) - ↑ "रॉकेट प्रणोदक". braeunig.us. Retrieved 20 September 2022.
- ↑ "एसएसएमई". www.astronautix.com. Archived from the original on 3 March 2016.
- ↑ "11.6 जेट इंजन का प्रदर्शन". web.mit.edu.
- ↑ Dunn, Bruce P. (2001). "डन की रीडमी". Archived from the original on 20 October 2013. Retrieved 12 July 2014.
- ↑ "प्रभावी निकास वेग". Encyclopedia Britannica.
{{cite web}}
: Text "अभियांत्रिकी" ignored (help) - ↑ "ईंधन - वर्तमान में लिथियम-फ्लोरीन-हाइड्रोजन ट्राइप्रोपेलेंट कहां है?". Space Exploration Stack Exchange.
- ↑ Arbit, H.; Clapp, S.; Nagai, C. (1968). "Investigation of the lithium-fluorine-hydrogen tripropellant system". चौथा प्रणोदन संयुक्त विशेषज्ञ सम्मेलन. doi:10.2514/6.1968-618.
- ↑ ARBIT, H. A., CLAPP, S. D., NAGAI, C. K., Lithium-fluorine-hydrogen propellant investigation Final report NASA, 1 May 1970.
- ↑ "अंतरिक्ष प्रणोदन और मिशन विश्लेषण कार्यालय". Archived from the original on 12 April 2011. Retrieved 20 July 2011.
- ↑ National Aeronautics and Space Administration, Nuclear Propulsion in Space (in English), archived from the original on 11 December 2021, retrieved 24 February 2021
- ↑ "एक उच्च विशिष्ट आवेग क्सीनन हॉल इफेक्ट थ्रस्टर की विशेषता". Archived from the original on 24 March 2012. Retrieved 20 July 2011.
{{cite web}}
: Text "मेंडेली" ignored (help) - ↑ Ad Astra (23 November 2010). "VASIMR® VX-200 ने पूर्ण शक्ति दक्षता मील का पत्थर पूरा किया" (PDF). Archived from the original (PDF) on 30 October 2012. Retrieved 23 June 2014.