हेविसाइड चरण फलन: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 143: Line 143:
*{{cite book |first1=George F. D. |last1=Duff |author-link=George F. D. Duff |first2=D. |last2=Naylor |year=1966 |title=Differential Equations of Applied Mathematics |page=42 |chapter=Heaviside unit function |publisher=[[John Wiley & Sons]] }}
*{{cite book |first1=George F. D. |last1=Duff |author-link=George F. D. Duff |first2=D. |last2=Naylor |year=1966 |title=Differential Equations of Applied Mathematics |page=42 |chapter=Heaviside unit function |publisher=[[John Wiley & Sons]] }}


{{DEFAULTSORT:Heaviside Step Function}}[[Category: विशेष कार्य]] [[Category: सामान्यीकृत कार्य]]
{{DEFAULTSORT:Heaviside Step Function}}


 
[[Category:CS1 English-language sources (en)]]
 
[[Category:Commons category link is locally defined|Heaviside Step Function]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/01/2023|Heaviside Step Function]]
[[Category:Created On 25/01/2023]]
[[Category:Lua-based templates|Heaviside Step Function]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|Heaviside Step Function]]
[[Category:Multi-column templates|Heaviside Step Function]]
[[Category:Pages using div col with small parameter|Heaviside Step Function]]
[[Category:Pages with script errors|Heaviside Step Function]]
[[Category:Short description with empty Wikidata description|Heaviside Step Function]]
[[Category:Templates Vigyan Ready|Heaviside Step Function]]
[[Category:Templates that add a tracking category|Heaviside Step Function]]
[[Category:Templates that generate short descriptions|Heaviside Step Function]]
[[Category:Templates using TemplateData|Heaviside Step Function]]
[[Category:Templates using under-protected Lua modules|Heaviside Step Function]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:विशेष कार्य|Heaviside Step Function]]
[[Category:सामान्यीकृत कार्य|Heaviside Step Function]]

Latest revision as of 17:02, 3 February 2023

हेविसाइड स्टेप
Dirac distribution CDF.svg
अर्ध-अधिकतम परिपाटी का उपयोग करते हुए हीविसाइड चरण फलन
General information
सामान्य परिभाषा
आवेदन के क्षेत्रपरिचालन गणना

हेविसाइड चरण फलन, या इकाई चरण फलन, जिसे सामान्यतः H या θ से निरूपित किया जाता है (लेकिन कभी कभी u, 1 या 𝟙), एक चरण फलन है, जिसका नाम ओलिवर हेविसाइड (1850-1925) के नाम पर रखा गया है, जिसका मान ऋणात्मक तर्कों के लिए 0 (संख्या) और सकारात्मक तर्कों के लिए 1 (संख्या) है यह चरण कार्यों के सामान्य वर्ग का उदाहरण है, जिनमें से सभी को इस एक के अनुवादों के रैखिक संयोजन के रूप में दर्शाया जा सकता है।

फलन मूल रूप से अंतर समीकरणों के समाधान के लिए परिचालन कलन में विकसित किया गया था, जहां यह संकेत का प्रतिनिधित्व करता है जो एक निर्दिष्ट समय पर बदलता है और अनिश्चित काल के लिए बदलता है। ओलिवर हेविसाइड, जिन्होंने टेलीग्राफिक संचार के विश्लेषण में एक उपकरण के रूप में परिचालन गणना विकसित किया, ने 1 के रूप में कार्य का प्रतिनिधित्व किया।

हेविसाइड फलन को परिभाषित किया जा सकता है:

  • एक टुकड़ा फलन:
  • इवरसन कोष्ठक अंकन का उपयोग करना:
  • एक संकेतक फलन:
  • रैंप फलन का व्युत्पन्न:

डीआईआरएसी डेल्टा फलन हेविसाइड फलन का व्युत्पन्न है

इसलिए हेविसाइड फलन को डीआईआरएसी डेल्टा फलन का अभिन्न माना जा सकता है। यह कभी-कभी लिखा जाता है
यह विस्तार x = 0 के लिए हो सकता है (या यहां तक कि समझ में नहीं आता), इस पर निर्भर करता है कि किस औपचारिकता का उपयोग δ से जुड़े इंटीग्रल को अर्थ देने के लिए किया जाता है। इस संदर्भ में, हीविसाइड फलन एक यादृच्छिक चर का संचयी वितरण फलन है जो लगभग निश्चित रूप से 0 है। (निरंतर यादृच्छिक चर देखें।)

परिचालन कलन में, उपयोगी उत्तर सम्भवतः ही कभी इस बात पर निर्भर करते हैं कि H(0) के लिए किस मूल्य का उपयोग किया जाता है , क्योंकि H अधिकतर एक वितरण (गणित) के रूप में उपयोग किया जाता है।चूँकि, विकल्प कार्यात्मक विश्लेषण और खेल सिद्धांत में कुछ महत्वपूर्ण परिणाम हो सकते हैं, जहां निरंतरता के अधिक सामान्य रूपों पर विचार किया जाता है। कुछ सामान्य विकल्पों को 0 कारण देखा जा सकता है।

हेविसाइड चरण फलन के लिए सन्निकटन बायोकेमिस्ट्री और न्यूरोसाइंस में उपयोग किए जाते हैं, जहां रासायनिक संकेतों के उत्तर में चरण फलन (जैसे कि हिल और माइकलिस-मेंटेन समीकरण) के लॉजिस्टिक फलन सन्निकटन का उपयोग लगभग बाइनरी सेल्युलर बदलने के लिए किया जा सकता है।

विश्लेषणात्मक सन्निकटन

A set of functions that successively approach the step function

के रूप में चरण फलन के पास पहुंचता है k → ∞

चरण फलन के लिए चिकनी फलन सन्निकटन के लिए, कोई लॉजिस्टिक फलन का उपयोग कर सकता है

जहां बड़ा k, x = 0 पर तीव्र संक्रमण के संगत है। यदि हम लेते हैं H(0) = 1/2, समानता सीमा में है:
चरण फलन के लिए कई अन्य सहज, विश्लेषणात्मक सन्निकटन हैं।[1] संभावनाओं में से हैं:
ये सीमाएँ बिंदुवार और वितरण (गणित) के अर्थ में हैं। सामान्य तौर पर, चूँकि, पॉइंटवाइज कन्वर्जेंस को वितरणात्मक अभिसरण की आवश्यकता नहीं है, और इसके विपरीत वितरणात्मक अभिसरण को इंगित करने की आवश्यकता नहीं होती है।(चूँकि, यदि फलन के पॉइंटवाइज कन्वर्जेंट अनुक्रम के सभी सदस्य समान रूप से कुछ अच्छे फलन से बंधे होते हैं, तो अभिसरण भी वितरण के अर्थ में होता है।)

सामान्य तौर पर, निरंतर वितरण संभावना वितरण का कोई भी संचयी वितरण फलन जो शून्य के आसपास होता है और इसमें पैरामीटर होता है जो विचरण के लिए नियंत्रण करता है, एक अनुमान के रूप में काम कर सकता है, सीमा में विचरण शून्य तक पहुंचता है। उदाहरण के लिए, उपरोक्त सभी तीनों सन्निकटन सामान्य संभावना वितरण के संचयी वितरण कार्य हैं: क्रमशः लॉजिस्टिक वितरण, कॉची वितरण और सामान्य वितरण वितरण।

अभिन्न प्रतिनिधित्व

अधिकतर एकीकरण (गणित) हेविसाइड चरण फलन का प्रतिनिधित्व उपयोगी होता है:

जहां दूसरा प्रतिनिधित्व पहले से कम करना आसान है, यह देखते हुए कि चरण फलन वास्तविक है और इस प्रकार इसका अपना जटिल संयुग्म है।

शून्य तर्क

H सामान्यतः एकीकरण में उपयोग किया जाता है, और एक ही बिंदु पर फलन का मूल्य इसके अभिन्न को प्रभावित नहीं करता है, यह सम्भवतः ही कभी अर्थ रखता है कि H(0) का विशेष मान क्या चुना जाता है। वास्तव में जब H एक वितरण (गणित) या एक तत्व के रूप में माना जाता है L (Lp अंतरिक्ष देखें) यह भी शून्य पर मान की बात करने का कोई अर्थ नहीं बनता है, क्योंकि ऐसी वस्तुओं को केवल हर जगह लगभग परिभाषित किया जाता है। यदि कुछ विश्लेषणात्मक सन्निकटन (जैसा कि ऊपर के उदाहरणों में) का उपयोग किया जाता है, तो अधिकांशतः जो कुछ भी होता है वह शून्य पर प्रासंगिक सीमा का उपयोग किया जाता है।

किसी विशेष मूल्य को चुनने के विभिन्न कारण उपस्थित हैं।

  • H(0) = 1/2 का उपयोग अधिकांशतः फलन के ग्राफ के बाद से किया जाता है, फिर घूर्णी समरूपता होती है; दूसरे विधि से रखो, H1/2 तब एक विषम कार्य है। इस स्थिति में हस्ताक्षर फलन के साथ निम्नलिखित संबंध सभी के लिए है x:
  • H(0) = 1 जब उपयोग किया जाता है H दाएं-निरंतर होने की आवश्यकता है। उदाहरण के लिए, संचयी वितरण कार्यों को सामान्यतः सही निरंतर होने के लिए लिया जाता है, क्योंकि लेबेसग्यू -स्टिल्टजेस एकीकरण के विपरीत एकीकृत कार्य हैं। इस स्थिति में H बंद सेट अर्ध-अनंत अंतराल का संकेतक फलन है:
    इसी संभावना वितरण में पतित वितरण है।
  • H(0) = 0 जब उपयोग किया जाता है H बचे रहने की आवश्यकता है। इस स्थिति में H खुले सेट अर्ध-अनंत अंतराल का एक संकेतक फलन है:
  • अनुकूलन और खेल सिद्धांत से कार्यात्मक-विश्लेषण संदर्भों में, यह अधिकांशतः उपयोगी होता है कि बहुउद्देशीय फलन के रूप में हेविसाइड फलन को परिभाषित करना है। सीमित कार्यों की निरंतरता को संरक्षित करने और कुछ समाधानों के अस्तित्व को सुनिश्चित करने के लिए निर्धारित-मूल्य फलन है। इन स्थितियों में, हेविसाइड फलन संभावित समाधानों का एक पूरा अंतराल लौटाता है, H(0) = [0,1]

असतत रूप

इकाई चरण का एक वैकल्पिक रूप, फलन के रूप में इसके अतिरिक्त परिभाषित किया गया H : ℤ → ℝ (अर्थात, असतत चर में ले जाना n), है:

या आधे-अधिकतम सम्मेलन का उपयोग करना:[2]

जहाँ पर n एक पूर्णांक है। यदि n पूर्णांक है, तो n < 0 इसका तात्पर्य यह होना चाहिए n ≤ −1, जबकि n > 0 इसका तात्पर्य यह होना चाहिए कि फलन एकता को प्राप्त करता है n = 1। इसलिए चरण फलन के डोमेन पर रैंप जैसा व्यवहार प्रदर्शित करता है [−1, 1], और आधे-अधिकतम सम्मेलन का उपयोग करके प्रामाणिक रूप से एक चरण फलन नहीं हो सकता है।

निरंतर स्थिति के विपरीत, की परिभाषा H[0] महत्वपूर्ण है।

असतत-समय इकाई आवेग असतत-समय चरण का पहला अंतर है

यह फलन क्रोनकर डेल्टा का संचयी योग है:

जहाँ पर

पतित वितरण है।

प्रतिपक्षी और व्युत्पन्न

रैंप फलन हेविसाइड चरण फलन का एक प्रतिपक्षी है:

हेविसाइड चरण फलन का वितरण व्युत्पन्न डीआईआरएसी डेल्टा फलन है:


फूरियर रूपांतरण

हेविसाइड चरण फलन का फूरियर रूपांतरण एक वितरण है। हमारे पास फूरियर रूपांतरण की परिभाषा के लिए स्थिरांक की पसंद का उपयोग करना

यहां p.v.1/s वितरण (गणित) है जो एक परीक्षण फलन लेता है φ के कौची प्रमुख मूल्य के लिए । अभिन्न में दिखाई देने वाली सीमा भी वितरण के अर्थ में ली गई है।

एकपक्षीय लाप्लास रूपांतरण

हेविसाइड चरण फलन का लाप्लास रूपांतरण एक मेरोमॉर्फिक फलन है। एक ओर लाप्लास रूपांतरण का उपयोग करना हमारे पास है:

जब द्विपक्षीय परिवर्तन का उपयोग किया जाता है, तो अभिन्न को दो भागों में विभाजित किया जा सकता है और परिणाम समान होगा।

अन्य भाव

हेविसाइड चरण फलन को हाइपरफलन के रूप में दर्शाया जा सकता है

जहाँ log z, z के जटिल लघुगणक का मुख्य मान है।

इस x ≠ 0 के लिए निरपेक्ष मान फलन के रूप में भी व्यक्त किया जा सकता है


यह भी देखें


संदर्भ

  1. Weisstein, Eric W. "Heaviside Step Function". MathWorld.
  2. Bracewell, Ronald Newbold (2000). The Fourier transform and its applications (in English) (3rd ed.). New York: McGraw-Hill. p. 61. ISBN 0-07-303938-1.


बाहरी कड़ियाँ