प्लाज्मा मॉडलिंग: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 45: Line 45:
*{{cite journal|last=Ledvina|first=S. A.|author2=Y.-J. Ma|author3=E. Kallio|s2cid=121999061|title=Modeling and Simulating Flowing Plasmas and Related Phenomena|journal=Space Science Reviews|date=2008|volume=139|issue=1–4|pages=143|doi=10.1007/s11214-008-9384-6|bibcode = 2008SSRv..139..143L }}
*{{cite journal|last=Ledvina|first=S. A.|author2=Y.-J. Ma|author3=E. Kallio|s2cid=121999061|title=Modeling and Simulating Flowing Plasmas and Related Phenomena|journal=Space Science Reviews|date=2008|volume=139|issue=1–4|pages=143|doi=10.1007/s11214-008-9384-6|bibcode = 2008SSRv..139..143L }}


{{DEFAULTSORT:Plasma Modeling}}[[Category: प्लाज्मा भौतिकी]] [[Category: कम्प्यूटेशनल भौतिकी]]
{{DEFAULTSORT:Plasma Modeling}}


 
[[Category:Created On 20/01/2023|Plasma Modeling]]
 
[[Category:Machine Translated Page|Plasma Modeling]]
[[Category: Machine Translated Page]]
[[Category:Pages with script errors|Plasma Modeling]]
[[Category:Created On 20/01/2023]]
[[Category:Templates Vigyan Ready|Plasma Modeling]]
[[Category:Vigyan Ready]]
[[Category:कम्प्यूटेशनल भौतिकी|Plasma Modeling]]
[[Category:प्लाज्मा भौतिकी|Plasma Modeling]]

Latest revision as of 10:56, 1 February 2023

प्लाज़्मा मॉडलिंग का तात्पर्य गति के समीकरणों को हल करने से है जो प्लाज़्मा की स्थिति का वर्णन करता हैI यह साधारणतया विद्युत चुम्बकीय क्षेत्रों के लिए मैक्सवेल के समीकरणों या इलेक्ट्रोस्टैटिक क्षेत्रों के लिए पॉइसन के समीकरण से जुड़ा होता है। प्लाज्मा मॉडल के कई मुख्य प्रकार हैं: एकल कण, गतिज, द्रव, हाइब्रिड गतिज/द्रव, गायरोकाइनेटिक और कई कणों की प्रणाली के रूप में है।

मॉडलिंग प्लाज्मा के लिए चार्ट

एकल कण विवरण

एकल कण मॉडल प्लाज्मा को अलग-अलग इलेक्ट्रॉनों और आयनों के रूप में वर्णित करता है जो लगाए गए (स्व-स्थिरता के बजाय) विद्युत और चुंबकीय क्षेत्रों में चलते हैं। इस प्रकार प्रत्येक कण की गति को लोरेंत्ज़ बल नियम द्वारा वर्णित किया गया है। व्यावहारिक रुचि के कई स्थिति, में, इस गति को मार्गदर्शक केंद्र नामक बिंदु के चारों ओर अपेक्षाकृत तेज़ गोलाकार गति और इस बिंदु के अपेक्षाकृत धीमे बहाव के रूप में माना जा सकता है।

गतिज विवरण

प्लाज्मा का वर्णन करने के लिए काइनेटिक मॉडल सबसे मौलिक तरीका है, जिसके परिणामस्वरूप फलन कार्य होता है

जहां स्वतंत्र चर और क्रमशः स्थिति (वेक्टर) और वेग हैं।बोल्ट्जमैन समीकरण को हल करके एक काइनेटिक विवरण प्राप्त किया जाता है, या, जब लंबी दूरी की कूलम्ब के नियम का सही विवरण आवश्यक होता है, व्लासोव समीकरण द्वारा, जिसमें स्व-सुसंगत सामूहिक विद्युत चुम्बकीय क्षेत्र होता है, या फोकर-प्लैंक समीकरण द्वारा होता है, जिसमें सन्निकटन होता है, जिसमें अनुमान होता है कि सन्निकटन होता है। प्रबंधनीय टकराव की शर्तों को प्राप्त करने के लिए उपयोग किया जाता है।वितरण कार्यों द्वारा उत्पादित शुल्क और धाराएं स्व-संगत रूप से मैक्सवेल के समीकरणों के माध्यम से विद्युत चुम्बकीय क्षेत्रों को निर्धारित करती हैं।

द्रव विवरण

गतिज विवरण में जटिलताओं को कम करने के लिए, द्रव मॉडल मैक्रोस्कोपिक मात्राओं (वितरण के वेग क्षणों जैसे घनत्व, औसत वेग और औसत ऊर्जा) के आधार पर प्लाज्मा का वर्णन करता है।मैक्रोस्कोपिक मात्रा के समीकरण, द्रव समीकरण कहलाते हैं, बोल्ट्ज़मैन समीकरण या व्लासोव समीकरण के वेग क्षणों को लेकर प्राप्त किए जाते हैं। ट्रांसपोर्ट गुणांक जैसे गतिशीलता, प्रसार गुणांक, औसत टक्कर आवृत्तियों, और इसी तरह के निर्धारण के बिना तरल समीकरण बंद नहीं होते हैं। परिवहन गुणांक निर्धारित करने के लिए, वेग वितरण फ़ंक्शन को ग्रहण/चुना जाना चाहिए। लेकिन इस धारणा से कुछ भौतिकी पर कब्जा करने में विफलता हो सकती है।

हाइब्रिड गतिज/द्रव विवरण

यद्यपि काइनेटिक मॉडल भौतिकी का सटीक वर्णन करता है, यह द्रव मॉडल की तुलना में अधिक जटिल (और संख्यात्मक सिमुलेशन के मामले में, अधिक कम्प्यूटेशनल रूप से गहन) है। हाइब्रिड मॉडल द्रव और काइनेटिक मॉडल का एक संयोजन है, जो सिस्टम के कुछ घटकों को द्रव के रूप में और अन्य को गतिज के रूप में मानते हैं।

जाइरोकाइनेटिक विवरण

जाइरोकाइनेटिक मॉडल में, जो एक मजबूत पृष्ठभूमि चुंबकीय क्षेत्र के साथ सिस्टम के लिए उपयुक्त है, ग्योरोरेडियस के तेज परिपत्र गति पर गतिज समीकरण औसत हैं। टोकामक प्लाज्मा अस्थिरता के अनुकरण के लिए और हाल ही में खगोलभौतिकीय (उदाहरण के लिए, गायरो और जाइरोकाइनेटिक इलेक्ट्रोमैग्नेटिक कोड) अनुप्रयोगों में इस मॉडल का बड़े पैमाने पर उपयोग किया गया है।

क्वांटम यांत्रिक तरीके

प्लाज्मा मॉडलिंग में क्वांटम विधियां अभी तक बहुत सामान्य नहीं हैं। उनका उपयोग विशिष्ट मॉडलिंग समस्याओं को हल करने के लिए किया जा सकता है; उन स्थितियों की तरह जहां अन्य विधियां लागू नहीं होती हैं।[1] वे प्लाज्मा में क्वांटम क्षेत्र सिद्धांत के अनुप्रयोग को सम्मिलित करते हैं। इन मामलों में, कणों द्वारा बनाए गए विद्युत और चुंबकीय क्षेत्र एक क्षेत्र की तरह प्रतिरूपित होते हैं; शक्तियों का जाल। कण जो गति करते हैं, या जनसंख्या से हटा दिए जाते हैं, इस क्षेत्र की ताकतों के जाल पर धकेलते और खींचते हैं। इसके लिए गणितीय उपचार में लग्रंजियन गणित सम्मिलित है।

वाणिज्यिक प्लाज्मा भौतिकी मॉडलिंग कोड

यह भी देखें

संदर्भ

  1. Hedditch, John (2018). "A different approach to the MHD equilibrium". arXiv:1808.00622 [physics.plasm-ph].