फीडवाटर हीटर: Difference between revisions
(→चक्र चर्चा और स्पष्टीकरण: modification) |
(→अर्थशास्त्री: modification) |
||
Line 15: | Line 15: | ||
== अर्थशास्त्री == | == अर्थशास्त्री == | ||
{{main|Economizer}} | {{main|Economizer}} | ||
संभरण पानी (फीडवाटर) हीटर के समान ही एक इकानमाइज़र (गरम करनेवाला) उद्देश्य प्रदान करता है, लेकिन तकनीकी रूप से अलग है क्योंकि यह हीटिंग के लिए भाप चक्र का उपयोग नहीं करता है। जीवाश्म-ईंधन संयंत्रों में, इकानमाइज़र (गरम करनेवाला) बॉयलर में प्रवेश करने से पहले पानी को गर्म करने के लिए [[ औद्योगिक भट्टी |औद्योगिक भट्टी]] से सबसे कम तापमान वाली ग्रिप गैस का उपयोग करता है। यह भट्ठी और संभरण पानी (फीडवाटर) के बीच एक छोटे औसत तापमान प्रवणता (संपूर्ण रूप से भाप जनरेटर के लिए) के बीच गर्मी हस्तांतरण की अनुमति देता है। ईंधन की वास्तविक ऊर्जा सामग्री के संबंध में देखे जाने पर सिस्टम दक्षता इसलिए और बढ़ जाती है। | |||
अधिकांश परमाणु ऊर्जा संयंत्रों में | अधिकांश परमाणु ऊर्जा संयंत्रों में इकानमाइज़र (गरम करनेवाला) नहीं होता है। हालांकि, दहन इंजीनियरिंग प्रणाली 80+ परमाणु संयंत्र डिजाइन और इसके विकासवादी उत्तराधिकारी, (जैसे[[ कोरिया इलेक्ट्रिक पावर कॉर्पोरेशन | कोरिया इलेक्ट्रिक पावर कॉर्पोरेशन]] के[[ अप्रैल-1400 | अप्रैल-1400]]) में एक अभिन्न फीडवाटर इकानमाइज़र (गरम करनेवाला) सम्मलित है। यह इकानमाइज़र (गरम करनेवाला) सबसे कम तापमान वाले प्राथमिक शीतलक का उपयोग करके भाप जनरेटर प्रवेश (इनलेट) पर भाप जनरेटर संभरण पानी (फीडवाटर) को पहले से गरम करता है। | ||
== परीक्षण == | == परीक्षण == |
Revision as of 13:46, 29 January 2023
संभरण पानी (फीडवाटर) हीटर बिजली संयंत्र घटक होता है जिसका उपयोग भाप पैदा करने वाले बायलर को दिए गए पानी को पहले से गरम करने के लिए किया जाता है।[1][2][3]संभरण पानी (फीडवाटर) को प्रीहीट करने से भाप जनित्र (स्टीम जनरेशन) में शामिल अपरिवर्तनीयता कम हो जाती है और इसलिए सिस्टम की थर्मोडायनामिक दक्षता में सुधार होता है।[4] यह संयंत्र की परिचालन लागत को कम करता है और संभरण पानी (फीडवाटर) को भाप चक्र में वापस प्रस्तुत किए जाने पर बॉयलर धातु को ऊष्मीय आघात से बचने में सहायता भी करता है।
एक भाप बिजली संयंत्र में (सामान्यतः संशोधित रैंकिन चक्र के रूप में तैयार किया जाता है), संभरण पानी (फीडवाटर) हीटर संभरण पानी (फीडवाटर) को बहुत धीरे-धीरे संतृप्ति तापमान तक लाने की अनुमति देते हैं। यह काम कर रहे तरल पदार्थ (पानी) में गर्मी हस्तांतरण से जुड़ी अपरिहार्य अपरिवर्तनीयताओं को कम करता है। ऐसी अपरिवर्तनीय प्रक्रिया की आगे की विचार-विमर्श के लिए उष्मागतिकी के दूसरे नियम पर लेख देखें।
चक्र चर्चा और स्पष्टीकरण
संभरण (फ़ीड) पानी को गर्म करने के लिए उपयोग की जाने वाली ऊर्जा सामान्यतः भाप टर्बाइन के चरणों के बीच निकाली गई भाप से प्राप्त होती है। इसलिए, टरबाइन में विस्तार कार्य करने के लिए उपयोग की जाने वाली भाप (और इसलिए बिजली उत्पन्न) का उपयोग उस उद्देश्य के लिए नहीं किया जाता है। संभरण पानी (फीडवाटर) हीटर के लिए उपयोग किए जाने वाले कुल चक्र वाष्प जन प्रवाह के प्रतिशत को निष्कर्षण अंश कहा जाता है[4]और अधिकतम बिजली संयंत्र थर्मल दक्षता के लिए सावधानी से अनुकूलित किया जाना चाहिए क्योंकि इस अंश को बढ़ाने से टर्बाइन पावर आउटपुट में कमी आती है।
फीडवाटर हीटर खुले या बंद उष्मा का आदान प्रदान करने वाला भी हो सकते हैं। एक खुला ताप विनिमायक वह होता है जिसमें निकाली गई भाप को संभरण पानी (फीडवाटर) के साथ मिलाने की अनुमति दी जाती है। इस तरह के हीटर को सामान्यतः संभरण प्रवेश (फीड इनलेट) और निर्गम (आउटलेट) दोनों पर संभरण (फीड) पंप की आवश्यकता होती है क्योंकि हीटर में दबाव बॉयलर के दबाव और भूतल कंडेनसर दबाव के बीच होता है। डीएरेटर ओपन संभरण पानी (फीड वॉटर) हीटर का एक विशेष मामला है जिसे विशेष रूप से फीडवाटर से गैर-संघनित गैसों को हटाने के लिए डिज़ाइन किया गया है।
बंद संभरण पानी (फीडवाटर) हीटर आमतौर पर खोल और ट्यूब हीट एक्सचेंजर होते हैं, जहां संभरण पानी (फीडवाटर) पूरे ट्यूब से गुजरता है और टरबाइन निष्कर्षण भाप द्वारा गर्म किया जाता है। एक खुले हीटर के साथ निकाले गए भाप के दबाव को संभरण पानी (फीडवाटर)को बढ़ावा देने के लिए हीटर से पहले और बाद में अलग-अलग पंपों की आवश्यकता नहीं होती है। हालांकि, निकाली गई भाप (जो कि संभरण पानी (फीडवाटर) को गर्म करने के बाद लगभग पूरी तरह से संघनित होने की संभावना है) को कंडेनसर दबाव में फेंक दिया जाना चाहिए,आइसन्थैल्पिक प्रक्रिया जिसके परिणामस्वरूप समग्र चक्र दक्षता पर मामूली जुर्माना के साथ कुछ उत्क्रम-माप लाभ होता है:
कई बिजली संयंत्रों में कई फीडवाटर हीटर शामिल होते हैं और खुले और बंद दोनों घटकों का उपयोग कर सकते हैं। फीड वॉटर हीटर का उपयोग जीवाश्म और परमाणु-ईंधन वाले बिजली संयंत्रों दोनों में किया जाता है।
अर्थशास्त्री
संभरण पानी (फीडवाटर) हीटर के समान ही एक इकानमाइज़र (गरम करनेवाला) उद्देश्य प्रदान करता है, लेकिन तकनीकी रूप से अलग है क्योंकि यह हीटिंग के लिए भाप चक्र का उपयोग नहीं करता है। जीवाश्म-ईंधन संयंत्रों में, इकानमाइज़र (गरम करनेवाला) बॉयलर में प्रवेश करने से पहले पानी को गर्म करने के लिए औद्योगिक भट्टी से सबसे कम तापमान वाली ग्रिप गैस का उपयोग करता है। यह भट्ठी और संभरण पानी (फीडवाटर) के बीच एक छोटे औसत तापमान प्रवणता (संपूर्ण रूप से भाप जनरेटर के लिए) के बीच गर्मी हस्तांतरण की अनुमति देता है। ईंधन की वास्तविक ऊर्जा सामग्री के संबंध में देखे जाने पर सिस्टम दक्षता इसलिए और बढ़ जाती है।
अधिकांश परमाणु ऊर्जा संयंत्रों में इकानमाइज़र (गरम करनेवाला) नहीं होता है। हालांकि, दहन इंजीनियरिंग प्रणाली 80+ परमाणु संयंत्र डिजाइन और इसके विकासवादी उत्तराधिकारी, (जैसे कोरिया इलेक्ट्रिक पावर कॉर्पोरेशन के अप्रैल-1400) में एक अभिन्न फीडवाटर इकानमाइज़र (गरम करनेवाला) सम्मलित है। यह इकानमाइज़र (गरम करनेवाला) सबसे कम तापमान वाले प्राथमिक शीतलक का उपयोग करके भाप जनरेटर प्रवेश (इनलेट) पर भाप जनरेटर संभरण पानी (फीडवाटर) को पहले से गरम करता है।
परीक्षण
ASME PTC 12.1 फीडवाटर हीटर मानक एक बंद फीडवाटर हीटर के थर्मो-हाइड्रोलिक प्रदर्शन को निर्धारित करने के लिए प्रक्रियाओं, दिशा और मार्गदर्शन के लिए व्यापक रूप से उपयोग किया जाने वाला कोड है।
यह भी देखें
ASME कोड
अमेरिकन सोसायटी ऑफ मैकेनिकल इंजीनियर्स (एएसएमई), निम्नलिखित कोड प्रकाशित करता है:
- पीटीसी 4.4 गैस टर्बाइन हीट रिकवरी स्टीम जेनरेटर
संदर्भ
- ↑ British Electricity International (1991). Modern Power Station Practice: incorporating modern power system practice (3rd Edition (12 volume set) ed.). Pergamon. ISBN 0-08-040510-X.
- ↑ Babcock & Wilcox Co. (2005). Steam: Its Generation and Use (41st ed.). ISBN 0-9634570-0-4.
- ↑ Thomas C. Elliott, Kao Chen, Robert Swanekamp (coauthors) (1997). Standard Handbook of Powerplant Engineering (2nd ed.). McGraw-Hill Professional. ISBN 0-07-019435-1.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ 4.0 4.1 Fundamentals of Steam Power Archived 2007-04-22 at the Wayback Machine by Kenneth Weston, University of Tulsa