हार्मोनिक्स: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
एक [[ विद्युत शक्ति तंत्र |विद्युत | एक [[ विद्युत शक्ति तंत्र |विद्युत ऊर्जा तंत्र]] में, वोल्टेज या धारा तरंग [[ लयबद्ध |लयबद्ध]] [[ सिनसोइडल तरंग |का ज्यावक्रीय तरंग]] है, जिसकी आवृत्ति मूल आवृत्ति का पूर्णांक गुणक है। हार्मोनिक आवृत्तियों को गैर-रेखीय भार जैसे कि परिशोधक, [[ गैस-निर्वासन दीपक |गैस- निर्वहन प्रकाश]], या संतृप्त [[ बिजली की मशीन |विद्युत् मशीनी]] क्रिया द्वारा उत्पादित किया जाता है। ये विद्युत [[ बिजली की गुणवत्ता |गुणवत्ता]] की समस्याओं के लगातार कारण से हैं, और इसके परिणामस्वरूप उपकरण और विद्युत चालक ताप, [[ परिवर्तनीय गति ड्राइव |परिवर्तनीय गति ड्राइव]] में अपज्वलन तथा मोटर्स और जनरेटर में '''आघूर्ण बल स्पंदन''' हो सकता है। | ||
'''हार्मोनिक्स''' को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या | '''हार्मोनिक्स''' को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या धारा ), और हार्मोनिक का क्रम (सम, विषम, तिगुना, या गैर-ट्रिपल विषम); तीन- अवस्था प्रणाली में, उन्हें अपने अवस्था अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है। | ||
== हार्मोनिक्स धारा == | == हार्मोनिक्स धारा == | ||
एक सामान्य वैकल्पिक विद्युत प्रणाली में, धारा कि विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 [[ हेटर्स |हेटर्स]] पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक परिपथ समय-अपरिवर्तनीय विद्युत भार प्रणाली में सयोजित होते है, तो यह वोल्टेज समान आवृत्ति पर ज्यावक्रीय | एक सामान्य वैकल्पिक विद्युत प्रणाली में, धारा कि विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 [[ हेटर्स |हेटर्स]] पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक परिपथ समय-अपरिवर्तनीय विद्युत भार प्रणाली में सयोजित होते है, तो यह वोल्टेज समान आवृत्ति पर ज्यावक्रीय धारा को खींचता है (चूंकि सामान्यतः वोल्टेज के साथ अवस्था में नहीं) होते है।<ref name="Das_2015">{{cite book |title=पावर सिस्टम हार्मोनिक्स और पैसिव फिल्टर डिज़ाइन|first = J. C. |last=Das |publisher=Wiley, IEEE Press |year=2015 |isbn=978-1-118-86162-2 |quote=रैखिक और nonlinear भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक अनुप्रयोग के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}}}</ref>{{rp|2}} | ||
हार्मोनिक्स धारा गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक भार, जैसे कि | हार्मोनिक्स धारा गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक भार, जैसे कि परिशोधक प्रणाली से जुड़ा होता है, तो यह धारा को ऐसे खींचता है, जो अनिवार्य रूप से ज्यावक्र नहीं होते है। भार के प्रकार और प्रणाली के अन्य घटकों के आधार पर धारा तरंग का विरूपण और अधिक जटिल हो जाता है। भले ही धारा तरंग कितनी जटिल हो, फूरियर श्रृंखला रूपांतरण जटिल तरंग को सरल ज्यावक्रीयी की एक श्रृंखला में विखंडित करना संभव बनाता है, जो कि विद्युत प्रणाली द्वारा मूल आवृत्ति पर शुरू होते है और मूल आवृत्ति के गुणकों पर पूर्णांक होती है। | ||
ऊर्जा प्रणाली में, हार्मोनिक्स को मूल आवृत्ति के सकारात्मक गुणकों के पूर्णांक रूप में परिभाषित किया जाता है। इस प्रकार, हार्मोनिक मूल आवृत्ति का तीसरा गुणक है। | |||
विद्युत प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। | विद्युत प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। अर्धचालक उपकरण जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और परिवर्ती-गति ड्राइव भी सम्मलित हैं। विद्युत् मोटर्स सामान्यतः हार्मोनिक पीढ़ी में महत्वपूर्ण योगदान नहीं देते हैं। मोटर और ट्रांसफ़ॉर्मर दोनों हार्मोनिक्स तब बनाते है जब वे ओवर-फ्लक्स या संतृप्त होंगे। | ||
गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध | गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध ज्यावक्र वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप से विद्युत व्यवस्था में सम्मलित नहीं होते हैं। इसके अतिरिक्त, यदि तीन अवस्थाों की तरंग सममित है, तो नीचे वर्णित ट्रांसफार्मर और मोटर्स के डेल्टा (Δ) कनेक्शन द्वारा तीनों के हार्मोनिक गुणकों को दबा दिया जाता है। | ||
यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों गुणक वाले सभी हार्मोनिक्स | यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों गुणक वाले सभी हार्मोनिक्स ऊर्जा प्रणाली में कैसे व्यवहार करते हैं।<ref name=":0">{{Cite web|title = Harmonics Made Simple|url = http://ecmweb.com/archive/harmonics-made-simple|website = ecmweb.com|access-date = 2015-11-25}}</ref> | ||
[[File:3rd orderHarmonics.png|thumb|330x330px | तीसरा आदेश हार्मोनिक जोड़]] | [[File:3rd orderHarmonics.png|thumb|330x330px | तीसरा आदेश हार्मोनिक जोड़]]विद्युत आपूर्ति तीन अवस्था प्रणाली द्वारा की जाती है, जहां प्रत्येक अवस्था 120 डिग्री अलग होता है। मुख्य रूप से यह दो कारणों से किया जाता है: क्योंकि तीन अवस्था जनरेटर और मोटर तीन अवस्थाों में निरंतर टोक़ के कारण निर्माण करना आसान होता है; और दूसरी बात, यदि तीन अवस्थाों को संतुलित किया जाता है, तो उनका योग शून्य होता है, और कुछ स्थिति में तटस्थ कंडक्टरों के आकार को कम या छोड़ा जा सकता है। इन दोनों उपायों के परिणामस्वरूप उपयोगी कंपनियों को महत्वपूर्ण लागत पर बचत होती है। चूंकि, तीसरा संतुलित हार्मोनिक धारा न्यूट्रल से शून्य में समाहित नहीं होगा। जैसा कि चित्र में देखा गया है, तीसरा हार्मोनिक तीन अवस्थाों में रचनात्मक रूप से जोड़ देगा। इससे न्यूट्रल वायर में मूल आवृत्ति से तीन गुना अधिक धारा होता है, जो समस्याओं का कारण बन सकता है, यदि सिस्टम इसके लिए डिज़ाइन नहीं किया गया है,(अर्थात कंडक्टर केवल सामान्य संचालन के लिए आकार देते हैं।)<ref name=":0" /> तीसरे क्रम के प्रभाव को कम करने के लिए हार्मोनिक्स डेल्टा कनेक्शन एटेन्यूएटर्स, या तीसरे हार्मोनिक शॉर्ट्स के रूप में उपयोग किए जाते हैं क्योंकि धारा डेल्टा में वाई-Δ ट्रांसफॉर्मर (वाईई कनेक्शन) के तटस्थ प्रवाह के बजाय कनेक्शन को प्रसारित करता है। | ||
[[File:CFL Negative Power.png|thumb|right| एक [[ कॉम्पैक्ट फ्लोरोसेंट लैंप |कॉम्पैक्ट फ्लोरोसेंट लैंप]] गैर-रैखिक विशेषता के साथ विद्युत भार का उदाहरण है, जो कि [[ सही करनेवाला |सही करनेवाला]] परिपथ | [[File:CFL Negative Power.png|thumb|right| एक [[ कॉम्पैक्ट फ्लोरोसेंट लैंप |कॉम्पैक्ट फ्लोरोसेंट लैंप]] गैर-रैखिक विशेषता के साथ विद्युत भार का उदाहरण है, जो कि [[ सही करनेवाला |सही करनेवाला]] परिपथ का उपयोग करता है।धारातरंग, नीला, अत्यधिक विकृत है।]] | ||
== वोल्टेज हार्मोनिक्स == | == वोल्टेज हार्मोनिक्स == | ||
वोल्टेज हार्मोनिक्स | वोल्टेज हार्मोनिक्स अधिकतर हार्मोनिक्स धारा के कारण होते हैं। स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया जाता वोल्टेज हार्मोनिक्स धारा द्वारा विकृत हो जाता है। यदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो हार्मोनिक्स धारा केवल छोटे वोल्टेज हार्मोनिक्स के कारण होगा। यह सामान्यतः ऐसा इसलिये होता है, कि हार्मोनिक्स धारा की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मूल आवृत्ति द्वारा अनुमानित किया जा सकता है। यदि इस सन्निकटन का उपयोग किया जाता है, तो हार्मोनिक्स धारा भार को हस्तांतरित कर वास्तविक ऊर्जा पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मूल आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी अवस्था बदलाव के हार्मोनिक धारा को ओवरले करने से आता है (निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और हार्मोनिक धारा तरंग के नीचे समान क्षेत्र में होता है क्योंकि अक्ष के नीचे और हार्मोनिक धारा तरंग के ऊपर होता है। इसका मतलब यह है, कि हार्मोनिक्स धारा द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है। चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो हार्मोनिक्स धारा भार को हस्तांतरित कर वास्तविक शक्ति में योगदान करते हैं। | ||
एक संतुलित तीन- | एक संतुलित तीन- अवस्था (तीन-तार या चार-तार) विद्युत प्रणाली में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है, जिसकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का गुणक पूर्णांक है। आदेश की, <math>h = 3 n</math>), जिसमें तिगुना हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) <math>h = 3 (2 n - 1)</math>सम्मलित होते हैं।<ref name="Wakileh_2001">{{cite book | title = पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन| edition = 1 | first = George J. | last = Wakileh | publisher = Springer | year = 2001 | pages = 13–15 | isbn = 978-3-642-07593-3}}</ref> यह इसलिए होता है, क्योंकि '''किरचॉफ''' के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स अवस्था में होते हैं, इसलिए तीन अवस्थाों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए। एक ही तर्क के साथ, संतुलित तीन-तार तीन-चरण बिजली व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है, जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करते है। | ||
== यहां तक कि, विषम, | == यहां तक कि, विषम, तिगुना और नॉन-ट्रिप्लेन विषम हार्मोनिक्स == | ||
एक विकृत (गैर- | एक विकृत (गैर-ज्यावक्रीय) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है। | ||
हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे इसके बराबर हैं <math>n f_0</math> या <math>h f_0</math>, जहां पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और <math>f_0</math> विकृत (गैर- | हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे इसके बराबर होते हैं <math>n f_0</math> या <math>h f_0</math>, जहां पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं) और <math>f_0</math> विकृत (गैर-ज्यावक्रीय) आवधिक संकेत की मूल चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है <math>\omega_n</math> या <math>\omega_h</math>, के वे बराबर होते हैं <math>n \omega_0</math> या <math>h \omega_0</math>, जहां पे <math>\omega_0</math> विकृत (गैर-ज्यावक्र) आवधिक संकेत की मूल कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है <math>\omega = 2 \pi f</math> (हार्मोनिक्स के साथ-साथ मूल घटक के लिए मान्य होते है )। | ||
=== यहां तक कि हार्मोनिक्स === | === यहां तक कि हार्मोनिक्स === | ||
एक विकृत (गैर- | एक विकृत (गैर-ज्यावक्रीय) आवधिक संचार के भी हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार की मूल आवृत्ति (जो मूल घटक की आवृत्ति के समान होती है) के गैर-शून्य भी गुणक पूर्णांक होता है। तो, उनका आदेश इसके द्वारा दिया गया है: | ||
<math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math> | <math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math> | ||
जहां पे <math>k</math> पूर्णांक संख्या है; उदाहरण के लिए, <math>h = 2, 4, 6, 8, 10</math>। यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम- चरण रूप में दर्शाया गया है, तो <math>k</math> धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो <math>k</math> के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)। | |||
=== विषम हार्मोनिक्स === | === विषम हार्मोनिक्स === | ||
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स हैं, जिनकी आवृत्ति विकृत संचार की | एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार की मूल आवृत्ति के (जो मूल घटक की आवृत्ति के समान होती है) एक विषम पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है: | ||
<math>h = 2 k - 1, \quad k \in \N \quad \text{(odd harmonics)}</math> | <math>h = 2 k - 1, \quad k \in \N \quad \text{(odd harmonics)}</math> | ||
Line 42: | Line 42: | ||
उदाहरण के लिए, <math>h = 1, 3, 5, 7, 9</math>। | उदाहरण के लिए, <math>h = 1, 3, 5, 7, 9</math>। | ||
विकृत आवधिक संकेतों | विकृत आवधिक संकेतों में, जिनमें अर्ध-तरंग समरूपता होती है, जिसका अर्थ है कि ऋणात्मक आधे चक्र के समय तरंग सकारात्मक और आधे चक्र के समय तरंग ऋणात्मक के बराबर होती है, सभी हार्मोनिक्स शून्य होते हैं <math>a_{2k} = b_{2k} = A_{2k} = 0</math>) और डीसी घटक भी शून्य है (<math>a_0 = 0</math>), इसलिए उनके पास केवल विषम हार्मोनिक्स हैं (<math>A_{2k-1} \ne 0</math>);सामान्य रूप से ये विषम हार्मोनिक्स कोसाइन शब्द के साथ-साथ साइन शब्द भी हैं, लेकिन कुछ तरंगों जैसे वर्ग तरंगों में कोसाइन शब्द शून्य हैं (<math>a_{2k-1} = 0</math>, <math>b_{2k-1} \ne 0</math>)। इनवर्टर, एसी वोल्टेज नियंत्रक और [[ साइक्लोकॉनवर्टर |साइक्लोकॉनवर्टर]] जैसे कई गैर-रैखिक भारों में, आउटपुट वोल्टेज (ओं) तरंग (एस) में सामान्यतः आधा-तरंग समरूपता होती है और इसलिए इसमें केवल विषम हार्मोनिक्स होते हैं। | ||
मूल घटक विषम हार्मोनिक होते है, जब से <math>k=1</math>, उपरोक्त सूत्र से प्राप्त होता है <math>h=1</math>, जो मूलभूत घटक का क्रम है। यदि मूल घटक को विषम हार्मोनिक्स से बाहर रखा जाता है, तो शेष हार्मोनिक्स का क्रम निम्न द्वारा दिया जाता है: | |||
<math>h = 2 k + 1, \quad k \in \N \quad \text{(odd harmonics that aren't the fundamental)}</math> | <math>h = 2 k + 1, \quad k \in \N \quad \text{(odd harmonics that aren't the fundamental)}</math> | ||
Line 51: | Line 51: | ||
=== ट्रिपलन हार्मोनिक्स === | === ट्रिपलन हार्मोनिक्स === | ||
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के | एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के तिगुना हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार के तीसरे हार्मोनिक (एस) की आवृत्ति का एक विषम ''पूर्णांक'' गुणक है। तो, उनका आदेश इसके द्वारा दिया गया है: | ||
<math>h = 3(2k-1), \quad k \in \N \quad \text{(triplen harmonics)}</math> | <math>h = 3(2k-1), \quad k \in \N \quad \text{(triplen harmonics)}</math> | ||
उदाहरण के लिए, <math>h = 3, 9, 15, 21, 27</math> | उदाहरण के लिए, <math>h = 3, 9, 15, 21, 27</math>। सभी तिगुना हार्मोनिक्स भी विषम हार्मोनिक्स होता हैं, लेकिन सभी विषम हार्मोनिक्स ट्रिपल हार्मोनिक्स नहीं होते हैं। | ||
=== नॉन-ट्रिप्लेन विषम हार्मोनिक्स === | === नॉन-ट्रिप्लेन विषम हार्मोनिक्स === | ||
कुछ विकृत (गैर- | कुछ विकृत (गैर-ज्यावक्र) आवधिक संकेतों के तिगुना हार्मोनिक्स होते हैं जो न तो हार्मोनिक्स होते हैं और न ही ट्रिपल हार्मोनिक्स, उदाहरण के लिए चरण कोण नियंत्रण और फायरिंग कोण के साथ तीन- चरण डब्ल्यूवाईई- कनेक्टेड एसी वोल्टेज नियंत्रक का आउटपुट वोल्टेज <math> \alpha = 45^\circ</math>और अपने आउटपुट से जुड़े विशुद्ध रूप से प्रतिरोधक भार के साथ और तीन- चरण ज्यावक्र संतुलित वोल्टेज के साथ सिंचित किया जाता है। उनका आदेश द्वारा दिया गया है: | ||
<math>h = \frac{1}{2} (6 \, k + [-1]^k - 3), \quad k \in \N \quad \text{(non-triplen odd harmonics)}</math> | <math>h = \frac{1}{2} (6 \, k + [-1]^k - 3), \quad k \in \N \quad \text{(non-triplen odd harmonics)}</math> | ||
Line 66: | Line 66: | ||
सभी हार्मोनिक्स जो हार्मोनिक्स भी नहीं हैं और न ही ट्रिपल हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी हार्मोनिक्स नहीं हैं जो हार्मोनिक्स या ट्रिपल हार्मोनिक्स भी नहीं हैं। | सभी हार्मोनिक्स जो हार्मोनिक्स भी नहीं हैं और न ही ट्रिपल हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी हार्मोनिक्स नहीं हैं जो हार्मोनिक्स या ट्रिपल हार्मोनिक्स भी नहीं हैं। | ||
यदि | यदि मूल घटक को हार्मोनिक्स से बाहर रखा गया है, जो न तो सम और न ही ट्रिपल हार्मोनिक्स हैं, तो शेष हार्मोनिक्स का क्रम इस प्रकार दिया जा सकता है: | ||
<math>h = \frac{1}{2} (-1)^k (6 \, k[-1]^k + 3[-1]^k - 1), \quad k \in \N \quad \text{(non-triplen odd harmonics that aren't the fundamental)}</math> | <math>h = \frac{1}{2} (-1)^k (6 \, k[-1]^k + 3[-1]^k - 1), \quad k \in \N \quad \text{(non-triplen odd harmonics that aren't the fundamental)}</math> | ||
Line 79: | Line 79: | ||
== सकारात्मक अनुक्रम, नकारात्मक अनुक्रम और शून्य अनुक्रम हार्मोनिक्स == | == सकारात्मक अनुक्रम, नकारात्मक अनुक्रम और शून्य अनुक्रम हार्मोनिक्स == | ||
संतुलित तीन- | संतुलित तीन- अवस्था प्रणालियों (तीन-तार या चार-तार) कि स्थिति में, तीन विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के हार्मोनिक्स को उनके अवस्था अनुक्रम के अनुसार भी वर्गीकृत किया जा सकता है।<ref name="Das_2015"/>{{rp|7-8}}<ref name="FuchsMasoum_2008">{{cite book | title = बिजली प्रणालियों और विद्युत मशीनों में बिजली की गुणवत्ता| edition = 1 | first1 = Ewald F. | last1 = Fuchs | first2 = Mohammad A. S. | last2 = Masoum | publisher = Academic Press | year = 2008 | pages = 17–18 | isbn = 978-0123695369}}</ref><ref name="Wakileh_2001" /> | ||
=== पॉजिटिव सीक्वेंस हार्मोनिक्स === | === पॉजिटिव सीक्वेंस हार्मोनिक्स === | ||
तीन- | तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट को सकारात्मक अनुक्रम हार्मोनिक्स होता हैं, जिसमें तीन मूल संकेतों के समान चरण अनुक्रम होता है, और एक एक दूसरे के बीच 120 डिग्री के समय में चरण-स्थानांतरित होता है। दी गई आवृत्ति या क्रम।<ref name="SantosoBeatyDuganMcGranaghan_2003">{{cite book | title = विद्युत बिजली प्रणालियों की गुणवत्ता| edition = 2 | first1 = Surya | last1 = Santoso | first2 = H. Wayne | last2 = Beaty | first3 = Roger C. | last3 = Dugan | first4 = Mark F. | last4 = McGranaghan | publisher = McGraw-Hill | year = 2003 | page = 178 | isbn = 978-0-07-138622-7}}</ref> यह प्रमाणित किया जा सकता है, कि सकारात्मक अनुक्रम हार्मोनिक्स हैं, जिनके द्वारा आदेश दिया गया है: | ||
<math>h = 3 k - 2, \quad k \in \N \quad \text{(positive sequence harmonics)}</math> | <math>h = 3 k - 2, \quad k \in \N \quad \text{(positive sequence harmonics)}</math> | ||
Line 90: | Line 90: | ||
उदाहरण के लिए, <math>h = 1, 4, 7, 10, 13</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | उदाहरण के लिए, <math>h = 1, 4, 7, 10, 13</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | ||
तीन संकेतों के | तीन संकेतों के मूल घटक सकारात्मक अनुक्रम हार्मोनिक्स हैं, जब से <math>k = 1</math>, उपरोक्त सूत्र पैदावार <math>h = 1</math>, जो मूल घटकों का क्रम है।यदि मूल घटकों को सकारात्मक अनुक्रम हार्मोनिक्स से बाहर रखा गया है, तो शेष हार्मोनिक्स का क्रम दिया जाता है:<ref name="Das_2015" /> | ||
<math>h = 3 k + 1, \quad k \in \N \quad \text{(positive sequence harmonics that aren't the fundamentals)}</math> | <math>h = 3 k + 1, \quad k \in \N \quad \text{(positive sequence harmonics that aren't the fundamentals)}</math> | ||
उदाहरण के लिए, <math>h = 4, 7, 10, 13, 16</math>। | उदाहरण के लिए, <math>h = 4, 7, 10, 13, 16</math>। | ||
=== नकारात्मक अनुक्रम हार्मोनिक्स === | === नकारात्मक अनुक्रम हार्मोनिक्स === | ||
तीन- | तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स होते हैं जो तीन मूल संकेतों के विपरीत अवस्था अनुक्रम होते हैं, और किसी दिए गए आवृत्ति के लिए 120 ° द्वारा समय अवस्था में-शिफ्ट किया जाता है।<ref name="SantosoBeatyDuganMcGranaghan_2003" /> यह प्रमाणित किया जा सकता है कि नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:<ref name="Das_2015"/> | ||
<math>h = 3 k - 1, \quad k \in \N \quad \text{(negative sequence harmonics)}</math> | <math>h = 3 k - 1, \quad k \in \N \quad \text{(negative sequence harmonics)}</math> | ||
उदाहरण के लिए, <math>h = 2, 5, 8, 11, 14</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | उदाहरण के लिए, <math>h = 2, 5, 8, 11, 14</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | ||
=== शून्य अनुक्रम हार्मोनिक्स === | === शून्य अनुक्रम हार्मोनिक्स === | ||
तीन- | तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जो किसी दिए गए आवृत्ति या आदेश के लिए समय में अवस्था में होते हैं।यह प्रमाणित हो सकता है कि शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का पूर्णांक है।<ref name="Das_2015"/>तो, उनका आदेश द्वारा दिया गया है: | ||
<math>h = 3 k, \quad k \in \N \quad \text{(zero sequence harmonics)}</math> | <math>h = 3 k, \quad k \in \N \quad \text{(zero sequence harmonics)}</math> | ||
उदाहरण के लिए, <math>h = 3, 6, 9, 12, 15</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | उदाहरण के लिए, <math>h = 3, 6, 9, 12, 15</math>.<ref name="FuchsMasoum_2008" /><ref name="Wakileh_2001" /> | ||
सभी | सभी तिगुना हार्मोनिक्स भी शून्य अनुक्रम हार्मोनिक्स हैं,<ref name="Das_2015" />लेकिन सभी शून्य अनुक्रम हार्मोनिक्स भी तिगुना हार्मोनिक्स नहीं होते हैं। | ||
== कुल हार्मोनिक विरूपण == | == कुल हार्मोनिक विरूपण == | ||
कुल हार्मोनिक विरूपण, या टीएचडी विद्युत प्रणालियों में सम्मलित हार्मोनिक विरूपण के स्तर का सामान्य माप है। टीएचडी या वोल्टेज हार्मोनिक्स से संबंधित | कुल हार्मोनिक विरूपण, या टीएचडी विद्युत प्रणालियों में सम्मलित हार्मोनिक विरूपण के स्तर का सामान्य माप है। टीएचडी या वोल्टेज हार्मोनिक्स से संबंधित होते है, इसे सभी हार्मोनिक्स के आरएमएस मूल्य के अनुपात के रूप में परिभाषित किया गया है जो मूल घटक के आरएमएस मूल्य 100% है; डीसी घटक उपेक्षित होते है। | ||
:<math> | :<math> | ||
Line 119: | Line 119: | ||
{THD_I} = \frac{ \sqrt{I_2^2 + I_3^2 + I_4^2 + \cdots + I_n^2} }{I_1} \cdot 100\% = \frac{ \sqrt{ \sum_{k \mathop = 2}^{n}I_k^2} }{I_1} \cdot 100\% | {THD_I} = \frac{ \sqrt{I_2^2 + I_3^2 + I_4^2 + \cdots + I_n^2} }{I_1} \cdot 100\% = \frac{ \sqrt{ \sum_{k \mathop = 2}^{n}I_k^2} }{I_1} \cdot 100\% | ||
</math> | </math> | ||
जहां '''वी<sub>k</sub>केथ हार्मोनिक''' का आरएमएस वोल्टेज है, मैं<sub>k</sub>KTH हार्मोनिक का | जहां '''वी<sub>k</sub>केथ हार्मोनिक''' का आरएमएस वोल्टेज होता है, मैं<sub>k</sub>KTH हार्मोनिक का आरएमएस धारा होता है, और k = 1 मूल घटक का क्रम होता है। | ||
यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं;चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो भार में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है। औसत वास्तविक शक्ति वोल्टेज और धारा(और विद्युत कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद | यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं; चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो भार में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है। औसत वास्तविक शक्ति वोल्टेज और धारा (और विद्युत कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद में समाहित होकर पाया जा सकता है, जो कि मूल आवृत्ति पर वोल्टेज और धारा के उत्पाद के लिए होता है, या | ||
:<math> | :<math> | ||
{P_{\text{avg}}} = \sum_{k \mathop = 1}^{\infty} V_k \cdot I_k \cdot pf = P_{\text{avg}, 1} + P_{\text{avg}, 2} + \cdots | {P_{\text{avg}}} = \sum_{k \mathop = 1}^{\infty} V_k \cdot I_k \cdot pf = P_{\text{avg}, 1} + P_{\text{avg}, 2} + \cdots | ||
</math> | </math> | ||
जहां वी<sub>k</sub>और मैं<sub>k</sub>हार्मोनिक पर आरएमएस वोल्टेज और | जहां वी<sub>k</sub>और मैं<sub>k</sub>हार्मोनिक पर आरएमएस वोल्टेज और धारा परिमाण होते हैं जो कि (<math>k = 1</math> मूल आवृत्ति को दर्शाता है), और <math>P_{\text{avg}, 1}</math> हार्मोनिक घटकों में फैक्टरिंग के बिना शक्ति की पारंपरिक परिभाषा है। | ||
ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और | ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और ऊर्जा कारक होते है जो टीएचडी पर निर्भर करता है। ट्रू पावर फैक्टर को औसत वास्तविक ऊर्जा और आरएमएस वोल्टेज और धारा के परिमाण के बीच के अनुपात के रूप में लिया जा सकता है, <math>pf_{\text{true}} = \frac{P_{\text{avg}}}{V_{\text{rms}} I_{\text{rms}}}</math>.<ref>{{cite web|title=Harmonics and How They Relate to Power Factor |url=http://intranet.ctism.ufsm.br/gsec/Apostilas/fatordepotenciaethd.pdf|work=Proc. of the EPRI Power Quality Issues & Opportunities Conference|author= W. Mack Grady and Robert Gilleski}}</ref> | ||
:<math> | :<math> | ||
{V_{\text{rms}}} = V_{1, \text{rms}} \sqrt{ 1 + \left(\frac{ THD_V}{100}\right)^2} | {V_{\text{rms}}} = V_{1, \text{rms}} \sqrt{ 1 + \left(\frac{ THD_V}{100}\right)^2} | ||
Line 136: | Line 136: | ||
{I_{\text{rms}}} = I_{1, \text{rms}} \sqrt{ 1 + \left(\frac{ THD_I}{100}\right)^2} | {I_{\text{rms}}} = I_{1, \text{rms}} \sqrt{ 1 + \left(\frac{ THD_I}{100}\right)^2} | ||
</math> | </math> | ||
सही | सही ऊर्जा कारक के लिए समीकरण करने के लिए इसे प्रतिस्थापित करते हुए, यह स्पष्ट हो जाता है, कि मात्रा में दो घटकों के लिए लिया जा सकता है, जिनमें से पारंपरिक ऊर्जा कारक होते है (हारमोनिक्स के प्रभाव की उपेक्षा) और जिनमें से हार्मोनिक्स का योगदान है ऊर्जा तत्व: | ||
:<math> | :<math> | ||
Line 145: | Line 145: | ||
pf_{\text{true}} = pf_{\text{disp}} \cdot pf_{\text{dist}}, | pf_{\text{true}} = pf_{\text{disp}} \cdot pf_{\text{dist}}, | ||
</math> | </math> | ||
जहां पे <math> pf_{\text{disp}}</math> विस्थापन ऊर्जा करक होते है और <math> | |||
pf_{\text{dist}}</math> विरूपण शक्ति कारक है (अर्थात | pf_{\text{dist}}</math> विरूपण शक्ति कारक है (अर्थात कुल विद्युत कारक के लिए हार्मोनिक्स का योगदान होता है)। | ||
== प्रभाव == | == प्रभाव == | ||
ऊर्जा प्रणाली में हार्मोनिक्स के प्रमुख प्रभावों से प्रणाली में धारा को बढ़ाना होता है। यह विशेष रूप से तीसरे हार्मोनिक कि स्थिति में होता है, जो शून्य अनुक्रम धारा में तेज वृद्धि का कारण बनता है, इसलिए तटस्थ कंडक्टर में धारा को बढ़ाता है। इस प्रभाव को गैर-रैखिक भारों को पूरा करने के लिए विद्युत प्रणाली के डिजाइन में विशेष विचार की आवश्यकता हो सकती है।<ref>For example, see the [[National Electrical Code]]: "A 3-phase, 4-wire, wye-connected power system used to supply power to nonlinear loads may necessitate that the power system design allow for the possibility of high harmonic neutral currents. (Article 220.61(C), FPN No. 2)"</ref> | |||
बढ़ी हुई रेखा | बढ़ी हुई रेखा धारा के अतिरिक्त, विद्युत उपकरण के विभिन्न टुकड़े विद्युत प्रणाली पर हार्मोनिक्स से प्रभाव डाल सकते हैं। | ||
=== मोटर्स === | === मोटर्स === | ||
मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और | मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और धारा वृत्त के कारण विद्युत मोटर्स को हानि होती है। ये धारा की आवृत्ति के समानुपाती होते हैं। चूंकि हार्मोनिक्स उच्च आवृत्तियों पर हैं, वे विद्युत आवृत्ति की तुलना में मोटर में उच्च कोर हानि उत्पन्न करते हैं। इसके परिणामस्वरूप मोटर कोर का ताप बढ़ जाता है, जो मोटर के जीवन को छोटा कर सकता है। पांचवां हार्मोनिक बड़े मोटर्स में सीईएमएफ (काउंटर इलेक्ट्रोमोटिव बल) का कारण बनता है जो घूर्णन की विपरीत दिशा में कार्य करता है। सीईएमएफ घूर्णन का प्रतिकार करने के लिए पर्याप्त बड़ा नहीं है; हालाँकि यह मोटर की परिणामी घूर्णन गति में एक छोटी भूमिका निभाता है। | ||
=== टेलीफोन === | === टेलीफोन === | ||
Line 161: | Line 161: | ||
== स्रोत == | == स्रोत == | ||
एक शुद्ध | एक शुद्ध ज्यावक्र वोल्टेज एक आदर्श एसी जनरेटर द्वारा उत्पादित वैचारिक मात्रा है, जो एक समान चुंबकीय क्षेत्र में कार्य करने वाले बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ बनाया गया है। चूँकि कार्यशील एसी मशीन में न तो घुमावदार वितरण और न ही चुंबकीय क्षेत्र एक समान होते हैं, जिससे वोल्टेज तरंग विकृतियाँ पैदा होती हैं, और वोल्टेज-समय संबंध शुद्ध साइन फ़ंक्शन से विचलित हो जाता है।पीढ़ी के बिंदु पर विरूपण बहुत छोटा है (लगभग 1% से 2%), लेकिन फिर भी यह सम्मलित होता है। क्योंकि यह एक शुद्ध साइन लहर से विचलन है, विचलन आवधिक कार्य के रूप में होता है, और परिभाषा के अनुसार, वोल्टेज विरूपण में हार्मोनिक्स होते हैं। | ||
जब | जब एक ज्यावक्र वोल्टेज एक रैखिक समय-अपरिवर्तनीय भार पर लागू होता है, जैसे हीटिंग तत्व, इसके माध्यम से धारा में भी ज्यावक्रीय होता है। गैर-रैखिक या समय-भिन्न भार में, जैसे स्थिरण विरूपण के साथ परिवर्धक, में लागू किए गए साइन वक्र का वोल्टेज स्विंग सीमित होता है और शुद्ध टोन हार्मोनिक्स के ढेर से प्रदूषित होता है। | ||
जब | जब ऊर्जा स्रोत से अरेखीय भार के मार्ग में महत्वपूर्ण प्रतिबाधा होती है, तो ये धारा विकृतियां भार पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी। चूंकि, अधिकतर स्थति में जहां विद्युत वितरण प्रणाली सामान्य परिस्थितियों में सही ढंग से कार्य कर रही है, वोल्टेज विकृतियां अधिक लघु होती है और सामान्यतः इसे अनदेखा किया जा सकता है। | ||
तरंगरूप विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है, कि यह शुद्ध साइन तरंग पर अतिरिक्त आवृत्ति घटकों को अध्यारोपित करने के बराबर है। ये आवृत्तियां मूल आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी-कभी गैर-रैखिक भार से बाहर की ओर फैल सकती हैं, जिससे विद्युत व्यवस्था में कहीं और समस्याएँ पैदा हो सकती हैं। | |||
एक गैर-रैखिक भार का | एक गैर-रैखिक भार का उत्कृष्ट उदाहरण संधारित्र इनपुट फिल्टर के साथ संशोधित होता है, जहां संशोधित डायोड केवल उस समय के भार को पास करने की अनुमति देता है, जो लागू वोल्टेज संधारित्र में संग्रहीत वोल्टेज से अधिक होता है, जो अपेक्षाकृत भी हो सकता है, और आने वाले वोल्टेज चक्र का छोटा हिस्सा हो सकता है । | ||
गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक | गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक बल्लासट्स, परिवर्ती आवृत्ति ड्राइव और स्विचिंग मोड विद्युत की आपूर्ति करते है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 183: | Line 183: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 18/01/2023]] | [[Category:Created On 18/01/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:विद्युत शक्ति गुणवत्ता]] |
Latest revision as of 20:39, 31 January 2023
एक विद्युत ऊर्जा तंत्र में, वोल्टेज या धारा तरंग लयबद्ध का ज्यावक्रीय तरंग है, जिसकी आवृत्ति मूल आवृत्ति का पूर्णांक गुणक है। हार्मोनिक आवृत्तियों को गैर-रेखीय भार जैसे कि परिशोधक, गैस- निर्वहन प्रकाश, या संतृप्त विद्युत् मशीनी क्रिया द्वारा उत्पादित किया जाता है। ये विद्युत गुणवत्ता की समस्याओं के लगातार कारण से हैं, और इसके परिणामस्वरूप उपकरण और विद्युत चालक ताप, परिवर्तनीय गति ड्राइव में अपज्वलन तथा मोटर्स और जनरेटर में आघूर्ण बल स्पंदन हो सकता है।
हार्मोनिक्स को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या धारा ), और हार्मोनिक का क्रम (सम, विषम, तिगुना, या गैर-ट्रिपल विषम); तीन- अवस्था प्रणाली में, उन्हें अपने अवस्था अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है।
हार्मोनिक्स धारा
एक सामान्य वैकल्पिक विद्युत प्रणाली में, धारा कि विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 हेटर्स पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक परिपथ समय-अपरिवर्तनीय विद्युत भार प्रणाली में सयोजित होते है, तो यह वोल्टेज समान आवृत्ति पर ज्यावक्रीय धारा को खींचता है (चूंकि सामान्यतः वोल्टेज के साथ अवस्था में नहीं) होते है।[1]: 2
हार्मोनिक्स धारा गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक भार, जैसे कि परिशोधक प्रणाली से जुड़ा होता है, तो यह धारा को ऐसे खींचता है, जो अनिवार्य रूप से ज्यावक्र नहीं होते है। भार के प्रकार और प्रणाली के अन्य घटकों के आधार पर धारा तरंग का विरूपण और अधिक जटिल हो जाता है। भले ही धारा तरंग कितनी जटिल हो, फूरियर श्रृंखला रूपांतरण जटिल तरंग को सरल ज्यावक्रीयी की एक श्रृंखला में विखंडित करना संभव बनाता है, जो कि विद्युत प्रणाली द्वारा मूल आवृत्ति पर शुरू होते है और मूल आवृत्ति के गुणकों पर पूर्णांक होती है।
ऊर्जा प्रणाली में, हार्मोनिक्स को मूल आवृत्ति के सकारात्मक गुणकों के पूर्णांक रूप में परिभाषित किया जाता है। इस प्रकार, हार्मोनिक मूल आवृत्ति का तीसरा गुणक है।
विद्युत प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। अर्धचालक उपकरण जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और परिवर्ती-गति ड्राइव भी सम्मलित हैं। विद्युत् मोटर्स सामान्यतः हार्मोनिक पीढ़ी में महत्वपूर्ण योगदान नहीं देते हैं। मोटर और ट्रांसफ़ॉर्मर दोनों हार्मोनिक्स तब बनाते है जब वे ओवर-फ्लक्स या संतृप्त होंगे।
गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध ज्यावक्र वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप से विद्युत व्यवस्था में सम्मलित नहीं होते हैं। इसके अतिरिक्त, यदि तीन अवस्थाों की तरंग सममित है, तो नीचे वर्णित ट्रांसफार्मर और मोटर्स के डेल्टा (Δ) कनेक्शन द्वारा तीनों के हार्मोनिक गुणकों को दबा दिया जाता है।
यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों गुणक वाले सभी हार्मोनिक्स ऊर्जा प्रणाली में कैसे व्यवहार करते हैं।[2]
विद्युत आपूर्ति तीन अवस्था प्रणाली द्वारा की जाती है, जहां प्रत्येक अवस्था 120 डिग्री अलग होता है। मुख्य रूप से यह दो कारणों से किया जाता है: क्योंकि तीन अवस्था जनरेटर और मोटर तीन अवस्थाों में निरंतर टोक़ के कारण निर्माण करना आसान होता है; और दूसरी बात, यदि तीन अवस्थाों को संतुलित किया जाता है, तो उनका योग शून्य होता है, और कुछ स्थिति में तटस्थ कंडक्टरों के आकार को कम या छोड़ा जा सकता है। इन दोनों उपायों के परिणामस्वरूप उपयोगी कंपनियों को महत्वपूर्ण लागत पर बचत होती है। चूंकि, तीसरा संतुलित हार्मोनिक धारा न्यूट्रल से शून्य में समाहित नहीं होगा। जैसा कि चित्र में देखा गया है, तीसरा हार्मोनिक तीन अवस्थाों में रचनात्मक रूप से जोड़ देगा। इससे न्यूट्रल वायर में मूल आवृत्ति से तीन गुना अधिक धारा होता है, जो समस्याओं का कारण बन सकता है, यदि सिस्टम इसके लिए डिज़ाइन नहीं किया गया है,(अर्थात कंडक्टर केवल सामान्य संचालन के लिए आकार देते हैं।)[2] तीसरे क्रम के प्रभाव को कम करने के लिए हार्मोनिक्स डेल्टा कनेक्शन एटेन्यूएटर्स, या तीसरे हार्मोनिक शॉर्ट्स के रूप में उपयोग किए जाते हैं क्योंकि धारा डेल्टा में वाई-Δ ट्रांसफॉर्मर (वाईई कनेक्शन) के तटस्थ प्रवाह के बजाय कनेक्शन को प्रसारित करता है।
वोल्टेज हार्मोनिक्स
वोल्टेज हार्मोनिक्स अधिकतर हार्मोनिक्स धारा के कारण होते हैं। स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया जाता वोल्टेज हार्मोनिक्स धारा द्वारा विकृत हो जाता है। यदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो हार्मोनिक्स धारा केवल छोटे वोल्टेज हार्मोनिक्स के कारण होगा। यह सामान्यतः ऐसा इसलिये होता है, कि हार्मोनिक्स धारा की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मूल आवृत्ति द्वारा अनुमानित किया जा सकता है। यदि इस सन्निकटन का उपयोग किया जाता है, तो हार्मोनिक्स धारा भार को हस्तांतरित कर वास्तविक ऊर्जा पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मूल आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी अवस्था बदलाव के हार्मोनिक धारा को ओवरले करने से आता है (निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और हार्मोनिक धारा तरंग के नीचे समान क्षेत्र में होता है क्योंकि अक्ष के नीचे और हार्मोनिक धारा तरंग के ऊपर होता है। इसका मतलब यह है, कि हार्मोनिक्स धारा द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है। चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो हार्मोनिक्स धारा भार को हस्तांतरित कर वास्तविक शक्ति में योगदान करते हैं।
एक संतुलित तीन- अवस्था (तीन-तार या चार-तार) विद्युत प्रणाली में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है, जिसकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का गुणक पूर्णांक है। आदेश की, ), जिसमें तिगुना हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) सम्मलित होते हैं।[3] यह इसलिए होता है, क्योंकि किरचॉफ के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स अवस्था में होते हैं, इसलिए तीन अवस्थाों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए। एक ही तर्क के साथ, संतुलित तीन-तार तीन-चरण बिजली व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है, जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करते है।
यहां तक कि, विषम, तिगुना और नॉन-ट्रिप्लेन विषम हार्मोनिक्स
एक विकृत (गैर-ज्यावक्रीय) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है।
हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है या , और वे इसके बराबर होते हैं या , जहां पे या हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं) और विकृत (गैर-ज्यावक्रीय) आवधिक संकेत की मूल चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है या , के वे बराबर होते हैं या , जहां पे विकृत (गैर-ज्यावक्र) आवधिक संकेत की मूल कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है (हार्मोनिक्स के साथ-साथ मूल घटक के लिए मान्य होते है )।
यहां तक कि हार्मोनिक्स
एक विकृत (गैर-ज्यावक्रीय) आवधिक संचार के भी हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार की मूल आवृत्ति (जो मूल घटक की आवृत्ति के समान होती है) के गैर-शून्य भी गुणक पूर्णांक होता है। तो, उनका आदेश इसके द्वारा दिया गया है:
जहां पे पूर्णांक संख्या है; उदाहरण के लिए, । यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम- चरण रूप में दर्शाया गया है, तो धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)।
विषम हार्मोनिक्स
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार की मूल आवृत्ति के (जो मूल घटक की आवृत्ति के समान होती है) एक विषम पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है:
उदाहरण के लिए, ।
विकृत आवधिक संकेतों में, जिनमें अर्ध-तरंग समरूपता होती है, जिसका अर्थ है कि ऋणात्मक आधे चक्र के समय तरंग सकारात्मक और आधे चक्र के समय तरंग ऋणात्मक के बराबर होती है, सभी हार्मोनिक्स शून्य होते हैं ) और डीसी घटक भी शून्य है (), इसलिए उनके पास केवल विषम हार्मोनिक्स हैं ();सामान्य रूप से ये विषम हार्मोनिक्स कोसाइन शब्द के साथ-साथ साइन शब्द भी हैं, लेकिन कुछ तरंगों जैसे वर्ग तरंगों में कोसाइन शब्द शून्य हैं (, )। इनवर्टर, एसी वोल्टेज नियंत्रक और साइक्लोकॉनवर्टर जैसे कई गैर-रैखिक भारों में, आउटपुट वोल्टेज (ओं) तरंग (एस) में सामान्यतः आधा-तरंग समरूपता होती है और इसलिए इसमें केवल विषम हार्मोनिक्स होते हैं।
मूल घटक विषम हार्मोनिक होते है, जब से , उपरोक्त सूत्र से प्राप्त होता है , जो मूलभूत घटक का क्रम है। यदि मूल घटक को विषम हार्मोनिक्स से बाहर रखा जाता है, तो शेष हार्मोनिक्स का क्रम निम्न द्वारा दिया जाता है:
उदाहरण के लिए, ।
ट्रिपलन हार्मोनिक्स
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के तिगुना हार्मोनिक्स होते हैं, जिनकी आवृत्ति विकृत संचार के तीसरे हार्मोनिक (एस) की आवृत्ति का एक विषम पूर्णांक गुणक है। तो, उनका आदेश इसके द्वारा दिया गया है:
उदाहरण के लिए, । सभी तिगुना हार्मोनिक्स भी विषम हार्मोनिक्स होता हैं, लेकिन सभी विषम हार्मोनिक्स ट्रिपल हार्मोनिक्स नहीं होते हैं।
नॉन-ट्रिप्लेन विषम हार्मोनिक्स
कुछ विकृत (गैर-ज्यावक्र) आवधिक संकेतों के तिगुना हार्मोनिक्स होते हैं जो न तो हार्मोनिक्स होते हैं और न ही ट्रिपल हार्मोनिक्स, उदाहरण के लिए चरण कोण नियंत्रण और फायरिंग कोण के साथ तीन- चरण डब्ल्यूवाईई- कनेक्टेड एसी वोल्टेज नियंत्रक का आउटपुट वोल्टेज और अपने आउटपुट से जुड़े विशुद्ध रूप से प्रतिरोधक भार के साथ और तीन- चरण ज्यावक्र संतुलित वोल्टेज के साथ सिंचित किया जाता है। उनका आदेश द्वारा दिया गया है:
उदाहरण के लिए, ।
सभी हार्मोनिक्स जो हार्मोनिक्स भी नहीं हैं और न ही ट्रिपल हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी हार्मोनिक्स नहीं हैं जो हार्मोनिक्स या ट्रिपल हार्मोनिक्स भी नहीं हैं।
यदि मूल घटक को हार्मोनिक्स से बाहर रखा गया है, जो न तो सम और न ही ट्रिपल हार्मोनिक्स हैं, तो शेष हार्मोनिक्स का क्रम इस प्रकार दिया जा सकता है:
या द्वारा भी:
उदाहरण के लिए, । इस बाद के स्थिति में, इन हार्मोनिक्स को इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स द्वारा नॉनट्रिपल ऑड हार्मोनिक्स कहा जाता है[4]
सकारात्मक अनुक्रम, नकारात्मक अनुक्रम और शून्य अनुक्रम हार्मोनिक्स
संतुलित तीन- अवस्था प्रणालियों (तीन-तार या चार-तार) कि स्थिति में, तीन विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के हार्मोनिक्स को उनके अवस्था अनुक्रम के अनुसार भी वर्गीकृत किया जा सकता है।[1]: 7–8 [5][3]
पॉजिटिव सीक्वेंस हार्मोनिक्स
तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट को सकारात्मक अनुक्रम हार्मोनिक्स होता हैं, जिसमें तीन मूल संकेतों के समान चरण अनुक्रम होता है, और एक एक दूसरे के बीच 120 डिग्री के समय में चरण-स्थानांतरित होता है। दी गई आवृत्ति या क्रम।[6] यह प्रमाणित किया जा सकता है, कि सकारात्मक अनुक्रम हार्मोनिक्स हैं, जिनके द्वारा आदेश दिया गया है:
तीन संकेतों के मूल घटक सकारात्मक अनुक्रम हार्मोनिक्स हैं, जब से , उपरोक्त सूत्र पैदावार , जो मूल घटकों का क्रम है।यदि मूल घटकों को सकारात्मक अनुक्रम हार्मोनिक्स से बाहर रखा गया है, तो शेष हार्मोनिक्स का क्रम दिया जाता है:[1]
उदाहरण के लिए, ।
नकारात्मक अनुक्रम हार्मोनिक्स
तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स होते हैं जो तीन मूल संकेतों के विपरीत अवस्था अनुक्रम होते हैं, और किसी दिए गए आवृत्ति के लिए 120 ° द्वारा समय अवस्था में-शिफ्ट किया जाता है।[6] यह प्रमाणित किया जा सकता है कि नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:[1]
शून्य अनुक्रम हार्मोनिक्स
तीन- अवस्था विकृत (गैर-ज्यावक्र) आवधिक संकेतों के सेट के शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जो किसी दिए गए आवृत्ति या आदेश के लिए समय में अवस्था में होते हैं।यह प्रमाणित हो सकता है कि शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का पूर्णांक है।[1]तो, उनका आदेश द्वारा दिया गया है:
सभी तिगुना हार्मोनिक्स भी शून्य अनुक्रम हार्मोनिक्स हैं,[1]लेकिन सभी शून्य अनुक्रम हार्मोनिक्स भी तिगुना हार्मोनिक्स नहीं होते हैं।
कुल हार्मोनिक विरूपण
कुल हार्मोनिक विरूपण, या टीएचडी विद्युत प्रणालियों में सम्मलित हार्मोनिक विरूपण के स्तर का सामान्य माप है। टीएचडी या वोल्टेज हार्मोनिक्स से संबंधित होते है, इसे सभी हार्मोनिक्स के आरएमएस मूल्य के अनुपात के रूप में परिभाषित किया गया है जो मूल घटक के आरएमएस मूल्य 100% है; डीसी घटक उपेक्षित होते है।
जहां वीkकेथ हार्मोनिक का आरएमएस वोल्टेज होता है, मैंkKTH हार्मोनिक का आरएमएस धारा होता है, और k = 1 मूल घटक का क्रम होता है।
यह सामान्यतः स्थिति है, कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं; चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो भार में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है। औसत वास्तविक शक्ति वोल्टेज और धारा (और विद्युत कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद में समाहित होकर पाया जा सकता है, जो कि मूल आवृत्ति पर वोल्टेज और धारा के उत्पाद के लिए होता है, या
जहां वीkऔर मैंkहार्मोनिक पर आरएमएस वोल्टेज और धारा परिमाण होते हैं जो कि ( मूल आवृत्ति को दर्शाता है), और हार्मोनिक घटकों में फैक्टरिंग के बिना शक्ति की पारंपरिक परिभाषा है।
ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है। एक और ऊर्जा कारक होते है जो टीएचडी पर निर्भर करता है। ट्रू पावर फैक्टर को औसत वास्तविक ऊर्जा और आरएमएस वोल्टेज और धारा के परिमाण के बीच के अनुपात के रूप में लिया जा सकता है, .[7]
और
सही ऊर्जा कारक के लिए समीकरण करने के लिए इसे प्रतिस्थापित करते हुए, यह स्पष्ट हो जाता है, कि मात्रा में दो घटकों के लिए लिया जा सकता है, जिनमें से पारंपरिक ऊर्जा कारक होते है (हारमोनिक्स के प्रभाव की उपेक्षा) और जिनमें से हार्मोनिक्स का योगदान है ऊर्जा तत्व:
नाम दो अलग -अलग कारकों को सौंपे गए हैं:
जहां पे विस्थापन ऊर्जा करक होते है और विरूपण शक्ति कारक है (अर्थात कुल विद्युत कारक के लिए हार्मोनिक्स का योगदान होता है)।
प्रभाव
ऊर्जा प्रणाली में हार्मोनिक्स के प्रमुख प्रभावों से प्रणाली में धारा को बढ़ाना होता है। यह विशेष रूप से तीसरे हार्मोनिक कि स्थिति में होता है, जो शून्य अनुक्रम धारा में तेज वृद्धि का कारण बनता है, इसलिए तटस्थ कंडक्टर में धारा को बढ़ाता है। इस प्रभाव को गैर-रैखिक भारों को पूरा करने के लिए विद्युत प्रणाली के डिजाइन में विशेष विचार की आवश्यकता हो सकती है।[8]
बढ़ी हुई रेखा धारा के अतिरिक्त, विद्युत उपकरण के विभिन्न टुकड़े विद्युत प्रणाली पर हार्मोनिक्स से प्रभाव डाल सकते हैं।
मोटर्स
मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और धारा वृत्त के कारण विद्युत मोटर्स को हानि होती है। ये धारा की आवृत्ति के समानुपाती होते हैं। चूंकि हार्मोनिक्स उच्च आवृत्तियों पर हैं, वे विद्युत आवृत्ति की तुलना में मोटर में उच्च कोर हानि उत्पन्न करते हैं। इसके परिणामस्वरूप मोटर कोर का ताप बढ़ जाता है, जो मोटर के जीवन को छोटा कर सकता है। पांचवां हार्मोनिक बड़े मोटर्स में सीईएमएफ (काउंटर इलेक्ट्रोमोटिव बल) का कारण बनता है जो घूर्णन की विपरीत दिशा में कार्य करता है। सीईएमएफ घूर्णन का प्रतिकार करने के लिए पर्याप्त बड़ा नहीं है; हालाँकि यह मोटर की परिणामी घूर्णन गति में एक छोटी भूमिका निभाता है।
टेलीफोन
संयुक्त राज्य अमेरिका में, सामान्य टेलीफोन लाइनों को 300 और 3400 हर्ट्ज के बीच आवृत्तियों को प्रसारित करने के लिए डिज़ाइन किया गया है। चूंकि संयुक्त राज्य अमेरिका में विद्युत पावर 60 हर्ट्ज पर वितरित किया जाता है, यह सामान्य रूप से टेलीफोन संचार में हस्तक्षेप नहीं करती है क्योंकि इसकी आवृत्ति बहुत कम है।
स्रोत
एक शुद्ध ज्यावक्र वोल्टेज एक आदर्श एसी जनरेटर द्वारा उत्पादित वैचारिक मात्रा है, जो एक समान चुंबकीय क्षेत्र में कार्य करने वाले बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ बनाया गया है। चूँकि कार्यशील एसी मशीन में न तो घुमावदार वितरण और न ही चुंबकीय क्षेत्र एक समान होते हैं, जिससे वोल्टेज तरंग विकृतियाँ पैदा होती हैं, और वोल्टेज-समय संबंध शुद्ध साइन फ़ंक्शन से विचलित हो जाता है।पीढ़ी के बिंदु पर विरूपण बहुत छोटा है (लगभग 1% से 2%), लेकिन फिर भी यह सम्मलित होता है। क्योंकि यह एक शुद्ध साइन लहर से विचलन है, विचलन आवधिक कार्य के रूप में होता है, और परिभाषा के अनुसार, वोल्टेज विरूपण में हार्मोनिक्स होते हैं।
जब एक ज्यावक्र वोल्टेज एक रैखिक समय-अपरिवर्तनीय भार पर लागू होता है, जैसे हीटिंग तत्व, इसके माध्यम से धारा में भी ज्यावक्रीय होता है। गैर-रैखिक या समय-भिन्न भार में, जैसे स्थिरण विरूपण के साथ परिवर्धक, में लागू किए गए साइन वक्र का वोल्टेज स्विंग सीमित होता है और शुद्ध टोन हार्मोनिक्स के ढेर से प्रदूषित होता है।
जब ऊर्जा स्रोत से अरेखीय भार के मार्ग में महत्वपूर्ण प्रतिबाधा होती है, तो ये धारा विकृतियां भार पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी। चूंकि, अधिकतर स्थति में जहां विद्युत वितरण प्रणाली सामान्य परिस्थितियों में सही ढंग से कार्य कर रही है, वोल्टेज विकृतियां अधिक लघु होती है और सामान्यतः इसे अनदेखा किया जा सकता है।
तरंगरूप विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है, कि यह शुद्ध साइन तरंग पर अतिरिक्त आवृत्ति घटकों को अध्यारोपित करने के बराबर है। ये आवृत्तियां मूल आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी-कभी गैर-रैखिक भार से बाहर की ओर फैल सकती हैं, जिससे विद्युत व्यवस्था में कहीं और समस्याएँ पैदा हो सकती हैं।
एक गैर-रैखिक भार का उत्कृष्ट उदाहरण संधारित्र इनपुट फिल्टर के साथ संशोधित होता है, जहां संशोधित डायोड केवल उस समय के भार को पास करने की अनुमति देता है, जो लागू वोल्टेज संधारित्र में संग्रहीत वोल्टेज से अधिक होता है, जो अपेक्षाकृत भी हो सकता है, और आने वाले वोल्टेज चक्र का छोटा हिस्सा हो सकता है ।
गैर-रैखिक भार के अन्य उदाहरण हैं बैटरी चार्जर, इलेक्ट्रॉनिक बल्लासट्स, परिवर्ती आवृत्ति ड्राइव और स्विचिंग मोड विद्युत की आपूर्ति करते है।
यह भी देखें
आगे की पढाई
- Sankaran, C. (1999-10-01). "Effects of Harmonics on Power Systems". Electrical Construction and Maintenance Magazine. Penton Media, Inc. Retrieved 2020-03-11.
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Das, J. C. (2015). पावर सिस्टम हार्मोनिक्स और पैसिव फिल्टर डिज़ाइन. Wiley, IEEE Press. ISBN 978-1-118-86162-2.
रैखिक और nonlinear भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक अनुप्रयोग के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।
} - ↑ 2.0 2.1 "Harmonics Made Simple". ecmweb.com. Retrieved 2015-11-25.
- ↑ 3.0 3.1 3.2 3.3 3.4 Wakileh, George J. (2001). पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन (1 ed.). Springer. pp. 13–15. ISBN 978-3-642-07593-3.
- ↑ IEEE Standard 519, IEEE recommended practices and requirements for harmonic control in electric power systems, IEEE-519, 1992. p. 10.
- ↑ 5.0 5.1 5.2 5.3 Fuchs, Ewald F.; Masoum, Mohammad A. S. (2008). बिजली प्रणालियों और विद्युत मशीनों में बिजली की गुणवत्ता (1 ed.). Academic Press. pp. 17–18. ISBN 978-0123695369.
- ↑ 6.0 6.1 Santoso, Surya; Beaty, H. Wayne; Dugan, Roger C.; McGranaghan, Mark F. (2003). विद्युत बिजली प्रणालियों की गुणवत्ता (2 ed.). McGraw-Hill. p. 178. ISBN 978-0-07-138622-7.
- ↑ W. Mack Grady and Robert Gilleski. "Harmonics and How They Relate to Power Factor" (PDF). Proc. of the EPRI Power Quality Issues & Opportunities Conference.
- ↑ For example, see the National Electrical Code: "A 3-phase, 4-wire, wye-connected power system used to supply power to nonlinear loads may necessitate that the power system design allow for the possibility of high harmonic neutral currents. (Article 220.61(C), FPN No. 2)"