आरएल परिपथ: Difference between revisions
No edit summary |
No edit summary |
||
Line 113: | Line 113: | ||
=== शून्य-इनपुट प्रतिक्रिया === | === शून्य-इनपुट प्रतिक्रिया === | ||
शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, एक आरएल सर्किट का सर्किट के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया | शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, एक आरएल सर्किट का सर्किट के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया है। इसे शून्य-इनपुट प्रतिक्रिया कहा जाता है क्योंकि इसके लिए कोई इनपुट की आवश्यकता नहीं होती है। | ||
एक आरएल सर्किट का ZIR है: | एक आरएल सर्किट का ZIR है: | ||
Line 121: | Line 121: | ||
=== [[आवृत्ति डोमेन]] विचार === | === [[आवृत्ति डोमेन]] विचार === | ||
ये आवृत्ति डोमेन अभिव्यक्ति | ये आवृत्ति डोमेन अभिव्यक्ति हैं। उनका विश्लेषण दिखाएगा कि सर्किट (या फिल्टर) को कौन से आवृत्तियां पास करती हैं और अस्वीकार करती हैं। यह विश्लेषण इस बात पर विचार करता है कि इन लाभों का क्या होता है क्योंकि आवृत्ति बहुत बड़ी और बहुत छोटी हो जाती है। | ||
जैसा {{math|''ω'' → ∞}}: | जैसा {{math|''ω'' → ∞}}: | ||
Line 127: | Line 127: | ||
जैसा {{math|''ω'' → 0}}: | जैसा {{math|''ω'' → 0}}: | ||
:<math>G_L \to 0 \quad \mbox{and} \quad G_R \to 1\,.</math> | :<math>G_L \to 0 \quad \mbox{and} \quad G_R \to 1\,.</math> | ||
इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है) | इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है)। इस प्रकार, सर्किट [[उच्च पास फिल्टर]] के रूप में व्यवहार करता है। यदि, चूंकि, आउटपुट को प्रतिरोधी के पार ले जाया जाता है, तो उच्च आवृत्तियों को अस्वीकार कर दिया जाता है और कम आवृत्तियों को पारित किया जाता है। इस कॉन्फ़िगरेशन में, सर्किट [[लो पास फिल्टर]] के रूप में व्यवहार करता है। एक आरसी सर्किट में प्रतिरोधी आउटपुट के व्यवहार के साथ इसकी तुलना करें, जहां रिवर्स स्थिति है। | ||
फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका [[बैंडविड्थ]] (सिग्नल प्रोसेसिंग) कहा जाता | फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका [[बैंडविड्थ]] (सिग्नल प्रोसेसिंग) कहा जाता है। जिस बिंदु पर फ़िल्टर सिग्नल को अपनी अनफिल्टर्ड पावर के आधे भाग में ले जाता है, उसे उसकी कटऑफ आवृत्ति कहा जाता है। इसके लिए आवश्यक है कि सर्किट का लाभ कम हो जाए | ||
:<math>G_L = G_R = \frac{1}{\sqrt 2}\,.</math> | :<math>G_L = G_R = \frac{1}{\sqrt 2}\,.</math> | ||
उपरोक्त समीकरण | उपरोक्त समीकरण का समाधान करने पर प्राप्त होता है | ||
:<math>\omega_\mathrm{c} = \frac{R}{L} \mbox{ rad/s} \quad \mbox{or} \quad f_\mathrm{c} = \frac{R}{2\pi L} \mbox{ Hz}\,,</math> | :<math>\omega_\mathrm{c} = \frac{R}{L} \mbox{ rad/s} \quad \mbox{or} \quad f_\mathrm{c} = \frac{R}{2\pi L} \mbox{ Hz}\,,</math> | ||
यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा। | यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा। | ||
Line 141: | Line 141: | ||
जैसा {{math|''ω'' → ∞}}: | जैसा {{math|''ω'' → ∞}}: | ||
:<math>\phi_L \to 0 \quad \mbox{and} \quad \phi_R \to -90^{\circ} = -\frac{\pi}{2} \mbox{ radians}\,.</math> | :<math>\phi_L \to 0 \quad \mbox{and} \quad \phi_R \to -90^{\circ} = -\frac{\pi}{2} \mbox{ radians}\,.</math> | ||
तो | तो डीसी (0 [[हेटर्स|हर्ट्ज]]) पर, प्रतिरोधी वोल्टेज सिग्नल वोल्टेज के साथ चरण में होता है, जबकि प्रारंभ करनेवाला वोल्टेज इसे 90 ° तक ले जाता है। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिरोधी वोल्टेज सिग्नल के सापेक्ष 90 ° अंतराल होता है और प्रारंभ करनेवाला वोल्टेज सिग्नल के साथ इन-चरण में आता है। | ||
=== समय डोमेन विचार === | === समय डोमेन विचार A === | ||
: यह खंड ज्ञान पर निर्भर करता है {{mvar|e}}, [[ई (संख्या)]]। | : यह खंड ज्ञान पर निर्भर करता है {{mvar|e}}, [[ई (संख्या)]]। | ||
समय डोमेन व्यवहार को प्राप्त करने का सबसे सरल विधि है {{mvar|V<sub>L</sub>}} और {{mvar|V<sub>R</sub>}} ऊपर दिया गया | समय डोमेन व्यवहार को प्राप्त करने का सबसे सरल विधि है {{mvar|V<sub>L</sub>}} और {{mvar|V<sub>R</sub>}} ऊपर दिया गया है। यह प्रभावी रूप से {{math|''jω'' → ''s''}} को रूपांतरित करता है। एक हेविसाइड चरण फलन मानते हुए (अर्थात्, {{math|''V''<sub>in</sub> {{=}} 0}} इससे पहले {{math|''t'' {{=}} 0}} और फिर {{math|''V''<sub>in</sub> {{=}} ''V''}} उसके बाद): | ||
:<math>\begin{align} | :<math>\begin{align} |
Revision as of 21:21, 27 January 2023
Linear analog electronic filters |
---|
एक अवरोधक -प्रारंभ करनेवाला सर्किट (आरएल सर्किट), या आरएल फ़िल्टर या आरएल नेटवर्क, एक इलेक्ट्रीक सर्किट है जो वोल्टेज स्रोत या वर्तमान स्रोत द्वारा संचालित प्रतिरोधों और प्रेरकों से बना है।[1] एक प्रथम क्रम आरएल सर्किट एक प्रतिरोधी और एक प्रेरक से बना होता है या तो वोल्टेज स्रोत द्वारा संचालित श्रृंखला में या वर्तमान स्रोत द्वारा समानांतर में संचालित होता है। यह सबसे सरल एनालॉग फ़िल्टर अनंत आवेग प्रतिक्रिया इलेक्ट्रॉनिक फ़िल्टर में से एक है।
परिचय
मौलिक निष्क्रियता (इंजीनियरिंग) रैखिक सर्किट तत्व अवरोधक (आर), संधारित्र (सी) और प्रारंभ करनेवाला (एल) हैं। इन सर्किट तत्वों को चार अलग -अलग विधियों से एक विद्युत सर्किट बनाने के लिए जोड़ा जा सकता है: आरसी परिपथ, आरएल सर्किट, एलसी सर्किट और आरएलसी सर्किट, संक्षिप्तीकरण के साथ यह दर्शाता है कि कौन से घटकों का उपयोग किया जाता है। ये सर्किट महत्वपूर्ण प्रकार के व्यवहार को प्रदर्शित करते हैं जो एनालॉग इलेक्ट्रॉनिक्स के लिए मौलिक हैं। विशेष रूप से, वे इलेक्ट्रॉनिक फ़िल्टर निष्क्रिय फिल्टर के रूप में कार्य करने में सक्षम हैं।
व्यवहार में, चूंकि, संधारित्र (और आरसी सर्किट) सामान्यतः प्रेरकों के लिए पसंद किए जाते हैं क्योंकि वे अधिक आसानी से निर्मित हो सकते हैं और विशेष रूप से घटकों के उच्च मूल्यों के लिए शारीरिक रूप से छोटे होते हैं।
आरसी और आरएल दोनों सर्किट एक एकल-पोल फिल्टर बनाते हैं। यह इस बात पर निर्भर करता है कि क्या प्रतिक्रियाशील तत्व (सी या एल) लोड के साथ श्रृंखला में है, या लोड के साथ समानांतर यह तय करेगा कि फ़िल्टर कम-पास या उच्च-पास है या नहीं।
अधिकांश आरएल सर्किट का उपयोग आरएफ एम्पलीफायरों के लिए डीसी पावर आपूर्ति के रूप में किया जाता है, जहां प्रारंभकर्ता का उपयोग डीसी पूर्वाग्रह वर्तमान को पास करने और आरएफ को बिजली की आपूर्ति में वापस आने के लिए किया जाता है।
जटिल प्रतिबाधा
जटिल प्रतिबाधा ZL (ओम में) इंडक्शन के साथ एक प्रारंभ करनेवाला का L (हेनरी (इकाई) में) में है
जटिल आवृत्ति s एक जटिल संख्या है,
जहाँ पर
- j काल्पनिक इकाई का प्रतिनिधित्व करता है: j2 = −1,
- σ घातीय क्षय स्थिर है (प्रति सेकंड रेडियन में), और
- ω कोणीय आवृत्ति (प्रति सेकंड रेडियन में) है।
ईजेनफ़ंक्शन
जटिल संख्या - किसी भी रैखिक समय-अपरिवर्तनीय (LTI) प्रणाली के जटिल-मूल्यवान ईजेनफ़ंक्शन निम्नलिखित रूपों के हैं:
यूलर के सूत्र से, इन ईजेनफ़ंक्शन के वास्तविक-भाग में तेजी से साइनसोइड्स हैं:
साइनसोइडल स्थिर स्थिति
साइनसोइडल स्थिर स्थिति एक विशेष स्थिति है जिसमें इनपुट वोल्टेज में एक शुद्ध साइनसॉइड होता है (बिना किसी घातीय क्षय के साथ)।परिणामस्वरूप,
और का मूल्यांकन s हो जाता है
श्रृंखला सर्किट
के रूप में देखकर, हम देखते हैं कि प्रेरक के पार वोल्टेज है:
और अवरोधक के पार वोल्टेज है:
वर्तमान
सर्किट में वर्तमान प्रत्येक स्थान समान है क्योंकि सर्किट श्रृंखला में है:
स्थानांतरण प्रकार्य
प्रारंभ करनेवाला वोल्टेज के लिए स्थानांतरण फ़ंक्शन है
इस प्रकार, प्रतिरोधी वोल्टेज में स्थानांतरण फ़ंक्शन है
ट्रांसफर फ़ंक्शन, करंट के लिए, है
डंडे और शून्य
स्थानांतरण कार्यों में एक एकल पोल (जटिल विश्लेषण) स्थित है
इसके अतिरिक्त, प्रारंभ करनेवाला के लिए स्थानांतरण फ़ंक्शन में मूल (गणित) पर स्थित एक शून्य (जटिल विश्लेषण) होता है।
लाभ और चरण कोण
दो घटकों में लाभ उपरोक्त अभिव्यक्तियों के परिमाण को ले जाकर पाया जाता है:
और
और चरण (लहरें) हैं:
और
फासोर नोटेशन
इन अभिव्यक्तियों को एक साथ आउटपुट का प्रतिनिधित्व करने वाले चरणक के लिए सामान्य अभिव्यक्ति में प्रतिस्थापित किया जा सकता है:[2]
आवेग प्रतिक्रिया
प्रत्येक वोल्टेज के लिए आवेग प्रतिक्रिया संबंधित हस्तांतरण फ़ंक्शन का व्युत्क्रम लाप्लास रूपांतरण है। यह एक इनपुट वोल्टेज के लिए सर्किट की प्रतिक्रिया का प्रतिनिधित्व करता है जिसमें एक आवेग या डिराक डेल्टा फ़ंक्शन शामिल है।
प्रारंभ करनेवाला वोल्टेज के लिए आवेग प्रतिक्रिया है
जहाँ पर u(t) हेविसाइड चरण फलन है और τ = L/R समय स्थिर है।
इस प्रकार, प्रतिरोधी वोल्टेज के लिए आवेग प्रतिक्रिया है
शून्य-इनपुट प्रतिक्रिया
शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, एक आरएल सर्किट का सर्किट के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया है। इसे शून्य-इनपुट प्रतिक्रिया कहा जाता है क्योंकि इसके लिए कोई इनपुट की आवश्यकता नहीं होती है।
एक आरएल सर्किट का ZIR है:
आवृत्ति डोमेन विचार
ये आवृत्ति डोमेन अभिव्यक्ति हैं। उनका विश्लेषण दिखाएगा कि सर्किट (या फिल्टर) को कौन से आवृत्तियां पास करती हैं और अस्वीकार करती हैं। यह विश्लेषण इस बात पर विचार करता है कि इन लाभों का क्या होता है क्योंकि आवृत्ति बहुत बड़ी और बहुत छोटी हो जाती है।
जैसा ω → ∞:
जैसा ω → 0:
इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है)। इस प्रकार, सर्किट उच्च पास फिल्टर के रूप में व्यवहार करता है। यदि, चूंकि, आउटपुट को प्रतिरोधी के पार ले जाया जाता है, तो उच्च आवृत्तियों को अस्वीकार कर दिया जाता है और कम आवृत्तियों को पारित किया जाता है। इस कॉन्फ़िगरेशन में, सर्किट लो पास फिल्टर के रूप में व्यवहार करता है। एक आरसी सर्किट में प्रतिरोधी आउटपुट के व्यवहार के साथ इसकी तुलना करें, जहां रिवर्स स्थिति है।
फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका बैंडविड्थ (सिग्नल प्रोसेसिंग) कहा जाता है। जिस बिंदु पर फ़िल्टर सिग्नल को अपनी अनफिल्टर्ड पावर के आधे भाग में ले जाता है, उसे उसकी कटऑफ आवृत्ति कहा जाता है। इसके लिए आवश्यक है कि सर्किट का लाभ कम हो जाए
उपरोक्त समीकरण का समाधान करने पर प्राप्त होता है
यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा।
स्पष्ट रूप से, चरण भी आवृत्ति पर निर्भर करते हैं, चूंकि यह प्रभाव आम तौर पर लाभ भिन्नता की तुलना में कम दिलचस्प है।
जैसा ω → 0:
जैसा ω → ∞:
तो डीसी (0 हर्ट्ज) पर, प्रतिरोधी वोल्टेज सिग्नल वोल्टेज के साथ चरण में होता है, जबकि प्रारंभ करनेवाला वोल्टेज इसे 90 ° तक ले जाता है। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिरोधी वोल्टेज सिग्नल के सापेक्ष 90 ° अंतराल होता है और प्रारंभ करनेवाला वोल्टेज सिग्नल के साथ इन-चरण में आता है।
समय डोमेन विचार A
- यह खंड ज्ञान पर निर्भर करता है e, ई (संख्या)।
समय डोमेन व्यवहार को प्राप्त करने का सबसे सरल विधि है VL और VR ऊपर दिया गया है। यह प्रभावी रूप से jω → s को रूपांतरित करता है। एक हेविसाइड चरण फलन मानते हुए (अर्थात्, Vin = 0 इससे पहले t = 0 और फिर Vin = V उसके बाद):
आंशिक अंश विस्तार और व्युत्क्रम लाप्लास परिवर्तन उपज:
इस प्रकार, प्रारंभकर्ता के पार वोल्टेज समय बीतने के साथ 0 की ओर जाता है, जबकि अवरोधक के पार वोल्टेज की ओर जाता है V, जैसा कि आंकड़ों में दिखाया गया है।यह सहज ज्ञान युक्त बिंदु को ध्यान में रखते हुए है कि प्रारंभ करनेवाला के पास केवल एक वोल्टेज होगा जब तक कि सर्किट में वर्तमान बदल रहा है & mdash;जैसे-जैसे सर्किट अपनी स्थिर-राज्य तक पहुंचता है, आगे कोई वर्तमान परिवर्तन नहीं होता है और अंततः कोई प्रारंभ करनेवाला वोल्टेज नहीं होता है।
इन समीकरणों से पता चलता है कि एक श्रृंखला आरएल सर्किट में एक समय स्थिर होता है, सामान्यतः निरूपित किया जाता है τ = L/R समय होने के नाते यह घटक के पार वोल्टेज को या तो गिरने के लिए (प्रारंभ करनेवाला के पार) या वृद्धि (प्रतिरोधक के पार) के भीतर होता है 1/e इसके अंतिम मूल्य का।वह है, τ क्या समय लगता है VL पहुचना V(1/e) और VR पहुचना V(1 − 1/e)।
परिवर्तन की दर एक आंशिक है 1 − 1/e प्रति τ।इस प्रकार, से जाने में t = Nτ को t = (N + 1)τ, वोल्टेज अपने स्तर से लगभग 63% रास्ते में चला गया होगा t = Nτ इसके अंतिम मूल्य की ओर।तो प्रारंभ करनेवाला के पार वोल्टेज के बाद लगभग 37% तक गिर गया होगा τ, और अनिवार्य रूप से शून्य (0.7%) के बाद 5τ।Kirchhoff के सर्किट कानून#Kirchhoff का वोल्टेज कानून | Kirchhoff के वोल्टेज कानून का अर्थ है कि अवरोधक के पार वोल्टेज उसी दर से बढ़ेगा।जब वोल्टेज स्रोत को तब शॉर्ट सर्किट के साथ बदल दिया जाता है, तो प्रतिरोधी के पार वोल्टेज तेजी से गिरता है t से V 0. के बाद प्रतिरोधी को लगभग 37% के बाद छुट्टी दे दी जाएगी τ, और अनिवार्य रूप से पूरी तरह से डिस्चार्ज (0.7%) के बाद 5τ।ध्यान दें कि वर्तमान, I, सर्किट में, ओम के नियम के माध्यम से प्रतिरोधी के पार वोल्टेज के रूप में व्यवहार करता है। ओम के कानून के माध्यम से।
सर्किट के उदय या गिरने के समय में देरी इस मामले में है, जो पीछे की ओर से है।) सर्किट के समय-निरंतर की तुलना में बहुत तेजी से बढ़ने या गिरने से।चूंकि सभी तारों में कुछ इंडक्शन होता है। आत्म-इंडक्शन और प्रतिरोध, सभी सर्किटों में एक समय स्थिर होता है।परिणामस्वरूप, जब बिजली की आपूर्ति चालू हो जाती है, तो वर्तमान तुरंत अपने स्थिर-राज्य मूल्य तक नहीं पहुंचता है, V/R।इसके बजाय वृद्धि को पूरा करने में कई समय-आस्तिक लगते हैं।यदि यह मामला नहीं था, और वर्तमान को स्थिर-राज्य तक तुरंत पहुंचने के लिए थे, तो बहुत मजबूत आगमनात्मक विद्युत क्षेत्र चुंबकीय क्षेत्र & mdash में तेज परिवर्तन से उत्पन्न होंगे;इससे सर्किट और इलेक्ट्रिक आर्किंग में हवा का टूटना होगा, शायद हानिकारक घटक (और उपयोगकर्ता)।
ये परिणाम सर्किट का वर्णन करने वाले अंतर समीकरण को हल करके भी प्राप्त हो सकते हैं:
पहला समीकरण एक एकीकृत कारक का उपयोग करके हल किया जाता है और वर्तमान को प्राप्त करता है जिसे देने के लिए विभेदित किया जाना चाहिए VL;दूसरा समीकरण सीधा है।समाधान बिल्कुल वैसा ही हैं जैसा कि लाप्लास ट्रांसफॉर्म के माध्यम से प्राप्त होता है।
शार्ट सर्किट समीकरण
शॉर्ट सर्किट मूल्यांकन के लिए, आरएल सर्किट पर विचार किया जाता है।अधिक सामान्य समीकरण है:
प्रारंभिक शर्त के साथ:
जिसे लाप्लास ट्रांसफॉर्म द्वारा हल किया जा सकता है:
इस प्रकार:
तब एंटीट्रांसफॉर्म रिटर्न:
यदि स्रोत वोल्टेज एक हेविसाइड स्टेप फ़ंक्शन (DC) है:
रिटर्न:
यदि स्रोत वोल्टेज एक साइनसोइडल फ़ंक्शन (एसी) है:
रिटर्न:
समानांतर सर्किट
जब अवरोधक और प्रारंभ करनेवाला दोनों समानांतर कनेक्शन में जुड़े होते हैं और एक वोल्टेज स्रोत के माध्यम से आपूर्ति की जाती है, तो इसे आरएल समानांतर सर्किट के रूप में जाना जाता है।[2]समानांतर आरएल सर्किट आम तौर पर श्रृंखला सर्किट की तुलना में कम ब्याज का होता है जब तक कि एक वर्तमान स्रोत द्वारा खिलाया जाता है।यह काफी हद तक है क्योंकि आउटपुट वोल्टेज (Vout) इनपुट वोल्टेज के बराबर है (Vin);परिणामस्वरूप, यह सर्किट वोल्टेज इनपुट सिग्नल के लिए फ़िल्टर के रूप में कार्य नहीं करता है।
जटिल प्रतिबाधा के साथ:
इससे पता चलता है कि प्रारंभ करनेवाला 90 ° से प्रतिरोधी (और स्रोत) वर्तमान को पिछड़ देता है।
समानांतर सर्किट को कई एम्पलीफायर सर्किट के आउटपुट पर देखा जाता है, और उच्च आवृत्तियों पर कैपेसिटिव लोडिंग प्रभावों से एम्पलीफायर को अलग करने के लिए उपयोग किया जाता है।कैपेसिटेंस द्वारा पेश किए गए चरण शिफ्ट के कारण, कुछ एम्पलीफायर बहुत उच्च आवृत्तियों पर अस्थिर हो जाते हैं, और दोलन करते हैं।यह ध्वनि की गुणवत्ता और घटक जीवन को प्रभावित करता है, विशेष रूप से ट्रांजिस्टर।
यह भी देखें
- एलसी सर्किट
- आरसी सर्किट
- आरएलसी सर्किट
- विद्युत नेटवर्क
- इलेक्ट्रॉनिक्स विषयों की सूची
संदर्भ
- ↑ "RL Circuit: Formula, Equitation & Diagram | Linquip" (in English). 2021-08-24. Retrieved 2022-03-16.
- ↑ 2.0 2.1 "RL Circuit : Working, Phasor Diagram, Impedance & Its Uses". ElProCus - Electronic Projects for Engineering Students (in English). 2021-04-06. Retrieved 2022-03-16.