कैस्केडिंग विफलता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:
यह विफलता प्रक्रिया प्रणाली के तत्वों के माध्यम से तालाब पर लहर की तरह फैलती है और तब तक जारी रहती है जब तक कि प्रणाली में सभी तत्वों से समझौता नहीं किया जाता है और / या प्रणाली अपने भार के स्रोत से कार्यात्मक रूप से डिस्कनेक्ट हो जाता है। उदाहरण के लिए, कुछ शर्तों के अनुसार एकल जनित्र की विफलता के बाद बड़ी पावर ग्रिड गिर सकती है।
यह विफलता प्रक्रिया प्रणाली के तत्वों के माध्यम से तालाब पर लहर की तरह फैलती है और तब तक जारी रहती है जब तक कि प्रणाली में सभी तत्वों से समझौता नहीं किया जाता है और / या प्रणाली अपने भार के स्रोत से कार्यात्मक रूप से डिस्कनेक्ट हो जाता है। उदाहरण के लिए, कुछ शर्तों के अनुसार एकल जनित्र की विफलता के बाद बड़ी पावर ग्रिड गिर सकती है।


[[रीयल-टाइम कंप्यूटिंग]] में प्रणाली के संचालन की निगरानी करता हैं, इस प्रकार रीयल-टाइम के भागों के विवेकपूर्ण डिस्कनेक्शन से कैस्केड को रोकने में सहायता मिलती है। अन्य सामान्य विधियों में संभावित विफलताओं के कंप्यूटर सिमुलेशन द्वारा प्रणाली के लिए सुरक्षा मार्जिन की गणना करता है, नीचे सुरक्षित संचालन स्तर स्थापित करना है, जिसके नीचे किसी भी परिकलित परिदृश्य में कैस्केडिंग विफलता का कारण होने की भविष्यवाणी नहीं की गई है, और कैस्केडिंग विफलताओं का कारण जो सबसे अधिक संभावित हैं उनके नेटवर्क के भागों की पहचान करता है।<ref name="chao">{{cite arXiv |last1=Zhai |first1=Chao |title=Modeling and Identification of Worst-Case Cascading Failures in Power Systems |eprint=1703.05232 |class=cs.SY |year=2017}}</ref> विद्युत ग्रिड विफलताओं को रोकने के साथ प्राथमिक समस्याओं में से यह है कि नियंत्रण संकेत की गति प्रसार शक्ति अधिभार की गति से तेज नहीं है, अर्थात चूंकि नियंत्रण संकेत और विद्युत शक्ति दोनों समान गति से चल रहे हैं, यह नहीं है तत्व को अलग करने के लिए आगे चेतावनी भेजकर आउटेज को अलग करना संभव है।
[[रीयल-टाइम कंप्यूटिंग]] में प्रणाली के संचालन की निगरानी करता हैं, इस प्रकार रीयल-टाइम के भागों के विवेकपूर्ण डिस्कनेक्शन से कैस्केड को रोकने में सहायता मिलती है। अन्य सामान्य विधियों में संभावित विफलताओं के कंप्यूटर सिमुलेशन द्वारा प्रणाली के लिए सुरक्षा मार्जिन की गणना करता है, नीचे सुरक्षित संचालन स्तर स्थापित करना है, जिसके नीचे किसी भी परिकलित परिदृश्य में कैस्केडिंग विफलता का कारण होने की भविष्यवाणी नहीं की गई है, और कैस्केडिंग विफलताओं का कारण जो सबसे अधिक संभावित हैं उनके नेटवर्क के भागों की पहचान करता है।<ref name="chao">{{cite arXiv |last1=Zhai |first1=Chao |title=Modeling and Identification of Worst-Case Cascading Failures in Power Systems |eprint=1703.05232 |class=cs.SY |year=2017}}</ref> विद्युत ग्रिड विफलताओं को रोकने के साथ प्राथमिक समस्याओं में से यह है कि नियंत्रण संकेत की गति प्रसार शक्ति अधिभार की गति से तेज नहीं है, अर्थात चूंकि नियंत्रण संकेत और विद्युत शक्ति दोनों समान गति से चल रहे हैं, यह नहीं है तत्व को अलग करने के लिए आगे चेतावनी भेजकर आउटेज को अलग करना संभव है।


=== उदाहरण ===
=== उदाहरण ===
Line 147: Line 147:
* [http://necsi.edu/affiliates/braha/StructureandDynamics.htm The Structure and Dynamics of Large Scale Organizational Networks (Dan Braha, New England Complex Systems Institute)]
* [http://necsi.edu/affiliates/braha/StructureandDynamics.htm The Structure and Dynamics of Large Scale Organizational Networks (Dan Braha, New England Complex Systems Institute)]
* [http://havlin.biu.ac.il/Pdf/Bremen070715a.pdf From Single Network to Network of Networks]
* [http://havlin.biu.ac.il/Pdf/Bremen070715a.pdf From Single Network to Network of Networks]
{{Electricity delivery}}
[[Category: असफलता]] [[Category: स्थिरता अभियांत्रिकी]] [[Category: विद्युत शक्ति संचरण]] [[Category: प्रणालीगत जोखिम]] [[Category: प्रणाली विज्ञान]]  
[[Category: असफलता]] [[Category: स्थिरता अभियांत्रिकी]] [[Category: विद्युत शक्ति संचरण]] [[Category: प्रणालीगत जोखिम]] [[Category: प्रणाली विज्ञान]]  



Revision as of 15:57, 30 January 2023

एक एनीमेशन प्रदर्शित करता है कि कैसे विफलता पूरे नेटवर्क में अन्य विफलताओं में परिणत हो सकती है।

एक कैस्केडिंग विफलता का संबंध दूसरी कई प्रणालियों के भागों के लिए विफलता का कारण होता है जिसमें मुख्यतः कुछ भागों की विफलता का कारण उसमें उपस्थित अन्य भागों की विफलता की ओर अग्रसर कर देती है, जोधनात्मक प्रतिक्रिया के परिणामस्वरूप उत्तरोत्तर की ओर बढ़ जाती है। यह तभी हो सकता है जब उपस्थित भाग विफल हो जाता है, जिसके फलस्वरूप संभावना बढ़ जाती है कि प्रणाली के अन्य भाग विफल हो सकें।[1][2] इस प्रकार की विफलता कई प्रकार की प्रणालियों में हो सकती है, जिसमें शक्ति स्थानांतरण, कंप्यूटर नेटवर्किंग, वित्त, परिवहन प्रणाली, जीव, मानव शरीर और पारिस्थितिक तंत्र सम्मलित हैं।

कैस्केडिंग विफलता तब हो सकती है जब किसी प्रणाली का कोई भाग विफल हो जाता है। जब ऐसा होता है, तब अन्य भागों को विफल घटकों के लिए क्षतिपूर्ति करनी चाहिए। इसके कारण इन नोड्स को अधिभारित कर दिया जाता है, जिससे वे विफल हो जाते हैं, इस प्रकार अतिरिक्त नोड्स के बाद यह विफल हो जाते हैं।

विद्युत संचरण में

पावर ग्रिड में कैस्केडिंग विफलता बहुत सरल बात हैं। जब तत्वों में या पूरी तरह से या आंशिक रूप से विफल होते है और प्रणाली में आस-पास के तत्वों को अपना भार स्थानांतरित कर देते है। उनकें आस-पास के तत्वों को तब उनकी क्षमता के अतिरिक्त धकेल दिया जाता है जिससे वे अतिभारित हो जाते हैं और अपना भार अन्य तत्वों पर स्थानांतरित कर देते हैं। कैस्केडिंग विफलता उच्च वोल्टेज प्रणाली में देखा जाने वाला सामान्य प्रभाव है, जहां प्रणाली के सभी नोड्स में अचानक स्पाइक में पूरी तरह से लोड या थोड़ा अधिभारित प्रणाली पर विफलता का बिंदु (एसपीएफ़) होता है। यह सर्ज धारा पहले से ही ओवरलोडेड नोड्स को विफल कर सकता है, और अधिक ओवरलोड सेट कर सकता है और इस तरह बहुत कम समय में पूरे प्रणाली को नीचे ले जा सकता है।

यह विफलता प्रक्रिया प्रणाली के तत्वों के माध्यम से तालाब पर लहर की तरह फैलती है और तब तक जारी रहती है जब तक कि प्रणाली में सभी तत्वों से समझौता नहीं किया जाता है और / या प्रणाली अपने भार के स्रोत से कार्यात्मक रूप से डिस्कनेक्ट हो जाता है। उदाहरण के लिए, कुछ शर्तों के अनुसार एकल जनित्र की विफलता के बाद बड़ी पावर ग्रिड गिर सकती है।

रीयल-टाइम कंप्यूटिंग में प्रणाली के संचालन की निगरानी करता हैं, इस प्रकार रीयल-टाइम के भागों के विवेकपूर्ण डिस्कनेक्शन से कैस्केड को रोकने में सहायता मिलती है। अन्य सामान्य विधियों में संभावित विफलताओं के कंप्यूटर सिमुलेशन द्वारा प्रणाली के लिए सुरक्षा मार्जिन की गणना करता है, नीचे सुरक्षित संचालन स्तर स्थापित करना है, जिसके नीचे किसी भी परिकलित परिदृश्य में कैस्केडिंग विफलता का कारण होने की भविष्यवाणी नहीं की गई है, और कैस्केडिंग विफलताओं का कारण जो सबसे अधिक संभावित हैं उनके नेटवर्क के भागों की पहचान करता है।[3] विद्युत ग्रिड विफलताओं को रोकने के साथ प्राथमिक समस्याओं में से यह है कि नियंत्रण संकेत की गति प्रसार शक्ति अधिभार की गति से तेज नहीं है, अर्थात चूंकि नियंत्रण संकेत और विद्युत शक्ति दोनों समान गति से चल रहे हैं, यह नहीं है तत्व को अलग करने के लिए आगे चेतावनी भेजकर आउटेज को अलग करना संभव है।

उदाहरण

कैस्केडिंग विफलता के कारण निम्नलिखित बिजली आउटेज हुए:

कंप्यूटर नेटवर्क में

कंप्यूटर नेटवर्क (जैसे इंटरनेट) में कैस्केडिंग विफलताएं भी हो सकती हैं, जिसमें नेटवर्क यातायात नियंत्रण गंभीर रूप से खराब हो जाता है या नेटवर्क के बड़े वर्गों के बीच या हार्डवेयर या सॉफ़्टवेयर के विफल होने या डिस्कनेक्ट होने के कारण रुक जाता है। इस संदर्भ में, कैस्केडिंग विफलता को कैस्केड विफलता शब्द से जाना जाता है। कैस्केड की विफलता लोगों और प्रणालियों के बड़े समूहों को प्रभावित कर सकती है।

कैस्केड विफलता का कारण सामान्यतः एकल, महत्वपूर्ण राउटर (कंप्यूटिंग) या नोड का ओवरलोडिंग होता है, जो नोड को संक्षिप्त रूप से नीचे जाने का कारण बनता है। यह रखरखाव या उन्नयन के लिए नोड डाउन लेने के कारण भी हो सकता है। किसी भी स्थिति में, ट्रैफ़िक दूसरे (वैकल्पिक) पथ की ओर या उससे होकर जा रहा है। परिणामस्वरूप, यह वैकल्पिक मार्ग अतिभारित हो जाता है, जिससे यह नीचे जाता है, और इसी तरह। यह उन प्रणालियों को भी प्रभावित करेगा जो नियमित संचालन के लिए नोड पर निर्भर करती हैं।

लक्षण

कैस्केड विफलता के लक्षणों में सम्मलित हैं: पैकेट हानि और उच्च नेटवर्क लेटेंसी (इंजीनियरिंग), न केवल एकल प्रणाली के लिए, जबकि नेटवर्क या इंटरनेट के पूरे खंड के लिए उच्च विलंबता और पैकेट नुकसान उन नोड्स के कारण होता है जो संख्या के बढ़ने पर इसके पतन के कारण कार्य करने में विफल हो जाते हैं, जिसके कारण वे अभी भी नेटवर्क में सम्मलित रहते हैं लेकिन उनके माध्यम से बहुत अधिक या कोई उपयोगी संचार नहीं होता है। परिणामस्वरूप, मार्गों को वास्तव में संचार प्रदान किए बिना अभी भी वैध माना जा सकता है।

यदि कैस्केड विफलता के कारण पर्याप्त मार्ग नीचे जाते हैं, तो नेटवर्क या इंटरनेट का पूरा खंड पहुंच से बाहर हो सकता है। चूंकि अवांछित, यह इस विफलता से पुनर्प्राप्ति को गति देने में मदद कर सकता है क्योंकि कनेक्शन का समय समाप्त हो जाएगा, और अन्य नोड उन अनुभागों से कनेक्शन स्थापित करने का प्रयास करना छोड़ देंगे जो कट ऑफ हो गए हैं, सम्मलित नोड्स पर लोड कम हो रहा है।

कैस्केड विफलता के दौरान सामान्य घटना चलने की विफलता है, जहां खंड नीचे जाते हैं, जिससे अगला खंड विफल हो जाता है, जिसके बाद पहला खंड वापस आता है। स्थिरता के खत्म होने से पहले यह तरंग कनेक्टिंग नोड्स के माध्यम से कई प्रकार के पास बना सकती है।

इतिहास

कैस्केड विफलताएं अपेक्षाकृत यातायात में भारी वृद्धि और प्रणाली और नेटवर्क के बीच उच्च इंटरकनेक्टिविटी के साथ विकसित होते हैं। यह शब्द पहली बार 1990 के दशक के अंत में डच आईटी प्रस्तुतेवर द्वारा इस संदर्भ में लागू किया गया था और धीरे-धीरे इस तरह की बड़े पैमाने की विफलता के लिए अपेक्षाकृत सामान्य शब्द बन गया है।[citation needed]

उदाहरण

नेटवर्क विफलता सामान्यतः तब प्रारंभ होती है जब एकल नेटवर्क नोड विफल हो जाता है। प्रारंभ में, सामान्य रूप से नोड के माध्यम से जाने वाले यातायात को रोक दिया जाता है। मेजबानों तक न पहुंच पाने के बारे में प्रणाली और उपयोगकर्ताओं को त्रुटियां मिलती हैं। सामान्यतः, ISP की निरर्थक प्रणालियाँ बहुत तेज़ी से प्रतिक्रिया देती हैं, अलग रीढ़ के माध्यम से दूसरा रास्ता चुनती हैं। इस वैकल्पिक मार्ग के माध्यम से रूटिंग पथ अधिक हॉप (दूरसंचार) के साथ लंबा है और बाद में अधिक प्रणाली के माध्यम से जा रहा है जो सामान्यतः अचानक प्रस्तुत किए गए ट्रैफ़िक की मात्रा को संसाधित नहीं करते हैं।

यह वैकल्पिक मार्ग के साथ या से अधिक प्रणाली को नीचे जाने का कारण बन सकता है, जिससे उनकी स्वयं की समान समस्याएं उत्पन्न होती हैं।

इस स्थिति में संबंधित प्रणाली भी प्रभावित होते हैं। उदाहरण के रूप में, डॉमेन नाम प्रणाली रिज़ॉल्यूशन विफल हो सकता है और सामान्य रूप से प्रणाली को आपस में जोड़ने का क्या कारण होगा, ऐसे कनेक्शन टूट सकते हैं जो वास्तविक प्रणाली में सीधे सम्मलित नहीं होती हैं जो नीचे चले जाते हैं। यह बदले में समस्याओं को विकसित करने के लिए प्रतीत होता है असंबंधित नोड्स का कारण बन सकता है, जो अपने आप में और कैस्केड विफलता का कारण बन सकता है।

दिसंबर 2012 में, वैश्विक स्तर पर 18 मिनट के लिए जीमेल लगीं सेवा का आंशिक नुकसान (40%) हुआ। सेवा की यह हानि लोड संतुलन सॉफ़्टवेयर के नियमित अद्यतन के कारण हुई थी जिसमें दोषपूर्ण तर्क सम्मलित थे - इस स्थिति में, त्रुटि अधिक उपयुक्त 'कुछ' के अतिरिक्त अनुचित 'सभी' का उपयोग करके तर्क के कारण हुई थी।[4] बार में सभी नोड्स को आंशिक रूप से अपडेट करने के अतिरिक्त नेटवर्क में नोड को पूरी तरह से अपडेट करके कैस्केडिंग त्रुटि को ठीक किया गया था।

कैस्केडिंग संरचनात्मक विफलता

असतत संरचनात्मक घटकों के साथ कुछ लोड-असर संरचनाएं ज़िपर प्रभाव के अधीन हो सकती हैं, जहां एकल संरचनात्मक सदस्य की विफलता से आसन्न सदस्यों पर भार बढ़ जाता है। हयात रीजेंसी वॉकवे पतन पतन के स्थिति में, निलंबित वॉकवे (जो पहले से ही निर्माण में त्रुटि के कारण ओवरस्ट्रेस्ड था) विफल हो गया जब एकल ऊर्ध्वाधर निलंबन रॉड विफल हो गया, निकटतम छड़ों को ओवरलोड करना जो क्रमिक रूप से विफल हो गया (अर्थात ज़िप की तरह)। पुल जिसमें ऐसी विफलता हो सकती है उसे फ्रैक्चर क्रिटिकल कहा जाता है, और ही हिस्से की विफलता के कारण कई पुल ढह गए हैं। इस प्रकार की यांत्रिक कैस्केड विफलता को रोकने के लिए उचित रूप से डिज़ाइन की गई संरचनाएं पर्याप्त सुरक्षा कारक और/या वैकल्पिक लोड पथ का उपयोग करती हैं।[5]

अन्य उदाहरण

जीव विज्ञान

जीव विज्ञान में जैव रासायनिक झरना सम्मलित हैं, जहां छोटी सी प्रतिक्रिया में प्रणाली-व्यापी प्रभाव हो सकते हैं। नकारात्मक उदाहरण इस्केमिक झरना है, जिसमें छोटा इस्किमिया हमला विषाक्त पदार्थों को छोड़ता है जो प्रारंभिक क्षति की तुलना में कहीं अधिक कोशिकाओं को मारते हैं, जिसके परिणामस्वरूप अधिक विषाक्त पदार्थ निकलते हैं। क्षति को कम करने के लिए आघात रोगियों में इस कैस्केड को अवरुद्ध करने का विधि खोजना वर्तमान शोध है।

विलुप्त होने के अध्ययन में, कभी-कभी प्रजाति के विलुप्त होने से कई अन्य विलुप्तियां हो सकती हैं। ऐसी प्रजाति को कीस्टोन प्रजाति के रूप में जाना जाता है।

इलेक्ट्रॉनिक्स

एक अन्य उदाहरण कॉकक्रॉफ्ट-वाल्टन जनरेटर है, जो कैस्केड विफलताओं का भी अनुभव कर सकता है, जिसमें विफल डायोड के परिणामस्वरूप सभी डायोड सेकंड के अंश में विफल हो सकते हैं।

फिर भी वैज्ञानिक प्रयोग में इस प्रभाव का और उदाहरण 2001 में सुपर कैमियोकैंडे प्रयोग में उपयोग किए गए कई हजार दुर्बल ग्लास फोटोमल्टीप्लायर ट्यूबों का इम्प्लोसन (यांत्रिक प्रक्रिया) था, जहां श्रृंखला अभिक्रिया में अन्य संसूचकों का विस्फोट एकल डिटेक्टर की विफलता के कारण होने वाली शॉक वेव प्रारंभ करता था।

वित्त

वित्त में, वित्तीय संस्थानों की कैस्केडिंग विफलताओं के जोखिम को प्रणालीगत जोखिम के रूप में संदर्भित किया जाता है: वित्तीय संस्थान की विफलता के कारण अन्य वित्तीय संस्थान (इसके प्रतिपक्ष) विफल हो सकते हैं, पूरे प्रणाली में कैस्केडिंग हो सकती है। जिन संस्थानों के बारे में माना जाता है कि वे प्रणालीगत खतरा उत्पन्न करते हैं, उन्हें या तो असफल होने के लिए बहुत बड़ा (TBTF) माना जाता है या असफल होने के लिए बहुत अधिक (TICTF) माना जाता है, यह इस बात पर निर्भर करता है कि वे खतरा क्यों प्रकट करते हैं।

चूंकि ध्यान दें कि प्रणालीगत जोखिम अलग-अलग संस्थानों के कारण नहीं है, जबकि इंटरकनेक्शन के कारण है। अनुसंधान साहित्य में कैस्केडिंग विफलताओं के प्रभावों का अध्ययन करने और भविष्यवाणी करने के लिए रूपरेखाएँ विकसित की गई हैं।[6][7][8]

वित्त में संबंधित (चूंकि अलग) प्रकार की कैस्केडिंग विफलता शेयर बाजार में होती है, जिसका उदाहरण 2010 फ्लैश क्रैश है।[8]

अन्योन्याश्रित कैस्केडिंग विफलताएँ

फाइल: इंटरडिपेंडेंट रिलेशनशिप मॉन्ग डिफरेंट इन्फ्रास्ट्रक्चर्स.टिफ या थंब या राइटडाइवर्स आधारभूत संरचना हैं जैसे कि पानी की आपूर्ति, परिवहन, ईंधन और बिजलीघर साथ जुड़े हुए हैं और कार्यकाज के लिए एक-दूसरे पर निर्भर हैं, चित्र 1 देखें। इस युग्मन के कारण, अन्योन्याश्रित नेटवर्क यादृच्छिक विफलताओं के प्रति बेहद संवेदनशील हैं। इस प्रकार विशेष रूप से लक्षित खतरे के लिए, जैसे कि नेटवर्क में नोड्स के छोटे से अंश की विफलता कई अन्योन्याश्रित नेटवर्कों में विफलताओं के पुनरावृत्त कैस्केड को ट्रिगर कर सकती है।[9][10] पावर आउटेज अधिकांशतः अन्योन्याश्रित नेटवर्क के बीच विफलताओं के झरने का परिणाम होता है, और हाल के वर्षों में कई बड़े पैमाने पर ब्लैकआउट्स द्वारा समस्या को नाटकीय रूप से उदाहरण दिया गया है। ब्लैकआउट नेटवर्क के बीच निर्भरताओं द्वारा निभाई गई महत्वपूर्ण भूमिका का आकर्षक प्रदर्शन है। उदाहरण के लिए, 2003 के इटली ब्लैकआउट के परिणामस्वरूप रेल परिवहन, स्वास्थ्य प्रणाली और वित्तीय सेवाओं की व्यापक विफलता हुई और इसके अतिरिक्त, दूरसंचार नेटवर्क को गंभीर रूप से प्रभावित किया। बदले में संचार प्रणाली की आंशिक विफलता ने विद्युत ग्रिड प्रबंधन प्रणाली को और खराब कर दिया, इस प्रकार बिजली ग्रिड पर सकारात्मक प्रतिक्रिया उत्पन्न हुई।[11] यह उदाहरण इस बात पर जोर देता है कि इंटर-डिपेंडेंस इंटरेक्टिंग नेटवर्क प्रणाली में नुकसान को महत्वपूर्ण रूप से कैसे बढ़ा सकता है।

ओवरलोड कैस्केडिंग विफलताओं के लिए मॉडल

ओवरलोड प्रचार के कारण कैस्केडिंग विफलताओं के लिए मॉडल मोट्टर-लाइ मॉडल है।[12]

यह भी देखें

संदर्भ

  1. "Cascading Failure - an overview | ScienceDirect Topics". www.sciencedirect.com.
  2. Ulrich, Mike. "Chapter 22 - Addressing Cascading Failures". Google - Site Reliability Engineering.
  3. Zhai, Chao (2017). "Modeling and Identification of Worst-Case Cascading Failures in Power Systems". arXiv:1703.05232 [cs.SY].
  4. "Why Gmail went down: Google misconfigured load balancing servers (Updated)". 11 December 2012.
  5. Petroski, Henry (1992). To Engineer Is Human: The Role of Failure in Structural Design. Vintage. ISBN 978-0-679-73416-1.
  6. Acemoglu, Daron; Ozdaglar, Asuman; Tahbaz-Salehi, Alireza (2015). "वित्तीय नेटवर्क में प्रणालीगत जोखिम और स्थिरता". American Economic Review. American Economic Association. 105 (2): 564–608. doi:10.1257/aer.20130456. hdl:1721.1/100979. ISSN 0002-8282. S2CID 7447939.
  7. Gai, Prasanna; Kapadia, Sujit (2010-08-08). "Contagion in financial networks". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (in English). 466 (2120): 2401–2423. Bibcode:2010RSPSA.466.2401G. doi:10.1098/rspa.2009.0410. ISSN 1364-5021. S2CID 9945658.
  8. 8.0 8.1 Elliott, Matthew; Golub, Benjamin; Jackson, Matthew O. (2014-10-01). "Financial Networks and Contagion". American Economic Review (in English). 104 (10): 3115–3153. doi:10.1257/aer.104.10.3115. ISSN 0002-8282.
  9. "Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack" (PDF).
  10. Rinaldi, S.M.; Peerenboom, J.P.; Kelly, T.K. (2001). "Identifying, understanding, and analyzing critical infrastructure interdependencies". IEEE Control Systems Magazine. 21 (6): 11–25. doi:10.1109/37.969131.
  11. V. Rosato, Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S.D., & Setola, R. (2008). "Modelling interdependent infrastructures using interacting dynamical models". International Journal of Critical Infrastructures. 4: 63–79. doi:10.1504/IJCIS.2008.016092.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Motter, A. E.; Lai, Y. C. (2002). "Cascade-based attacks on complex networks". Phys. Rev. E. 66 (6 Pt 2): 065102. arXiv:cond-mat/0301086. Bibcode:2002PhRvE..66f5102M. doi:10.1103/PhysRevE.66.065102. PMID 12513335. S2CID 17189308.

आगे की पढाई

बाहरी कड़ियाँ