क्वांटम सांख्यिकीय यांत्रिकी: Difference between revisions
m (11 revisions imported from alpha:क्वांटम_सांख्यिकीय_यांत्रिकी) |
No edit summary |
||
Line 94: | Line 94: | ||
* F. Reif, ''Statistical and Thermal Physics'', McGraw-Hill, 1965. | * F. Reif, ''Statistical and Thermal Physics'', McGraw-Hill, 1965. | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category: | |||
[[Category:Created On 19/01/2023]] | [[Category:Created On 19/01/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing clarification from September 2013]] | |||
[[Category:क्वांटम यांत्रिक एन्ट्रापी]] | |||
[[Category:क्वांटम यांत्रिकी]] | |||
[[Category:सांख्यिकीय यांत्रिकी]] |
Latest revision as of 20:01, 31 January 2023
क्वांटम सांख्यिकीय यांत्रिकी क्वांटम मैकेनिकल सिस्टम पर प्रयुक्त सांख्यिकीय यांत्रिकी है। क्वांटम यांत्रिकी में सांख्यिकीय समुच्चय (गणितीय भौतिकी) (संभावित क्वांटम अवस्थाओं पर संभाव्यता वितरण) को घनत्व मैट्रिक्स S द्वारा वर्णित किया जाता है, जो क्वांटम सिस्टम का वर्णन करने वाले हिल्बर्ट अंतरिक्ष H पर ट्रेस 1 का एक गैर-नकारात्मक, स्व-संलग्न, ट्रेस वर्ग ऑपरेटर है। यह क्वांटम यांत्रिकी के विभिन्न गणितीय सूत्रीकरण के अनुसार दिखाया जा सकता है। ऐसी ही औपचारिकता क्वांटम तर्क द्वारा प्रदान की जाती है।
अपेक्षा
मौलिक संभाव्यता सिद्धांत से, हम जानते हैं कि यादृच्छिक चर X का अपेक्षित मान इसके संभाव्यता वितरण DX द्वारा परिभाषित किया गया है
निःसंदेह, यह मानते हुए कि यादृच्छिक वेरिएबल पूर्णांक है या यादृच्छिक वेरिएबल गैर-नकारात्मक है। इसी प्रकार, A को क्वांटम मैकेनिकल सिस्टम का अवलोकन करने दें। A, H पर सघन रूप से परिभाषित स्व-आसन्न संकारक द्वारा दिया गया है। A का वर्णक्रमीय माप द्वारा परिभाषित किया गया है
विशिष्ट रूप से A निर्धारित करता है और इसके विपरीत, विशिष्ट रूप से AE द्वारा निर्धारित किया जाता है। EA R के बोरेल उपसमुच्चय से 'H' के स्व-संलग्न अनुमानों के जाली Q में बूलियन समरूपता है। संभाव्यता सिद्धांत के अनुरूप, एक अवस्था S दिया गया है, हम S के अनुसार A के वितरण का परिचय देते हैं, जो R के बोरेल सबसेट पर परिभाषित प्रायिकता माप है
इसी प्रकार, A का अपेक्षित मान संभाव्यता वितरण DA के संदर्भ में परिभाषित किया गया है
ध्यान दें कि यह अपेक्षा मिश्रित अवस्था S के सापेक्ष है जिसका उपयोग DA की परिभाषा में किया जाता है.
टिप्पणी। तकनीकी कारणों से, असीमित ऑपरेटरों के लिए बोरेल कार्यात्मक कलन द्वारा परिभाषित A के सकारात्मक और नकारात्मक भागों पर अलग से विचार करने की आवश्यकता है।
जिसे आसानी से दिखा सकता है:
ध्यान दें कि यदि S यूक्लिडियन वेक्टर से संबंधित शुद्ध स्थिति हो, तब:
ऑपरेटर A का ट्रेस निम्नानुसार लिखा गया है:
वॉन न्यूमैन एंट्रॉपी
किसी अवस्था की यादृच्छिकता का वर्णन करने के लिए विशेष महत्व एस के वॉन न्यूमैन एन्ट्रापी द्वारा औपचारिक रूप से परिभाषित किया गया है
- .
वास्तविक में, ऑपरेटर S log2 S आवश्यक रूप से ट्रेस-वर्ग नहीं है। चूँकि, यदि S गैर-नकारात्मक स्वयं-आसन्न संकारक है जो ट्रेस वर्ग का नहीं है तो हम Tr(S) = +∞ को परिभाषित करते हैं। यह भी ध्यान दें कि किसी भी घनत्व ऑपरेटर एस को विकर्ण किया जा सकता है, कि इसे फॉर्म के (संभवतः अनंत) मैट्रिक्स द्वारा कुछ ऑर्थोनॉर्मल आधार पर दर्शाया जा सकता है
और हम परिभाषित करते हैं
परिपाटी यह है , क्योंकि प्रायिकता शून्य वाली घटना को एंट्रॉपी में योगदान नहीं देना चाहिए। यह मान विस्तारित वास्तविक संख्या है (जो कि [0, ∞] में है) और यह स्पष्ट रूप से S का एकात्मक अपरिवर्तनीय है।
'टिप्पणी'। यह वास्तविक में संभव है कि कुछ घनत्व ऑपरेटर एस के लिए H(S) = +∞ वास्तविक में T विकर्ण मैट्रिक्स हो
T गैर-नकारात्मक ट्रेस वर्ग है और कोई दिखा सकता है की T log2 T ट्रेस-वर्ग नहीं है।
'प्रमेय'। एंट्रॉपी एकात्मक अपरिवर्तनीय है।
शैनन एन्ट्रॉपी औपचारिक परिभाषाओं के अनुरूप (परिभाषाओं में समानता पर ध्यान दें), H(S) अवस्था S में यादृच्छिकता की मात्रा को मापता है। जितना अधिक ईजेनवेल्यूज फैलाया जाता है, उतना बड़ा सिस्टम एन्ट्रॉपी होता है। ऐसी प्रणाली के लिए जिसमें स्थान H परिमित-आयामी है, एन्ट्रॉपी को उन अवस्थाओं S के लिए अधिकतम किया जाता है जो विकर्ण रूप में प्रतिनिधित्व करते हैं
ऐसे S के लिए, H(S) = log2 n। अवस्था S को अधिकतम मिश्रित अवस्था कहा जाता है।
याद रखें कि शुद्ध अवस्था एक रूप है
ψ मानक 1 के सदिश के लिए।
प्रमेय। H(S) = 0 यदि और केवल यदि 'S' शुद्ध अवस्था है।
S के लिए शुद्ध अवस्था है यदि और केवल यदि इसके विकर्ण रूप में गैर-शून्य प्रविष्टि है जो कि 1 है।
एन्ट्रापी का उपयोग क्वांटम के अनुचित संबंध के माप के रूप में किया जा सकता है।
गिब्स विहित समुच्चय
हैमिल्टनियन एच द्वारा औसत ऊर्जा E के साथ वर्णित प्रणालियों के समूह पर विचार करें। यदि H में शुद्ध-बिंदु स्पेक्ट्रम और आइगेनवेल्यू हैं H का +∞ पर्याप्त तेजी से जाता है, E−r H प्रत्येक धनात्मक r के लिए गैर-नकारात्मक ट्रैस-वर्ग ऑपरेटर होगा।
गिब्स विहित समुच्चय अवस्था द्वारा वर्णित है
जहां β ऐसा है कि समुच्चय औसत ऊर्जा को संतुष्ट करता है
और
इसे विभाजन कार्य (गणित) कहा जाता है; यह मौलिक सांख्यिकीय यांत्रिकी के विहित विभाजन फलन का क्वांटम यांत्रिक संस्करण है। संभावना है कि समुच्चय से यादृच्छिक रूप से चुनी गई प्रणाली ऊर्जा आइगेनवेल्यू के अनुरूप स्थिति में होगी है
कुछ शर्तों के अनुसार, गिब्स विहित समुच्चय ऊर्जा संरक्षण आवश्यकता के अधीन अवस्था के वॉन न्यूमैन एन्ट्रॉपी को अधिकतम करता है।[clarification needed]
भव्य विहित समुच्चय
खुली प्रणालियों के लिए जहां ऊर्जा और कणों की संख्या में उतार-चढ़ाव हो सकता है, सिस्टम को घनत्व मैट्रिक्स द्वारा वर्णित भव्य विहित समुच्चय द्वारा वर्णित किया गया है
फिर जहाँ N1, N2, ... कणों की विभिन्न प्रजातियों के लिए कण संख्या संचालक हैं जिनका जलाशय के साथ आदान-प्रदान किया जाता है। ध्यान दें कि यह घनत्व मैट्रिक्स है जिसमें विहित समुच्चय की तुलना में कई और अवस्था (अलग-अलग N) सम्मिलित हैं।
भव्य विभाजन कार्य है
यह भी देखें
संदर्भ
- J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.
- F. Reif, Statistical and Thermal Physics, McGraw-Hill, 1965.