रेले वितरण: Difference between revisions
(Created page with "{{Distinguish|Rayleigh mixture distribution}} {{short description|Probability distribution}} {{Probability distribution| name =Rayleigh| type =density| pdf_i...") |
No edit summary |
||
Line 22: | Line 22: | ||
}} | }} | ||
सम्भवता सिद्धांत और सांख्यिकी में, रेले वितरण गैर-ऋणात्मक-मूल्यवान यादृच्छिक चर के लिए एक सतत सम्भावित वितरण है। रीस्केलिंग तक, यह [[ची वितरण]] के साथ स्वतंत्रता की दो डिग्री के साथ मेल खाता है। | |||
वितरण का नाम जॉन स्ट्रट, तीसरे बैरन रेले के नाम पर रखा गया है ({{IPAc-en|ˈ|r|eɪ|l|i}}).<ref>"The Wave Theory of Light", ''Encyclopedic Britannica'' 1888; "The Problem of the Random Walk", ''Nature'' 1905 vol.72 p.318</ref> | वितरण का नाम जॉन स्ट्रट, तीसरे बैरन रेले के नाम पर रखा गया है ({{IPAc-en|ˈ|r|eɪ|l|i}}).<ref>"The Wave Theory of Light", ''Encyclopedic Britannica'' 1888; "The Problem of the Random Walk", ''Nature'' 1905 vol.72 p.318</ref> | ||
एक रेले वितरण | एक रेले वितरण अधिकांशतः देखा जाता है जब एक सदिश का समग्र परिमाण उसके दिशात्मक यूक्लिडियन सदिश अपघटन से संबंधित होता है। एक उदाहरण जहां रेले वितरण स्वाभाविक रूप से उत्पन्न होता है, जब विमान (ज्यामिति) में [[हवा]] के वेग का विश्लेषण किया जाता है। | ||
यह मानते हुए कि प्रत्येक घटक असंबंधित है, समान विचरण के साथ [[सामान्य वितरण]], और शून्य माध्य, तो समग्र हवा की गति ([[यूक्लिडियन वेक्टर]] परिमाण) को रेले वितरण द्वारा चित्रित किया जाएगा। | यह मानते हुए कि प्रत्येक घटक असंबंधित है, समान विचरण के साथ [[सामान्य वितरण]], और शून्य माध्य, तो समग्र हवा की गति ([[यूक्लिडियन वेक्टर]] परिमाण) को रेले वितरण द्वारा चित्रित किया जाएगा। | ||
वितरण का एक दूसरा उदाहरण यादृच्छिक जटिल संख्याओं के मामले में उत्पन्न होता है, जिनके वास्तविक और काल्पनिक घटक स्वतंत्र रूप से समान भिन्नता और शून्य माध्य के साथ सामान्य वितरण को समान रूप से वितरित करते हैं। उस स्थिति में, सम्मिश्र संख्या का निरपेक्ष मान रेले-वितरित होता है। | वितरण का एक दूसरा उदाहरण यादृच्छिक जटिल संख्याओं के मामले में उत्पन्न होता है, जिनके वास्तविक और काल्पनिक घटक स्वतंत्र रूप से समान भिन्नता और शून्य माध्य के साथ सामान्य वितरण को समान रूप से वितरित करते हैं। उस स्थिति में, सम्मिश्र संख्या का निरपेक्ष मान रेले-वितरित होता है। | ||
Line 56: | Line 59: | ||
:<math>f_X(x;\sigma) = \frac d {dx} F_X(x;\sigma) = \frac x {\sigma^2} e^{-x^2/(2\sigma^2)},</math> | :<math>f_X(x;\sigma) = \frac d {dx} F_X(x;\sigma) = \frac x {\sigma^2} e^{-x^2/(2\sigma^2)},</math> | ||
जो रेले वितरण है। 2 के | जो रेले वितरण है। 2 के अतिरिक्त अन्य आयामों के वैक्टरों को सामान्यीकृत करना सीधा है। | ||
ऐसे सामान्यीकरण भी होते हैं जब घटकों में असमान प्रसरण या सहसंबंध (होयट वितरण) होता है, या जब सदिश Y एक बहुभिन्नरूपी टी-वितरण का अनुसरण करता है|द्विभाजित छात्र टी-वितरण (यह भी देखें: हॉटेलिंग का टी-वर्ग वितरण)।<ref>{{cite journal|last=Röver|first=C.|title=Student-t based filter for robust signal detection|journal=Physical Review D|volume=84|issue=12|year=2011|pages=122004|doi=10.1103/physrevd.84.122004|arxiv=1109.0442|bibcode=2011PhRvD..84l2004R}}</ref> | ऐसे सामान्यीकरण भी होते हैं जब घटकों में असमान प्रसरण या सहसंबंध (होयट वितरण) होता है, या जब सदिश Y एक बहुभिन्नरूपी टी-वितरण का अनुसरण करता है|द्विभाजित छात्र टी-वितरण (यह भी देखें: हॉटेलिंग का टी-वर्ग वितरण)।<ref>{{cite journal|last=Röver|first=C.|title=Student-t based filter for robust signal detection|journal=Physical Review D|volume=84|issue=12|year=2011|pages=122004|doi=10.1103/physrevd.84.122004|arxiv=1109.0442|bibcode=2011PhRvD..84l2004R}}</ref> | ||
Line 147: | Line 150: | ||
== संबंधित वितरण == | == संबंधित वितरण == | ||
* <math>R \sim \mathrm{Rayleigh}(\sigma)</math> रेले वितरित किया जाता है | * <math>R \sim \mathrm{Rayleigh}(\sigma)</math> रेले वितरित किया जाता है यदि <math>R = \sqrt{X^2 + Y^2}</math>, कहाँ पे <math>X \sim N(0, \sigma^2)</math> और <math>Y \sim N(0, \sigma^2)</math> स्वतंत्र सामान्य वितरण हैं।<ref>[https://web.archive.org/web/20131105232146/http://home.kpn.nl/jhhogema1966/skeetn/ballist/sgs/sgs.htm#_Toc96439743 Hogema, Jeroen (2005) "Shot group statistics"]</ref> इससे प्रतीक के प्रयोग की प्रेरणा मिलती है <math>\sigma</math> रेले घनत्व के उपरोक्त पैरामीट्रिजेशन में। | ||
* महत्व <math>|z|</math> एक [[मानक जटिल सामान्य वितरण]] चर z रेले वितरित है। | * महत्व <math>|z|</math> एक [[मानक जटिल सामान्य वितरण]] चर z रेले वितरित है। | ||
Line 161: | Line 164: | ||
* मैक्सवेल-बोल्ट्ज़मैन वितरण तीन आयामों में एक सामान्य वेक्टर के परिमाण का वर्णन करता है। | * मैक्सवेल-बोल्ट्ज़मैन वितरण तीन आयामों में एक सामान्य वेक्टर के परिमाण का वर्णन करता है। | ||
* यदि <math>X</math> एक घातीय वितरण है <math>X \sim \mathrm{Exponential}(\lambda)</math>, तब <math>Y=\sqrt{X} \sim \mathrm{Rayleigh}(1/\sqrt{2\lambda}) .</math> | * यदि <math>X</math> एक घातीय वितरण है <math>X \sim \mathrm{Exponential}(\lambda)</math>, तब <math>Y=\sqrt{X} \sim \mathrm{Rayleigh}(1/\sqrt{2\lambda}) .</math> | ||
* अर्ध-सामान्य वितरण रेले वितरण का अविभाज्य विशेष | * अर्ध-सामान्य वितरण रेले वितरण का अविभाज्य विशेष स्थिति है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
σ के अनुमान का एक अनुप्रयोग चुंबकीय अनुनाद इमेजिंग (MRI) में पाया जा सकता है। चूंकि एमआरआई छवियों को जटिल संख्या छवियों के रूप में | σ के अनुमान का एक अनुप्रयोग चुंबकीय अनुनाद इमेजिंग (MRI) में पाया जा सकता है। चूंकि एमआरआई छवियों को जटिल संख्या छवियों के रूप में अंकित किया जाता है, लेकिन अधिकांशतः परिमाण छवियों के रूप में देखा जाता है, पृष्ठभूमि डेटा रेले वितरित होता है। इसलिए, पृष्ठभूमि डेटा से एमआरआई छवि में शोर भिन्नता का अनुमान लगाने के लिए उपर्युक्त सूत्र का उपयोग किया जा सकता है।<ref>{{cite journal | last1 = Sijbers | first1 = J. | last2 = den Dekker | first2 = A. J. | last3 = Raman | first3 = E. | last4 = Van Dyck | first4 = D. | year = 1999 | title = Parameter estimation from magnitude MR images | journal = International Journal of Imaging Systems and Technology | volume = 10 | issue = 2| pages = 109–114 | doi=10.1002/(sici)1098-1098(1999)10:2<109::aid-ima2>3.0.co;2-r| citeseerx = 10.1.1.18.1228 }}</ref> | ||
<ref>{{cite journal | last1 = den Dekker | first1 = A. J. | last2 = Sijbers | first2 = J. | year = 2014 | title = Data distributions in magnetic resonance images: a review | journal = Physica Medica | volume = 30 | issue = 7| pages = 725–741 | doi=10.1016/j.ejmp.2014.05.002| pmid = 25059432 }}</ref> [[आहार ([[पोषण]])]] पोषक तत्वों के स्तर और [[मानव]] और [[पशुपालन]] प्रतिक्रियाओं को जोड़ने के लिए रेले वितरण को पोषण के क्षेत्र में भी नियोजित किया गया था। इस तरह, पोषक तत्व प्रतिक्रिया संबंध की गणना करने के लिए [[पैरामीटर]] σ का उपयोग किया जा सकता है।<ref>{{Cite journal|last=Ahmadi|first=Hamed|date=2017-11-21|title=A mathematical function for the description of nutrient-response curve|journal=PLOS ONE|volume=12|issue=11|pages=e0187292|doi=10.1371/journal.pone.0187292|pmid=29161271|issn=1932-6203|bibcode=2017PLoSO..1287292A|pmc=5697816|doi-access=free}}</ref> | <ref>{{cite journal | last1 = den Dekker | first1 = A. J. | last2 = Sijbers | first2 = J. | year = 2014 | title = Data distributions in magnetic resonance images: a review | journal = Physica Medica | volume = 30 | issue = 7| pages = 725–741 | doi=10.1016/j.ejmp.2014.05.002| pmid = 25059432 }}</ref> [[आहार ([[पोषण]])]] पोषक तत्वों के स्तर और [[मानव]] और [[पशुपालन]] प्रतिक्रियाओं को जोड़ने के लिए रेले वितरण को पोषण के क्षेत्र में भी नियोजित किया गया था। इस तरह, पोषक तत्व प्रतिक्रिया संबंध की गणना करने के लिए [[पैरामीटर]] σ का उपयोग किया जा सकता है।<ref>{{Cite journal|last=Ahmadi|first=Hamed|date=2017-11-21|title=A mathematical function for the description of nutrient-response curve|journal=PLOS ONE|volume=12|issue=11|pages=e0187292|doi=10.1371/journal.pone.0187292|pmid=29161271|issn=1932-6203|bibcode=2017PLoSO..1287292A|pmc=5697816|doi-access=free}}</ref> | ||
प्राक्षेपिकी के क्षेत्र में, रेले वितरण का उपयोग गोलाकार त्रुटि की संभावना की गणना के लिए किया जाता है - एक हथियार की | प्राक्षेपिकी के क्षेत्र में, रेले वितरण का उपयोग गोलाकार त्रुटि की संभावना की गणना के लिए किया जाता है - एक हथियार की त्रुटिहीनता का एक उपाय। | ||
भौतिक समुद्रशास्त्र में, महत्वपूर्ण तरंग ऊंचाई का वितरण लगभग रेले वितरण का अनुसरण करता है।<ref>{{Cite web|title=Rayleigh Probability Distribution Applied to Random Wave Heights|url=https://www.usna.edu/NAOE/_files/documents/Courses/EN330/Rayleigh-Probability-Distribution-Applied-to-Random-Wave-Heights.pdf|url-status=live|publisher=United States Naval Academy}}</ref> | भौतिक समुद्रशास्त्र में, महत्वपूर्ण तरंग ऊंचाई का वितरण लगभग रेले वितरण का अनुसरण करता है।<ref>{{Cite web|title=Rayleigh Probability Distribution Applied to Random Wave Heights|url=https://www.usna.edu/NAOE/_files/documents/Courses/EN330/Rayleigh-Probability-Distribution-Applied-to-Random-Wave-Heights.pdf|url-status=live|publisher=United States Naval Academy}}</ref> |
Revision as of 18:04, 1 February 2023
Probability density function ![]() | |||
Cumulative distribution function ![]() | |||
Parameters | scale: | ||
---|---|---|---|
Support | |||
CDF | |||
Quantile | |||
Mean | Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:45"): {\displaystyle \sigma \sqrt{\frac{\pi}{2}}</गणित>| माध्यिका =<math>\sigma\sqrt{2\ln(2)}} |
सम्भवता सिद्धांत और सांख्यिकी में, रेले वितरण गैर-ऋणात्मक-मूल्यवान यादृच्छिक चर के लिए एक सतत सम्भावित वितरण है। रीस्केलिंग तक, यह ची वितरण के साथ स्वतंत्रता की दो डिग्री के साथ मेल खाता है।
वितरण का नाम जॉन स्ट्रट, तीसरे बैरन रेले के नाम पर रखा गया है (/ˈreɪli/).[1] एक रेले वितरण अधिकांशतः देखा जाता है जब एक सदिश का समग्र परिमाण उसके दिशात्मक यूक्लिडियन सदिश अपघटन से संबंधित होता है। एक उदाहरण जहां रेले वितरण स्वाभाविक रूप से उत्पन्न होता है, जब विमान (ज्यामिति) में हवा के वेग का विश्लेषण किया जाता है।
यह मानते हुए कि प्रत्येक घटक असंबंधित है, समान विचरण के साथ सामान्य वितरण, और शून्य माध्य, तो समग्र हवा की गति (यूक्लिडियन वेक्टर परिमाण) को रेले वितरण द्वारा चित्रित किया जाएगा।
वितरण का एक दूसरा उदाहरण यादृच्छिक जटिल संख्याओं के मामले में उत्पन्न होता है, जिनके वास्तविक और काल्पनिक घटक स्वतंत्र रूप से समान भिन्नता और शून्य माध्य के साथ सामान्य वितरण को समान रूप से वितरित करते हैं। उस स्थिति में, सम्मिश्र संख्या का निरपेक्ष मान रेले-वितरित होता है।
परिभाषा
रैले बंटन का प्रायिकता घनत्व फलन है[2]
कहाँ पे वितरण का पैमाना पैरामीटर है। संचयी वितरण समारोह है[2]
के लिए
यादृच्छिक वेक्टर लंबाई से संबंध
द्वि-आयामी वेक्टर पर विचार करें जिसमें ऐसे घटक होते हैं जो द्विभाजित सामान्य वितरण होते हैं, शून्य पर केंद्रित होते हैं, और स्वतंत्र होते हैं। फिर और घनत्व कार्य हैं
होने देना की लंबाई हो . वह है, फिर संचयी वितरण समारोह है
कहाँ पे डिस्क है
ध्रुवीय समन्वय प्रणाली में एकाधिक अभिन्न लिखने से यह बन जाता है
अंत में, प्रायिकता घनत्व फ़ंक्शन के लिए इसके संचयी वितरण समारोह का व्युत्पन्न है, जो कलन के मौलिक प्रमेय द्वारा है
जो रेले वितरण है। 2 के अतिरिक्त अन्य आयामों के वैक्टरों को सामान्यीकृत करना सीधा है। ऐसे सामान्यीकरण भी होते हैं जब घटकों में असमान प्रसरण या सहसंबंध (होयट वितरण) होता है, या जब सदिश Y एक बहुभिन्नरूपी टी-वितरण का अनुसरण करता है|द्विभाजित छात्र टी-वितरण (यह भी देखें: हॉटेलिंग का टी-वर्ग वितरण)।[3]
Expandstyle="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " | Generalization to bivariate Student's t-distribution
|
---|
गुण
पल (गणित) द्वारा दिया जाता है:
- कहाँ पे गामा समारोह है।
रेले यादृच्छिक चर का माध्य इस प्रकार है :
रेले यादृच्छिक चर का मानक विचलन है:
रेले यादृच्छिक चर का प्रसरण है:
मोड (सांख्यिकी) है और अधिकतम पीडीएफ है
तिरछापन इसके द्वारा दिया गया है:
अतिरिक्त कुकुदता द्वारा दिया जाता है:
विशेषता कार्य (संभाव्यता सिद्धांत) द्वारा दिया गया है:
कहाँ पे काल्पनिक त्रुटि समारोह है। आघूर्ण जनन फलन किसके द्वारा दिया जाता है
कहाँ पे त्रुटि कार्य है।
विभेदक एन्ट्रॉपी
अंतर एन्ट्रापी द्वारा दिया जाता है[citation needed]
कहाँ पे यूलर-मास्चेरोनी स्थिरांक है।
पैरामीटर अनुमान
एन स्वतंत्र और समान रूप से वितरित रेले यादृच्छिक चर के नमूने को देखते हुए पैरामीटर के साथ ,
- अधिकतम संभावना अनुमान अनुमान है और अनुमानक का पूर्वाग्रह भी है।
- एक पक्षपाती अनुमानक है जिसे सूत्र के माध्यम से ठीक किया जा सकता है
विश्वास अंतराल
(1− α) कॉन्फ़िडेंस इंटरवल खोजने के लिए, पहले बाउंड खोजें कहाँ पे:
तो स्केल पैरामीटर सीमा के भीतर आ जाएगा
यादृच्छिक चर उत्पन्न करना
अंतराल (0, 1) में समान वितरण (निरंतर) से लिया गया एक यादृच्छिक चर U दिया गया है, फिर चर
पैरामीटर के साथ रेले वितरण है . यह व्युत्क्रम परिवर्तन प्रतिचयन-पद्धति को लागू करके प्राप्त किया जाता है।
संबंधित वितरण
- रेले वितरित किया जाता है यदि , कहाँ पे और स्वतंत्र सामान्य वितरण हैं।[6] इससे प्रतीक के प्रयोग की प्रेरणा मिलती है रेले घनत्व के उपरोक्त पैरामीट्रिजेशन में।
- महत्व एक मानक जटिल सामान्य वितरण चर z रेले वितरित है।
- v = 2 के साथ ची वितरण σ = 1 के रेले वितरण के बराबर है।
- यदि , तब पैरामीटर के साथ ची-वर्ग वितरण है , स्वतंत्रता की कोटि, दो के बराबर (N = 2)
- यदि , तब मापदंडों के साथ गामा वितरण है और
- चावल का वितरण रेले वितरण का एक गैर-केंद्रीय वितरण है: .
- आकार पैरामीटर k=2 के साथ वीबुल वितरण रेले वितरण देता है। फिर रेले वितरण पैरामीटर वेइबुल स्केल पैरामीटर के अनुसार संबंधित है
- मैक्सवेल-बोल्ट्ज़मैन वितरण तीन आयामों में एक सामान्य वेक्टर के परिमाण का वर्णन करता है।
- यदि एक घातीय वितरण है , तब
- अर्ध-सामान्य वितरण रेले वितरण का अविभाज्य विशेष स्थिति है।
अनुप्रयोग
σ के अनुमान का एक अनुप्रयोग चुंबकीय अनुनाद इमेजिंग (MRI) में पाया जा सकता है। चूंकि एमआरआई छवियों को जटिल संख्या छवियों के रूप में अंकित किया जाता है, लेकिन अधिकांशतः परिमाण छवियों के रूप में देखा जाता है, पृष्ठभूमि डेटा रेले वितरित होता है। इसलिए, पृष्ठभूमि डेटा से एमआरआई छवि में शोर भिन्नता का अनुमान लगाने के लिए उपर्युक्त सूत्र का उपयोग किया जा सकता है।[7] [8] [[आहार (पोषण)]] पोषक तत्वों के स्तर और मानव और पशुपालन प्रतिक्रियाओं को जोड़ने के लिए रेले वितरण को पोषण के क्षेत्र में भी नियोजित किया गया था। इस तरह, पोषक तत्व प्रतिक्रिया संबंध की गणना करने के लिए पैरामीटर σ का उपयोग किया जा सकता है।[9] प्राक्षेपिकी के क्षेत्र में, रेले वितरण का उपयोग गोलाकार त्रुटि की संभावना की गणना के लिए किया जाता है - एक हथियार की त्रुटिहीनता का एक उपाय।
भौतिक समुद्रशास्त्र में, महत्वपूर्ण तरंग ऊंचाई का वितरण लगभग रेले वितरण का अनुसरण करता है।[10]
यह भी देखें
- सर्कुलर एरर संभावित
- रेले लुप्तप्राय
- रेले मिश्रण वितरण
- चावल वितरण
संदर्भ
- ↑ "The Wave Theory of Light", Encyclopedic Britannica 1888; "The Problem of the Random Walk", Nature 1905 vol.72 p.318
- ↑ Jump up to: 2.0 2.1 Papoulis, Athanasios; Pillai, S. (2001) Probability, Random Variables and Stochastic Processes. ISBN 0073660116, ISBN 9780073660110[page needed]
- ↑ Röver, C. (2011). "Student-t based filter for robust signal detection". Physical Review D. 84 (12): 122004. arXiv:1109.0442. Bibcode:2011PhRvD..84l2004R. doi:10.1103/physrevd.84.122004.
- ↑ Siddiqui, M. M. (1964) "Statistical inference for Rayleigh distributions", The Journal of Research of the National Bureau of Standards, Sec. D: Radio Science, Vol. 68D, No. 9, p. 1007
- ↑ Siddiqui, M. M. (1961) "Some Problems Connected With Rayleigh Distributions", The Journal of Research of the National Bureau of Standards; Sec. D: Radio Propagation, Vol. 66D, No. 2, p. 169
- ↑ Hogema, Jeroen (2005) "Shot group statistics"
- ↑ Sijbers, J.; den Dekker, A. J.; Raman, E.; Van Dyck, D. (1999). "Parameter estimation from magnitude MR images". International Journal of Imaging Systems and Technology. 10 (2): 109–114. CiteSeerX 10.1.1.18.1228. doi:10.1002/(sici)1098-1098(1999)10:2<109::aid-ima2>3.0.co;2-r.
- ↑ den Dekker, A. J.; Sijbers, J. (2014). "Data distributions in magnetic resonance images: a review". Physica Medica. 30 (7): 725–741. doi:10.1016/j.ejmp.2014.05.002. PMID 25059432.
- ↑ Ahmadi, Hamed (2017-11-21). "A mathematical function for the description of nutrient-response curve". PLOS ONE. 12 (11): e0187292. Bibcode:2017PLoSO..1287292A. doi:10.1371/journal.pone.0187292. ISSN 1932-6203. PMC 5697816. PMID 29161271.
- ↑ "Rayleigh Probability Distribution Applied to Random Wave Heights" (PDF). United States Naval Academy.
{{cite web}}
: CS1 maint: url-status (link)