आरएल परिपथ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Electrical circuit consisting of resistive and inductive elements, with no capacitive elements}}{{Linear analog electronic filter|filter1=hide|filter2=hide}}
{{Short description|Electrical circuit consisting of resistive and inductive elements, with no capacitive elements}}{{Linear analog electronic filter|filter1=hide|filter2=hide}}


 
[[अवरोध]]क परिपथ (आरएल परिपथ), या आरएल फ़िल्टर या आरएल नेटवर्क, [[इलेक्ट्रीक सर्किट|इलेक्ट्रीक परिपथ]] है जो [[वोल्टेज स्रोत]] या [[वर्तमान स्रोत]] द्वारा संचालित प्रतिरोधों और प्रेरकों से बना है।<ref>{{Cite web |date=2021-08-24 |title=RL Circuit: Formula, Equitation & Diagram {{!}} Linquip |url=https://www.linquip.com/blog/what-is-rl-circuit/ |access-date=2022-03-16 |language=en-US}}</ref> प्रथम क्रम आरएल परिपथ प्रतिरोधी और प्रेरक से बना होता है या तो वोल्टेज स्रोत द्वारा संचालित श्रृंखला में या वर्तमान स्रोत द्वारा समानांतर में संचालित होता है। यह सबसे सरल [[एनालॉग फ़िल्टर]] [[अनंत आवेग प्रतिक्रिया]] [[इलेक्ट्रॉनिक फ़िल्टर]] में से है।
एक [[अवरोध]]क -[[प्रारंभ करनेवाला]] सर्किट (आरएल सर्किट), या आरएल फ़िल्टर या आरएल नेटवर्क, एक [[इलेक्ट्रीक सर्किट]] है जो [[वोल्टेज स्रोत]] या [[वर्तमान स्रोत]] द्वारा संचालित प्रतिरोधों और प्रेरकों से बना है।<ref>{{Cite web |date=2021-08-24 |title=RL Circuit: Formula, Equitation & Diagram {{!}} Linquip |url=https://www.linquip.com/blog/what-is-rl-circuit/ |access-date=2022-03-16 |language=en-US}}</ref> एक प्रथम क्रम आरएल सर्किट एक प्रतिरोधी और एक प्रेरक से बना होता है या तो वोल्टेज स्रोत द्वारा संचालित श्रृंखला में या वर्तमान स्रोत द्वारा समानांतर में संचालित होता है। यह सबसे सरल [[एनालॉग फ़िल्टर]] [[अनंत आवेग प्रतिक्रिया]] [[इलेक्ट्रॉनिक फ़िल्टर]] में से एक है।


== परिचय ==
== परिचय ==
मौलिक [[निष्क्रियता (इंजीनियरिंग)]] [[रैखिक]] सर्किट तत्व अवरोधक (आर), [[संधारित्र]] (सी) और प्रारंभ करनेवाला (एल) हैं। इन सर्किट तत्वों को चार अलग -अलग विधियों से एक [[विद्युत सर्किट]] बनाने के लिए जोड़ा जा सकता है: [[आरसी परिपथ]], आरएल सर्किट, [[एलसी सर्किट]] और [[आरएलसी सर्किट]], संक्षिप्तीकरण के साथ यह दर्शाता है कि कौन से घटकों का उपयोग किया जाता है। ये सर्किट महत्वपूर्ण प्रकार के व्यवहार को प्रदर्शित करते हैं जो [[एनालॉग इलेक्ट्रॉनिक्स]] के लिए मौलिक हैं। विशेष रूप से, वे इलेक्ट्रॉनिक फ़िल्टर निष्क्रिय फिल्टर के रूप में कार्य करने में सक्षम हैं।
मौलिक [[निष्क्रियता (इंजीनियरिंग)]] [[रैखिक]] परिपथ तत्व अवरोधक (आर), [[संधारित्र]] (सी) और प्रारंभ करनेवाला (एल) हैं। इन परिपथ तत्वों को चार अलग -अलग विधियों से [[विद्युत सर्किट|विद्युत परिपथ]] बनाने के लिए जोड़ा जा सकता है: [[आरसी परिपथ]], आरएल परिपथ, [[एलसी सर्किट|एलसी परिपथ]] और [[आरएलसी सर्किट|आरएलसी परिपथ]], संक्षिप्तीकरण के साथ यह दर्शाता है कि कौन से घटकों का उपयोग किया जाता है। ये परिपथ महत्वपूर्ण प्रकार के व्यवहार को प्रदर्शित करते हैं जो [[एनालॉग इलेक्ट्रॉनिक्स]] के लिए मौलिक हैं। विशेष रूप से, वे इलेक्ट्रॉनिक फ़िल्टर निष्क्रिय फिल्टर के रूप में कार्य करने में सक्षम हैं।


व्यवहार में, चूंकि, संधारित्र (और आरसी सर्किट) सामान्यतः प्रेरकों के लिए पसंद किए जाते हैं क्योंकि वे अधिक आसानी से निर्मित हो सकते हैं और विशेष रूप से घटकों के उच्च मूल्यों के लिए शारीरिक रूप से छोटे होते हैं।
व्यवहार में, चूंकि, संधारित्र (और आरसी परिपथ) सामान्यतः प्रेरकों के लिए पसंद किए जाते हैं क्योंकि वे अधिक आसानी से निर्मित हो सकते हैं और विशेष रूप से घटकों के उच्च मानों के लिए शारीरिक रूप से छोटे होते हैं।


आरसी और आरएल दोनों सर्किट एक एकल-पोल फिल्टर बनाते हैं। यह इस बात पर निर्भर करता है कि क्या प्रतिक्रियाशील तत्व (सी या एल) लोड के साथ श्रृंखला में है, या लोड के साथ समानांतर यह तय करेगा कि फ़िल्टर कम-पास या उच्च-पास है या नहीं।
आरसी और आरएल दोनों परिपथ एकल-पोल फिल्टर बनाते हैं। यह इस बात पर निर्भर करता है कि क्या प्रतिक्रियाशील तत्व (सी या एल) लोड के साथ श्रृंखला में है, या लोड के साथ समानांतर यह तय करेगा कि फ़िल्टर कम-पास या उच्च-पास है या नहीं।


अधिकांश आरएल सर्किट का उपयोग आरएफ एम्पलीफायरों के लिए डीसी पावर आपूर्ति के रूप में किया जाता है, जहां प्रारंभकर्ता का उपयोग डीसी पूर्वाग्रह वर्तमान को पास करने और आरएफ को बिजली की आपूर्ति में वापस आने के लिए किया जाता है।
अधिकांश आरएल परिपथ का उपयोग आरएफ एम्पलीफायरों के लिए डीसी पावर आपूर्ति के रूप में किया जाता है, जहां प्रारंभकर्ता का उपयोग डीसी पूर्वाग्रह वर्तमान को पास करने और आरएफ को बिजली की आपूर्ति में वापस आने के लिए किया जाता है।


== [[जटिल प्रतिबाधा]] ==
== [[जटिल प्रतिबाधा]] ==
जटिल प्रतिबाधा {{mvar|Z<sub>L</sub>}} ([[ओम]] में) इंडक्शन के साथ एक प्रारंभ करनेवाला का {{mvar|L}} ([[हेनरी (इकाई)]] में) में है
जटिल प्रतिबाधा {{mvar|Z<sub>L</sub>}} ([[ओम]] में) इंडक्शन के साथ प्रारंभ करनेवाला का {{mvar|L}} ([[हेनरी (इकाई)]] में) में है
:<math>Z_L = Ls \,.</math>
:<math>Z_L = Ls \,.</math>
जटिल आवृत्ति {{mvar|s}} एक [[जटिल संख्या]] है,
जटिल आवृत्ति {{mvar|s}} [[जटिल संख्या]] है,
:<math>s = \sigma + j \omega \,, </math>
:<math>s = \sigma + j \omega \,, </math>
कहाँ पे
जहाँ पर


* {{mvar|j}} काल्पनिक इकाई का प्रतिनिधित्व करता है: {{math|''j''<sup>2</sup> {{=}} −1}},
* {{mvar|j}} काल्पनिक इकाई का प्रतिनिधित्व करता है: {{math|''j''<sup>2</sup> {{=}} −1}},
Line 24: Line 23:
* {{mvar|ω}} [[कोणीय आवृत्ति]] (प्रति सेकंड रेडियन में) है।
* {{mvar|ω}} [[कोणीय आवृत्ति]] (प्रति सेकंड रेडियन में) है।


=== eigenfunctions ===
=== ईजेनफलन ===
जटिल संख्या | किसी भी रैखिक समय-अपरिवर्तनीय (LTI) प्रणाली के जटिल-मूल्यवान eigenfunctions निम्नलिखित रूपों के हैं:
जटिल संख्या - किसी भी रैखिक समय-अपरिवर्तनीय (LTI) प्रणाली के जटिल-मूल्यवान ईजेनफलन निम्नलिखित रूपों के हैं:


:<math>\begin{align}
:<math>\begin{align}
Line 33: Line 32:
  &= A e^{\sigma t}e^{j ( \omega t + \phi )} \,.
  &= A e^{\sigma t}e^{j ( \omega t + \phi )} \,.
\end{align}</math>
\end{align}</math>
Euler के सूत्र से, इन eigenfunctions के वास्तविक-भाग में तेजी से साइनसोइड्स हैं:
यूलर के सूत्र से, इन ईजेनफलन के वास्तविक-भाग में तेजी से साइनसोइड्स हैं:


:<math>v(t) = \operatorname{Re}{V(t)} = A e^{\sigma t} \cos(\omega t + \phi)\,.</math>
:<math>v(t) = \operatorname{Re}{V(t)} = A e^{\sigma t} \cos(\omega t + \phi)\,.</math>
Line 39: Line 38:


=== साइनसोइडल स्थिर स्थिति ===
=== साइनसोइडल स्थिर स्थिति ===
साइनसोइडल स्थिर स्थिति एक विशेष मामला है जिसमें इनपुट वोल्टेज में एक शुद्ध साइनसॉइड होता है (बिना किसी घातीय क्षय के साथ)।नतीजतन,
साइनसोइडल स्थिर स्थिति विशेष स्थिति है जिसमें इनपुट वोल्टेज में शुद्ध साइनसॉइड होता है (बिना किसी घातीय क्षय के साथ)
 
परिणामस्वरूप,


:<math> \sigma = 0 </math>
:<math> \sigma = 0 </math>
Line 47: Line 48:




== श्रृंखला सर्किट ==
== श्रृंखला परिपथ ==
[[image:series-RL.png|thumb|right|250px|श्रृंखला और समानांतर सर्किट#श्रृंखला सर्किट आरएल सर्किट
[[image:series-RL.png|thumb|right|250px|श्रृंखला और समानांतर परिपथ श्रृंखला परिपथ आरएल परिपथपरिपथ को [[वोल्टेज]] विभक्त]] के रूप में देखकर, हम देखते हैं कि प्रेरक के पार वोल्टेज है:
 
सर्किट को [[[[वोल्टेज]] विभक्त]] के रूप में देखकर, हम देखते हैं कि प्रेरक के पार वोल्टेज है:
:<math>V_L(s) = \frac{Ls}{R + Ls}V_\mathrm{in}(s)\,,</math>
:<math>V_L(s) = \frac{Ls}{R + Ls}V_\mathrm{in}(s)\,,</math>
और अवरोधक के पार वोल्टेज है:
और अवरोधक के पार वोल्टेज है:
Line 57: Line 56:


=== वर्तमान ===
=== वर्तमान ===
सर्किट में वर्तमान हर जगह समान है क्योंकि सर्किट श्रृंखला में है:
परिपथ में वर्तमान प्रत्येक स्थान समान है क्योंकि परिपथ श्रृंखला में है:
:<math>I(s) = \frac{V_\mathrm{in}(s)}{R + Ls}\,.</math>
:<math>I(s) = \frac{V_\mathrm{in}(s)}{R + Ls}\,.</math>




=== [[स्थानांतरण प्रकार्य]] ===
=== [[स्थानांतरण प्रकार्य]] ===
प्रारंभ करनेवाला वोल्टेज के लिए स्थानांतरण फ़ंक्शन है
प्रारंभ करनेवाला वोल्टेज के लिए स्थानांतरण फलन है


:<math> H_L(s) = \frac{ V_L(s) }{ V_\mathrm{in}(s) } = \frac{ Ls }{ R + Ls } = G_L e^{j \phi_L} \,.</math>
:<math> H_L(s) = \frac{ V_L(s) }{ V_\mathrm{in}(s) } = \frac{ Ls }{ R + Ls } = G_L e^{j \phi_L} \,.</math>
इसी तरह, प्रतिरोधी वोल्टेज में स्थानांतरण फ़ंक्शन है
इस प्रकार, प्रतिरोधी वोल्टेज में स्थानांतरण फलन है


:<math> H_R(s) = \frac{ V_R(s) }{ V_\mathrm{in}(s) } = \frac{ R }{ R + Ls } = G_R e^{j \phi_R} \,.</math>
:<math> H_R(s) = \frac{ V_R(s) }{ V_\mathrm{in}(s) } = \frac{ R }{ R + Ls } = G_R e^{j \phi_R} \,.</math>
ट्रांसफर फ़ंक्शन, करंट के लिए, है
ट्रांसफर फलन, करंट के लिए, है


:<math> H_I(s) = \frac{ I(s) }{ V_\mathrm{in}(s) } = \frac{ 1 }{ R + Ls }  \,.</math>
:<math> H_I(s) = \frac{ I(s) }{ V_\mathrm{in}(s) } = \frac{ 1 }{ R + Ls }  \,.</math>
Line 74: Line 73:


==== डंडे और शून्य ====
==== डंडे और शून्य ====
स्थानांतरण कार्यों में एक एकल [[पोल (जटिल विश्लेषण)]] स्थित है
स्थानांतरण कार्यों में एकल [[पोल (जटिल विश्लेषण)]] स्थित है


:<math> s = -\frac{R}{L} \,.</math>
:<math> s = -\frac{R}{L} \,.</math>
इसके अलावा, प्रारंभ करनेवाला के लिए स्थानांतरण फ़ंक्शन में [[मूल (गणित)]] पर स्थित एक [[शून्य (जटिल विश्लेषण)]] होता है।
इसके अतिरिक्त, प्रारंभ करनेवाला के लिए स्थानांतरण फलन में [[मूल (गणित)]] पर स्थित [[शून्य (जटिल विश्लेषण)]] होता है।


=== लाभ और चरण कोण ===
=== लाभ और चरण कोण ===
Line 103: Line 102:


=== [[आवेग प्रतिक्रिया]] ===
=== [[आवेग प्रतिक्रिया]] ===
प्रत्येक वोल्टेज के लिए आवेग प्रतिक्रिया संबंधित हस्तांतरण फ़ंक्शन का व्युत्क्रम [[लाप्लास रूपांतरण]] है।यह एक इनपुट वोल्टेज के लिए सर्किट की प्रतिक्रिया का प्रतिनिधित्व करता है जिसमें एक आवेग या DIRAC डेल्टा फ़ंक्शन शामिल है।
प्रत्येक वोल्टेज के लिए आवेग प्रतिक्रिया संबंधित हस्तांतरण फलन का व्युत्क्रम [[लाप्लास रूपांतरण]] है। यह इनपुट वोल्टेज के लिए परिपथ की प्रतिक्रिया का प्रतिनिधित्व करता है जिसमें आवेग या डिराक डेल्टा फलन सम्मिलित है।


प्रारंभ करनेवाला वोल्टेज के लिए आवेग प्रतिक्रिया है
प्रारंभ करनेवाला वोल्टेज के लिए आवेग प्रतिक्रिया है


:<math> h_L(t) = \delta(t) -\frac{R}{L} e^{-t\frac{R}{L}} u(t) = \delta(t) -\frac{1}{\tau} e^{-\frac{t}{\tau}} u(t) \,,</math>
:<math> h_L(t) = \delta(t) -\frac{R}{L} e^{-t\frac{R}{L}} u(t) = \delta(t) -\frac{1}{\tau} e^{-\frac{t}{\tau}} u(t) \,,</math>
कहाँ पे {{math|''u''(''t'')}} [[हेविसाइड चरण समारोह]] है और {{math|''τ'' {{=}} ''{{sfrac|L|R}}''}} समय स्थिर है।
जहाँ पर {{math|''u''(''t'')}} [[हेविसाइड चरण समारोह|हेविसाइड चरण फलन]] है और {{math|''τ'' {{=}} ''{{sfrac|L|R}}''}} समय स्थिर है।


इसी तरह, प्रतिरोधी वोल्टेज के लिए आवेग प्रतिक्रिया है
इस प्रकार, प्रतिरोधी वोल्टेज के लिए आवेग प्रतिक्रिया है


:<math> h_R(t) = \frac{R}{L} e^{-t \frac{R}{L}} u(t) = \frac{1}{\tau} e^{-\frac{t}{\tau}} u(t) \,.</math>
:<math> h_R(t) = \frac{R}{L} e^{-t \frac{R}{L}} u(t) = \frac{1}{\tau} e^{-\frac{t}{\tau}} u(t) \,.</math>
Line 116: Line 115:


=== शून्य-इनपुट प्रतिक्रिया ===
=== शून्य-इनपुट प्रतिक्रिया ===
शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, एक आरएल सर्किट का सर्किट के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया है।इसे शून्य-इनपुट प्रतिक्रिया कहा जाता है क्योंकि इसके लिए कोई इनपुट की आवश्यकता नहीं होती है।
शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, आरएल परिपथ का परिपथ के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया है। इसे शून्य-इनपुट प्रतिक्रिया कहा जाता है क्योंकि इसके लिए कोई इनपुट की आवश्यकता नहीं होती है।


एक आरएल सर्किट का ZIR है:
आरएल परिपथ का ZIR है:


:<math>I(t) = I(0)e^{-\frac{R}{L} t} = I(0)e^{-\frac{t}{\tau}}\,.</math>
:<math>I(t) = I(0)e^{-\frac{R}{L} t} = I(0)e^{-\frac{t}{\tau}}\,.</math>
Line 124: Line 123:


=== [[आवृत्ति डोमेन]] विचार ===
=== [[आवृत्ति डोमेन]] विचार ===
ये आवृत्ति डोमेन अभिव्यक्ति हैं।उनका विश्लेषण दिखाएगा कि सर्किट (या फिल्टर) को कौन से आवृत्तियां पास करती हैं और अस्वीकार करती हैं।यह विश्लेषण इस बात पर विचार करता है कि इन लाभों का क्या होता है क्योंकि आवृत्ति बहुत बड़ी और बहुत छोटी हो जाती है।
ये आवृत्ति डोमेन अभिव्यक्ति हैं। उनका विश्लेषण दिखाएगा कि परिपथ (या फिल्टर) को कौन से आवृत्तियां पास करती हैं और अस्वीकार करती हैं। यह विश्लेषण इस बात पर विचार करता है कि इन लाभों का क्या होता है क्योंकि आवृत्ति बहुत बड़ी और बहुत छोटी हो जाती है।


जैसा {{math|''ω'' → ∞}}:
जैसा {{math|''ω'' → ∞}}:
Line 130: Line 129:
जैसा {{math|''ω'' → 0}}:
जैसा {{math|''ω'' → 0}}:
:<math>G_L \to 0 \quad \mbox{and} \quad G_R \to 1\,.</math>
:<math>G_L \to 0 \quad \mbox{and} \quad G_R \to 1\,.</math>
इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है)।इस प्रकार, सर्किट [[उच्च पास फिल्टर]] के रूप में व्यवहार करता है।यदि, चूंकि, आउटपुट को प्रतिरोधी के पार ले जाया जाता है, तो उच्च आवृत्तियों को अस्वीकार कर दिया जाता है और कम आवृत्तियों को पारित किया जाता है।इस कॉन्फ़िगरेशन में, सर्किट [[लो पास फिल्टर]] के रूप में व्यवहार करता है।एक आरसी सर्किट में प्रतिरोधी आउटपुट के व्यवहार के साथ इसकी तुलना करें, जहां रिवर्स मामला है।
इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है)। इस प्रकार, परिपथ [[उच्च पास फिल्टर]] के रूप में व्यवहार करता है। यदि, चूंकि, आउटपुट को प्रतिरोधी के पार ले जाया जाता है, तो उच्च आवृत्तियों को अस्वीकार कर दिया जाता है और कम आवृत्तियों को पारित किया जाता है। इस कॉन्फ़िगरेशन में, परिपथ [[लो पास फिल्टर]] के रूप में व्यवहार करता है। आरसी परिपथ में प्रतिरोधी आउटपुट के व्यवहार के साथ इसकी तुलना करें, जहां रिवर्स स्थिति है।


फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका [[बैंडविड्थ]] (सिग्नल प्रोसेसिंग) कहा जाता है।जिस बिंदु पर फ़िल्टर सिग्नल को अपनी अनफिल्टर्ड पावर के आधे हिस्से में ले जाता है, उसे उसकी कटऑफ आवृत्ति कहा जाता है।इसके लिए आवश्यक है कि सर्किट का लाभ कम हो जाए
फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका [[बैंडविड्थ]] (सिग्नल प्रोसेसिंग) कहा जाता है। जिस बिंदु पर फ़िल्टर सिग्नल को अपनी अनफिल्टर्ड पावर के आधे भाग में ले जाता है, उसे उसकी कटऑफ आवृत्ति कहा जाता है। इसके लिए आवश्यक है कि परिपथ का लाभ कम हो जाए
:<math>G_L = G_R = \frac{1}{\sqrt 2}\,.</math>
:<math>G_L = G_R = \frac{1}{\sqrt 2}\,.</math>
उपरोक्त समीकरण पैदावार को हल करना
उपरोक्त समीकरण का समाधान करने पर प्राप्त होता है
:<math>\omega_\mathrm{c} = \frac{R}{L} \mbox{ rad/s} \quad \mbox{or} \quad f_\mathrm{c} = \frac{R}{2\pi L} \mbox{ Hz}\,,</math>
:<math>\omega_\mathrm{c} = \frac{R}{L} \mbox{ rad/s} \quad \mbox{or} \quad f_\mathrm{c} = \frac{R}{2\pi L} \mbox{ Hz}\,,</math>
यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा।
यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा।


स्पष्ट रूप से, चरण भी आवृत्ति पर निर्भर करते हैं, चूंकि यह प्रभाव आम तौर पर लाभ भिन्नता की तुलना में कम दिलचस्प है।
स्पष्ट रूप से, चरण भी आवृत्ति पर निर्भर करते हैं, चूंकि यह प्रभाव सामान्यतः लाभ भिन्नता की तुलना में कम रोचक है।


जैसा {{math|''ω'' → 0}}:
जैसा {{math|''ω'' → 0}}:
Line 144: Line 143:
जैसा {{math|''ω'' → ∞}}:
जैसा {{math|''ω'' → ∞}}:
:<math>\phi_L \to 0 \quad \mbox{and} \quad \phi_R \to -90^{\circ} = -\frac{\pi}{2} \mbox{ radians}\,.</math>
:<math>\phi_L \to 0 \quad \mbox{and} \quad \phi_R \to -90^{\circ} = -\frac{\pi}{2} \mbox{ radians}\,.</math>
तो प्रत्यक्ष वर्तमान (0 & nbsp; [[हेटर्स]]) पर, प्रतिरोधी वोल्टेज सिग्नल वोल्टेज के साथ चरण में है, जबकि प्रारंभ करनेवाला वोल्टेज इसे 90 ° तक ले जाता है।जैसे-जैसे आवृत्ति बढ़ती है, प्रतिरोधी वोल्टेज सिग्नल के सापेक्ष 90 ° अंतराल होता है और प्रारंभ करनेवाला वोल्टेज सिग्नल के साथ इन-चरण में आता है।
तो डीसी (0 [[हेटर्स|हर्ट्ज]]) पर, प्रतिरोधी वोल्टेज सिग्नल वोल्टेज के साथ चरण में होता है, जबकि प्रारंभ करनेवाला वोल्टेज इसे 90 ° तक ले जाता है। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिरोधी वोल्टेज सिग्नल के सापेक्ष 90 ° अंतराल होता है और प्रारंभ करनेवाला वोल्टेज सिग्नल के साथ इन-चरण में आता है।


=== समय डोमेन विचार ===
=== समय डोमेन विचार ===
: यह खंड ज्ञान पर निर्भर करता है {{mvar|e}}, [[ई (संख्या)]]
: यह खंड {{mvar|e}}, [[ई (संख्या)]], प्राकृतिक लघुगणक स्थिरांक के ज्ञान पर निर्भर करता है।


समय डोमेन व्यवहार को प्राप्त करने का सबसे सरल विधि है {{mvar|V<sub>L</sub>}} और {{mvar|V<sub>R</sub>}} ऊपर दिया गया है।यह प्रभावी रूप से बदल जाता है {{math|''jω'' → ''s''}}।एक हेविसाइड चरण समारोह मानते हुए (यानी, {{math|''V''<sub>in</sub> {{=}} 0}} इससे पहले {{math|''t'' {{=}} 0}} और फिर {{math|''V''<sub>in</sub> {{=}} ''V''}} उसके बाद):
समय डोमेन व्यवहार को प्राप्त करने का सबसे सीधी प्रणाली ऊपर दिए गए {{mvar|V<sub>L</sub>}} और {{mvar|V<sub>R</sub>}} के भावों के लाप्लास रूपांतरण का उपयोग करना है। यह प्रभावी रूप से {{math|''jω'' → ''s''}} को रूपांतरित करता है। हेविसाइड चरण फलन मानते हुए (अर्थात्, {{math|''V''<sub>in</sub> {{=}} 0}} इससे पहले {{math|''t'' {{=}} 0}} और फिर {{math|''V''<sub>in</sub> {{=}} ''V''}} उसके बाद):


:<math>\begin{align}
:<math>\begin{align}
Line 160: Line 159:
[[Image:Series RC capacitor voltage.svg|thumb|right|230px|प्रतिरोधी वोल्टेज चरण-प्रतिक्रिया।]]
[[Image:Series RC capacitor voltage.svg|thumb|right|230px|प्रतिरोधी वोल्टेज चरण-प्रतिक्रिया।]]


[[आंशिक अंश]] विस्तार और व्युत्क्रम लाप्लास परिवर्तन उपज:
[[आंशिक अंश]] विस्तार और व्युत्क्रम लाप्लास परिवर्तन उत्पाद:
:<math>\begin{align}
:<math>\begin{align}
  V_L(t) &= Ve^{-t\frac{R}{L}} \\
  V_L(t) &= Ve^{-t\frac{R}{L}} \\
  V_R(t) &= V\left(1 - e^{-t\frac{R}{L}}\right)\,.
  V_R(t) &= V\left(1 - e^{-t\frac{R}{L}}\right)\,.
\end{align}</math>
\end{align}</math>
इस प्रकार, प्रारंभकर्ता के पार वोल्टेज समय बीतने के साथ 0 की ओर जाता है, जबकि अवरोधक के पार वोल्टेज की ओर जाता है {{mvar|V}}, जैसा कि आंकड़ों में दिखाया गया है।यह सहज ज्ञान युक्त बिंदु को ध्यान में रखते हुए है कि प्रारंभ करनेवाला के पास केवल एक वोल्टेज होगा जब तक कि सर्किट में वर्तमान बदल रहा है & mdash;जैसे-जैसे सर्किट अपनी स्थिर-राज्य तक पहुंचता है, आगे कोई वर्तमान परिवर्तन नहीं होता है और अंततः कोई प्रारंभ करनेवाला वोल्टेज नहीं होता है।
इस प्रकार, प्रारंभ करनेवाला में वोल्टेज समय बीतने के साथ 0 की ओर झुक जाता है, जबकि अवरोधक के पार वोल्टेज {{mvar|V}} की ओर जाता है, जैसा कि आंकड़ों में दिखाया गया है। यह सहज ज्ञान युक्त बिंदु को ध्यान में रखते हुए है कि प्रारंभ करनेवाला के पास केवल वोल्टेज होगा जब तक कि परिपथ में वर्तमान बदल रहा है - जैसे-जैसे परिपथ अपनी स्थिर-स्थिति तक पहुंचता है, आगे कोई वर्तमान परिवर्तन नहीं होता है और अंत में कोई प्रारंभ करनेवाला वोल्टेज नहीं होता है।


इन समीकरणों से पता चलता है कि एक श्रृंखला आरएल सर्किट में एक समय स्थिर होता है, सामान्यतः निरूपित किया जाता है {{math|''τ'' {{=}} ''{{sfrac|L|R}}''}} समय होने के नाते यह घटक के पार वोल्टेज को या तो गिरने के लिए (प्रारंभ करनेवाला के पार) या वृद्धि (प्रतिरोधक के पार) के भीतर होता है {{math|{{sfrac|1|''e''}}}} इसके अंतिम मूल्य का।वह है, {{mvar|τ}} क्या समय लगता है {{mvar|V<sub>L</sub>}} पहुचना {{math|''V''({{sfrac|1|''e''}})}} और {{mvar|V<sub>R</sub>}} पहुचना {{math|''V''(1 − {{sfrac|1|''e''}})}}।
इन समीकरणों से पता चलता है कि श्रृंखला आरएल परिपथ में समय स्थिर होता है, सामान्यतः जिसे {{math|''τ'' {{=}} ''{{sfrac|L|R}}''}} द्वारा निरूपित किया जाता है वह समय होने के कारण यह घटक के पार वोल्टेज को या तो गिरने के लिए (प्रारंभ करनेवाला के पार) या वृद्धि (प्रतिरोधक के पार) के अन्दर {{math|{{sfrac|1|''e''}}}} इसके अंतिम मान का होता है। अर्थात्, {{mvar|τ}} वह समय जब {{mvar|V<sub>L</sub>}} को {{math|''V''({{sfrac|1|''e''}})}} तक पहुँचने में और {{mvar|V<sub>R</sub>}} तक पहुंचने के लिए {{math|''V''(1 − {{sfrac|1|''e''}})}}।


परिवर्तन की दर एक आंशिक है {{math|1 − {{sfrac|1|''e''}}}} प्रति {{mvar|τ}}।इस प्रकार, से जाने में {{math|''t'' {{=}} ''Nτ''}} को {{math|''t'' {{=}} (''N'' + 1)''τ''}}, वोल्टेज अपने स्तर से लगभग 63% रास्ते में चला गया होगा {{math|''t'' {{=}} ''Nτ''}} इसके अंतिम मूल्य की ओर।तो प्रारंभ करनेवाला के पार वोल्टेज के बाद लगभग 37% तक गिर गया होगा {{mvar|τ}}, और अनिवार्य रूप से शून्य (0.7%) के बाद {{math|5''τ''}}।Kirchhoff के सर्किट कानून#Kirchhoff का वोल्टेज कानून | Kirchhoff के वोल्टेज कानून का अर्थ है कि अवरोधक के पार वोल्टेज उसी दर से बढ़ेगा।जब वोल्टेज स्रोत को तब शॉर्ट सर्किट के साथ बदल दिया जाता है, तो प्रतिरोधी के पार वोल्टेज तेजी से गिरता है {{mvar|t}} से {{mvar|V}} 0. के बाद प्रतिरोधी को लगभग 37% के बाद छुट्टी दे दी जाएगी {{mvar|τ}}, और अनिवार्य रूप से पूरी तरह से डिस्चार्ज (0.7%) के बाद {{math|5''τ''}}।ध्यान दें कि वर्तमान, {{mvar|I}}, सर्किट में, ओम के नियम के माध्यम से प्रतिरोधी के पार वोल्टेज के रूप में व्यवहार करता है। ओम के कानून के माध्यम से।
परिवर्तन की दर आंशिक {{math|1 − {{sfrac|1|''e''}}}} प्रति {{mvar|τ}} है। इस प्रकार, {{math|''t'' {{=}} ''Nτ''}} से {{math|''t'' {{=}} (''N'' + 1)''τ''}} तक जाने पर, वोल्टेज अपने स्तर से {{math|''t'' {{=}} ''Nτ''}} पर लगभग 63% रास्ते से अपने अंतिम मान की ओर बढ़ गया होगा। तो प्रारंभ करनेवाला में वोल्टेज {{mvar|τ}} के बाद 37% तक गिर गया होगा, और लगभग {{math|5''τ''}} के बाद अनिवार्य रूप से शून्य (0.7%) हो जाएगा। किरचॉफ के वोल्टेज कानून का तात्पर्य है कि प्रतिरोधी के पार वोल्टेज उसी दर से बढ़ेगा। जब वोल्टेज स्रोत को फिर शॉर्ट परिपथ से बदल दिया जाता है, तो प्रतिरोधक के पार वोल्टेज {{mvar|V}} से 0 की और {{mvar|t}} के साथ घातीय रूप से गिर जाता है। रोकनेवाला {{mvar|τ}} के बाद लगभग 37% तक डिस्चार्ज हो जाएगा , और लगभग {{math|5''τ''}} के बाद अनिवार्य रूप से पूरे प्रकार से डिस्चार्ज (0.7%) हो जाएगा। ध्यान दें कि परिपथ में धारा, {{mvar|I}}, वैसा ही व्यवहार करती है जैसा ओम के नियम के अनुसार प्रतिरोध में वोल्टेज करता है।


सर्किट के उदय या गिरने के समय में देरी इस मामले में है, जो पीछे की ओर से है।) सर्किट के समय-निरंतर की तुलना में बहुत तेजी से बढ़ने या गिरने से।चूंकि सभी तारों में कुछ इंडक्शन होता है। आत्म-इंडक्शन और प्रतिरोध, सभी सर्किटों में एक समय स्थिर होता है।नतीजतन, जब बिजली की आपूर्ति चालू हो जाती है, तो वर्तमान तुरंत अपने स्थिर-राज्य मूल्य तक नहीं पहुंचता है, {{mvar|{{sfrac|V|R}}}}।इसके बजाय वृद्धि को पूरा करने में कई समय-आस्तिक लगते हैं।यदि यह मामला नहीं था, और वर्तमान को स्थिर-राज्य तक तुरंत पहुंचने के लिए थे, तो बहुत मजबूत आगमनात्मक विद्युत क्षेत्र चुंबकीय क्षेत्र & mdash में तेज परिवर्तन से उत्पन्न होंगे;इससे सर्किट और [[इलेक्ट्रिक आर्क]]िंग में हवा का टूटना होगा, शायद हानिकारक घटक (और उपयोगकर्ता)।
परिपथ के उठने या गिरने के समय में देरी इस स्थिति में है, जो पीछे की ओर से है।) परिपथ के समय-निरंतर की तुलना में बहुत तेजी से बढ़ने या गिरने से। चूंकि सभी तारों में कुछ इंडक्शन होता है। आत्म-इंडक्शन और प्रतिरोध, सभी परिपथों में समय स्थिर होता है। परिणामस्वरूप, जब बिजली की आपूर्ति चालू हो जाती है, तो वर्तमान तुरंत अपने स्थिर-अवस्था मान {{mvar|{{sfrac|V|R}}}} तक नहीं पहुंचता है। इसके अतिरिक्त वृद्धि को पूरा करने में कई समय-आस्तिक लगते हैं। यदि ऐसा नहीं होता, और करंट को तुरंत स्थिर अवस्था में पहुंचना होता तो चुंबकीय क्षेत्र में तेज बदलाव से बहुत शक्तिशाली आगमनात्मक विद्युत क्षेत्र उत्पन्न होते - इससे परिपथ में हवा का टूटना होता और इलेक्ट्रिक आर्किंग संभवत: नुकसानदेह घटक होती है (और उपयोगकर्ता)।


ये परिणाम सर्किट का वर्णन करने वाले [[अंतर समीकरण]] को हल करके भी प्राप्त हो सकते हैं:
ये परिणाम परिपथ का वर्णन करने वाले [[अंतर समीकरण]] को समाधान करके भी प्राप्त हो सकते हैं:
:<math>\begin{align}
:<math>\begin{align}
  V_\mathrm{in} &= IR + L\frac{dI}{dt} \\
  V_\mathrm{in} &= IR + L\frac{dI}{dt} \\
  V_R &= V_\mathrm{in} - V_L \,.
  V_R &= V_\mathrm{in} - V_L \,.
\end{align}</math>
\end{align}</math>
पहला समीकरण एक [[एकीकृत कारक]] का उपयोग करके हल किया जाता है और वर्तमान को प्राप्त करता है जिसे देने के लिए विभेदित किया जाना चाहिए {{mvar|V<sub>L</sub>}};दूसरा समीकरण सीधा है।समाधान बिल्कुल वैसा ही हैं जैसा कि लाप्लास ट्रांसफॉर्म के माध्यम से प्राप्त होता है।
पहला समीकरण [[एकीकृत कारक]] का उपयोग करके समाधान किया जाता है और वर्तमान को प्राप्त करता है जिसे {{mvar|V<sub>L</sub>}} देने के लिए विभेदित किया जाना चाहिए ;दूसरा समीकरण सीधा है। समाधान बिल्कुल वैसा ही हैं जैसा कि लाप्लास ट्रांसफॉर्म के माध्यम से प्राप्त होता है।


=== [[शार्ट सर्किट]] समीकरण ===
=== [[शार्ट सर्किट|शार्ट परिपथ]] समीकरण ===


शॉर्ट सर्किट मूल्यांकन के लिए, आरएल सर्किट पर विचार किया जाता है।अधिक सामान्य समीकरण है:
शॉर्ट परिपथ मूल्यांकन के लिए, आरएल परिपथ पर विचार किया जाता है। अधिक सामान्य समीकरण है:
:<math> v_{in} (t)=v_L (t)+ v_R (t)=L\frac{di}{dt} + Ri </math>
:<math> v_{in} (t)=v_L (t)+ v_R (t)=L\frac{di}{dt} + Ri </math>
प्रारंभिक शर्त के साथ:
प्रारंभिक शर्त के साथ:
Line 192: Line 191:
तब एंटीट्रांसफॉर्म रिटर्न:
तब एंटीट्रांसफॉर्म रिटर्न:
:<math> i(t)=i_0 e^{-\frac{R}{L}t}+\mathcal{L}^{-1}\left[\frac{V_{in}}{sL+R}\right]</math>
:<math> i(t)=i_0 e^{-\frac{R}{L}t}+\mathcal{L}^{-1}\left[\frac{V_{in}}{sL+R}\right]</math>
यदि स्रोत वोल्टेज एक हेविसाइड स्टेप फ़ंक्शन (DC) है:
यदि स्रोत वोल्टेज हेविसाइड स्टेप फलन (DC) है:
:<math> v_{in}(t)=Eu(t)</math>
:<math> v_{in}(t)=Eu(t)</math>
रिटर्न:
रिटर्न:
:<math> i(t)=i_0 e^{-\frac{R}{L}t}+\mathcal{L}^{-1}\left[\frac{E}{s(sL+R)}\right] = i_0 e^{-\frac{R}{L}t}+\frac{E}{R}\left( 1 - e^{-\frac{R}{L}t} \right) </math>
:<math> i(t)=i_0 e^{-\frac{R}{L}t}+\mathcal{L}^{-1}\left[\frac{E}{s(sL+R)}\right] = i_0 e^{-\frac{R}{L}t}+\frac{E}{R}\left( 1 - e^{-\frac{R}{L}t} \right) </math>
यदि स्रोत वोल्टेज एक साइनसोइडल फ़ंक्शन (एसी) है:
यदि स्रोत वोल्टेज साइनसोइडल फलन (एसी) है:
:<math> v_{in}(t)=E\sin(\omega t) \Rightarrow V_{in}(s)= \frac{E\omega}{s^2+\omega^2} </math>
:<math> v_{in}(t)=E\sin(\omega t) \Rightarrow V_{in}(s)= \frac{E\omega}{s^2+\omega^2} </math>
रिटर्न:
रिटर्न:
Line 217: Line 216:




== समानांतर सर्किट ==
== समानांतर परिपथ ==
जब अवरोधक और प्रारंभ करनेवाला दोनों समानांतर कनेक्शन में जुड़े होते हैं और एक वोल्टेज स्रोत के माध्यम से आपूर्ति की जाती है, तो इसे आरएल समानांतर सर्किट के रूप में जाना जाता है।<ref name=":0" />समानांतर आरएल सर्किट आम तौर पर श्रृंखला सर्किट की तुलना में कम ब्याज का होता है जब तक कि एक वर्तमान स्रोत द्वारा खिलाया जाता है।यह काफी हद तक है क्योंकि आउटपुट वोल्टेज ({{math|''V''<sub>out</sub>}}) इनपुट वोल्टेज के बराबर है ({{math|''V''<sub>in</sub>}});नतीजतन, यह सर्किट वोल्टेज इनपुट सिग्नल के लिए फ़िल्टर के रूप में कार्य नहीं करता है।
जब अवरोधक और प्रारंभ करनेवाला दोनों समानांतर कनेक्शन में जुड़े होते हैं और वोल्टेज स्रोत के माध्यम से आपूर्ति की जाती है, तो इसे आरएल समानांतर परिपथ के रूप में जाना जाता है।<ref name=":0" /> समानांतर आरएल परिपथ सामान्यतःश्रृंखला परिपथ की तुलना में कम ब्याज का होता है जब तक कि वर्तमान स्रोत द्वारा खिलाया जाता है। यह अधिक सीमा तक है क्योंकि आउटपुट वोल्टेज ({{math|''V''<sub>out</sub>}}) इनपुट वोल्टेज ({{math|''V''<sub>in</sub>}}) के बराबर है; परिणामस्वरूप, यह परिपथ वोल्टेज इनपुट सिग्नल के लिए फ़िल्टर के रूप में कार्य नहीं करता है।


जटिल प्रतिबाधा के साथ:
जटिल प्रतिबाधा के साथ:
Line 225: Line 224:
  I_L &= \frac{V_\mathrm{in}}{j\omega L} = -\frac{jV_\mathrm{in}}{\omega L}\,.
  I_L &= \frac{V_\mathrm{in}}{j\omega L} = -\frac{jV_\mathrm{in}}{\omega L}\,.
\end{align}</math>
\end{align}</math>
इससे पता चलता है कि प्रारंभ करनेवाला 90 ° से प्रतिरोधी (और स्रोत) वर्तमान को पिछड़ देता है।
इससे पता चलता है कि प्रारंभ करनेवाला 90 ° से प्रतिरोधी (और स्रोत) वर्तमान को पीछे छोड़ देता है।


समानांतर सर्किट को कई एम्पलीफायर सर्किट के आउटपुट पर देखा जाता है, और उच्च आवृत्तियों पर कैपेसिटिव लोडिंग प्रभावों से एम्पलीफायर को अलग करने के लिए उपयोग किया जाता है।कैपेसिटेंस द्वारा पेश किए गए चरण शिफ्ट के कारण, कुछ एम्पलीफायर बहुत उच्च आवृत्तियों पर अस्थिर हो जाते हैं, और दोलन करते हैं।यह ध्वनि की गुणवत्ता और घटक जीवन को प्रभावित करता है, विशेष रूप से ट्रांजिस्टर।
समानांतर परिपथ को कई एम्पलीफायर परिपथ के आउटपुट पर देखा जाता है, और उच्च आवृत्तियों पर कैपेसिटिव लोडिंग प्रभावों से एम्पलीफायर को अलग करने के लिए उपयोग किया जाता है।कैपेसिटेंस द्वारा प्रस्तुत किए गए चरण शिफ्ट के कारण, कुछ एम्पलीफायर बहुत उच्च आवृत्तियों पर अस्थिर हो जाते हैं, और दोलन करते हैं। यह ध्वनि की गुणवत्ता और घटक जीवन को विशेष रूप से ट्रांजिस्टर को प्रभावित करता है।


== यह भी देखें ==
== यह भी देखें ==
* एलसी सर्किट
* एलसी परिपथ
* आरसी सर्किट
* आरसी परिपथ
* आरएलसी सर्किट
* आरएलसी परिपथ
* [[विद्युत नेटवर्क]]
* [[विद्युत नेटवर्क]]
* [[इलेक्ट्रॉनिक्स विषयों की सूची]]
* [[इलेक्ट्रॉनिक्स विषयों की सूची]]
Line 239: Line 238:
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Rl Circuit}}[[Category: अनुरूप सर्किट]] [[Category: इलेक्ट्रॉनिक फ़िल्टर टोपोलॉजी]]
{{DEFAULTSORT:Rl Circuit}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 25/01/2023]]
[[Category:Created On 25/01/2023|Rl Circuit]]
[[Category:Lua-based templates|Rl Circuit]]
[[Category:Machine Translated Page|Rl Circuit]]
[[Category:Pages with script errors|Rl Circuit]]
[[Category:Short description with empty Wikidata description|Rl Circuit]]
[[Category:Templates Vigyan Ready|Rl Circuit]]
[[Category:Templates that add a tracking category|Rl Circuit]]
[[Category:Templates that generate short descriptions|Rl Circuit]]
[[Category:Templates using TemplateData|Rl Circuit]]
[[Category:अनुरूप सर्किट|Rl Circuit]]
[[Category:इलेक्ट्रॉनिक फ़िल्टर टोपोलॉजी|Rl Circuit]]

Latest revision as of 17:13, 3 February 2023

अवरोधक परिपथ (आरएल परिपथ), या आरएल फ़िल्टर या आरएल नेटवर्क, इलेक्ट्रीक परिपथ है जो वोल्टेज स्रोत या वर्तमान स्रोत द्वारा संचालित प्रतिरोधों और प्रेरकों से बना है।[1] प्रथम क्रम आरएल परिपथ प्रतिरोधी और प्रेरक से बना होता है या तो वोल्टेज स्रोत द्वारा संचालित श्रृंखला में या वर्तमान स्रोत द्वारा समानांतर में संचालित होता है। यह सबसे सरल एनालॉग फ़िल्टर अनंत आवेग प्रतिक्रिया इलेक्ट्रॉनिक फ़िल्टर में से है।

परिचय

मौलिक निष्क्रियता (इंजीनियरिंग) रैखिक परिपथ तत्व अवरोधक (आर), संधारित्र (सी) और प्रारंभ करनेवाला (एल) हैं। इन परिपथ तत्वों को चार अलग -अलग विधियों से विद्युत परिपथ बनाने के लिए जोड़ा जा सकता है: आरसी परिपथ, आरएल परिपथ, एलसी परिपथ और आरएलसी परिपथ, संक्षिप्तीकरण के साथ यह दर्शाता है कि कौन से घटकों का उपयोग किया जाता है। ये परिपथ महत्वपूर्ण प्रकार के व्यवहार को प्रदर्शित करते हैं जो एनालॉग इलेक्ट्रॉनिक्स के लिए मौलिक हैं। विशेष रूप से, वे इलेक्ट्रॉनिक फ़िल्टर निष्क्रिय फिल्टर के रूप में कार्य करने में सक्षम हैं।

व्यवहार में, चूंकि, संधारित्र (और आरसी परिपथ) सामान्यतः प्रेरकों के लिए पसंद किए जाते हैं क्योंकि वे अधिक आसानी से निर्मित हो सकते हैं और विशेष रूप से घटकों के उच्च मानों के लिए शारीरिक रूप से छोटे होते हैं।

आरसी और आरएल दोनों परिपथ एकल-पोल फिल्टर बनाते हैं। यह इस बात पर निर्भर करता है कि क्या प्रतिक्रियाशील तत्व (सी या एल) लोड के साथ श्रृंखला में है, या लोड के साथ समानांतर यह तय करेगा कि फ़िल्टर कम-पास या उच्च-पास है या नहीं।

अधिकांश आरएल परिपथ का उपयोग आरएफ एम्पलीफायरों के लिए डीसी पावर आपूर्ति के रूप में किया जाता है, जहां प्रारंभकर्ता का उपयोग डीसी पूर्वाग्रह वर्तमान को पास करने और आरएफ को बिजली की आपूर्ति में वापस आने के लिए किया जाता है।

जटिल प्रतिबाधा

जटिल प्रतिबाधा ZL (ओम में) इंडक्शन के साथ प्रारंभ करनेवाला का L (हेनरी (इकाई) में) में है

जटिल आवृत्ति s जटिल संख्या है,

जहाँ पर

ईजेनफलन

जटिल संख्या - किसी भी रैखिक समय-अपरिवर्तनीय (LTI) प्रणाली के जटिल-मूल्यवान ईजेनफलन निम्नलिखित रूपों के हैं:

यूलर के सूत्र से, इन ईजेनफलन के वास्तविक-भाग में तेजी से साइनसोइड्स हैं:


साइनसोइडल स्थिर स्थिति

साइनसोइडल स्थिर स्थिति विशेष स्थिति है जिसमें इनपुट वोल्टेज में शुद्ध साइनसॉइड होता है (बिना किसी घातीय क्षय के साथ)।

परिणामस्वरूप,

और का मूल्यांकन s हो जाता है


श्रृंखला परिपथ

श्रृंखला और समानांतर परिपथ श्रृंखला परिपथ आरएल परिपथपरिपथ को वोल्टेज विभक्त

के रूप में देखकर, हम देखते हैं कि प्रेरक के पार वोल्टेज है:

और अवरोधक के पार वोल्टेज है:


वर्तमान

परिपथ में वर्तमान प्रत्येक स्थान समान है क्योंकि परिपथ श्रृंखला में है:


स्थानांतरण प्रकार्य

प्रारंभ करनेवाला वोल्टेज के लिए स्थानांतरण फलन है

इस प्रकार, प्रतिरोधी वोल्टेज में स्थानांतरण फलन है

ट्रांसफर फलन, करंट के लिए, है


डंडे और शून्य

स्थानांतरण कार्यों में एकल पोल (जटिल विश्लेषण) स्थित है

इसके अतिरिक्त, प्रारंभ करनेवाला के लिए स्थानांतरण फलन में मूल (गणित) पर स्थित शून्य (जटिल विश्लेषण) होता है।

लाभ और चरण कोण

दो घटकों में लाभ उपरोक्त अभिव्यक्तियों के परिमाण को ले जाकर पाया जाता है:

और

और चरण (लहरें) हैं:

और


फासोर नोटेशन

इन अभिव्यक्तियों को एक साथ आउटपुट का प्रतिनिधित्व करने वाले चरणक के लिए सामान्य अभिव्यक्ति में प्रतिस्थापित किया जा सकता है:[2]


आवेग प्रतिक्रिया

प्रत्येक वोल्टेज के लिए आवेग प्रतिक्रिया संबंधित हस्तांतरण फलन का व्युत्क्रम लाप्लास रूपांतरण है। यह इनपुट वोल्टेज के लिए परिपथ की प्रतिक्रिया का प्रतिनिधित्व करता है जिसमें आवेग या डिराक डेल्टा फलन सम्मिलित है।

प्रारंभ करनेवाला वोल्टेज के लिए आवेग प्रतिक्रिया है

जहाँ पर u(t) हेविसाइड चरण फलन है और τ = L/R समय स्थिर है।

इस प्रकार, प्रतिरोधी वोल्टेज के लिए आवेग प्रतिक्रिया है


शून्य-इनपुट प्रतिक्रिया

शून्य-इनपुट प्रतिक्रिया (ZIR), जिसे प्राकृतिक प्रतिक्रिया भी कहा जाता है, आरएल परिपथ का परिपथ के व्यवहार का वर्णन करता है जब यह निरंतर वोल्टेज और धाराओं तक पहुंच गया है और किसी भी शक्ति स्रोत से डिस्कनेक्ट किया गया है। इसे शून्य-इनपुट प्रतिक्रिया कहा जाता है क्योंकि इसके लिए कोई इनपुट की आवश्यकता नहीं होती है।

आरएल परिपथ का ZIR है:


आवृत्ति डोमेन विचार

ये आवृत्ति डोमेन अभिव्यक्ति हैं। उनका विश्लेषण दिखाएगा कि परिपथ (या फिल्टर) को कौन से आवृत्तियां पास करती हैं और अस्वीकार करती हैं। यह विश्लेषण इस बात पर विचार करता है कि इन लाभों का क्या होता है क्योंकि आवृत्ति बहुत बड़ी और बहुत छोटी हो जाती है।

जैसा ω → ∞:

जैसा ω → 0:

इससे पता चलता है कि, यदि आउटपुट को प्रारंभ करनेवाला के पार ले जाया जाता है, तो उच्च आवृत्तियों को पारित किया जाता है और कम आवृत्तियों को देखा जाता है (अस्वीकार कर दिया जाता है)। इस प्रकार, परिपथ उच्च पास फिल्टर के रूप में व्यवहार करता है। यदि, चूंकि, आउटपुट को प्रतिरोधी के पार ले जाया जाता है, तो उच्च आवृत्तियों को अस्वीकार कर दिया जाता है और कम आवृत्तियों को पारित किया जाता है। इस कॉन्फ़िगरेशन में, परिपथ लो पास फिल्टर के रूप में व्यवहार करता है। आरसी परिपथ में प्रतिरोधी आउटपुट के व्यवहार के साथ इसकी तुलना करें, जहां रिवर्स स्थिति है।

फ़िल्टर पास करने वाली आवृत्तियों की सीमा को इसका बैंडविड्थ (सिग्नल प्रोसेसिंग) कहा जाता है। जिस बिंदु पर फ़िल्टर सिग्नल को अपनी अनफिल्टर्ड पावर के आधे भाग में ले जाता है, उसे उसकी कटऑफ आवृत्ति कहा जाता है। इसके लिए आवश्यक है कि परिपथ का लाभ कम हो जाए

उपरोक्त समीकरण का समाधान करने पर प्राप्त होता है

यह आवृत्ति है कि फ़िल्टर अपनी मूल शक्ति को आधे तक ले जाएगा।

स्पष्ट रूप से, चरण भी आवृत्ति पर निर्भर करते हैं, चूंकि यह प्रभाव सामान्यतः लाभ भिन्नता की तुलना में कम रोचक है।

जैसा ω → 0:

जैसा ω → ∞:

तो डीसी (0 हर्ट्ज) पर, प्रतिरोधी वोल्टेज सिग्नल वोल्टेज के साथ चरण में होता है, जबकि प्रारंभ करनेवाला वोल्टेज इसे 90 ° तक ले जाता है। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिरोधी वोल्टेज सिग्नल के सापेक्ष 90 ° अंतराल होता है और प्रारंभ करनेवाला वोल्टेज सिग्नल के साथ इन-चरण में आता है।

समय डोमेन विचार

यह खंड e, ई (संख्या), प्राकृतिक लघुगणक स्थिरांक के ज्ञान पर निर्भर करता है।

समय डोमेन व्यवहार को प्राप्त करने का सबसे सीधी प्रणाली ऊपर दिए गए VL और VR के भावों के लाप्लास रूपांतरण का उपयोग करना है। यह प्रभावी रूप से s को रूपांतरित करता है। हेविसाइड चरण फलन मानते हुए (अर्थात्, Vin = 0 इससे पहले t = 0 और फिर Vin = V उसके बाद):

प्रेरक वोल्टेज स्टेप-रिस्पांस।
प्रतिरोधी वोल्टेज चरण-प्रतिक्रिया।

आंशिक अंश विस्तार और व्युत्क्रम लाप्लास परिवर्तन उत्पाद:

इस प्रकार, प्रारंभ करनेवाला में वोल्टेज समय बीतने के साथ 0 की ओर झुक जाता है, जबकि अवरोधक के पार वोल्टेज V की ओर जाता है, जैसा कि आंकड़ों में दिखाया गया है। यह सहज ज्ञान युक्त बिंदु को ध्यान में रखते हुए है कि प्रारंभ करनेवाला के पास केवल वोल्टेज होगा जब तक कि परिपथ में वर्तमान बदल रहा है - जैसे-जैसे परिपथ अपनी स्थिर-स्थिति तक पहुंचता है, आगे कोई वर्तमान परिवर्तन नहीं होता है और अंत में कोई प्रारंभ करनेवाला वोल्टेज नहीं होता है।

इन समीकरणों से पता चलता है कि श्रृंखला आरएल परिपथ में समय स्थिर होता है, सामान्यतः जिसे τ = L/R द्वारा निरूपित किया जाता है वह समय होने के कारण यह घटक के पार वोल्टेज को या तो गिरने के लिए (प्रारंभ करनेवाला के पार) या वृद्धि (प्रतिरोधक के पार) के अन्दर 1/e इसके अंतिम मान का होता है। अर्थात्, τ वह समय जब VL को V(1/e) तक पहुँचने में और VR तक पहुंचने के लिए V(1 − 1/e)

परिवर्तन की दर आंशिक 1 − 1/e प्रति τ है। इस प्रकार, t = से t = (N + 1)τ तक जाने पर, वोल्टेज अपने स्तर से t = पर लगभग 63% रास्ते से अपने अंतिम मान की ओर बढ़ गया होगा। तो प्रारंभ करनेवाला में वोल्टेज τ के बाद 37% तक गिर गया होगा, और लगभग 5τ के बाद अनिवार्य रूप से शून्य (0.7%) हो जाएगा। किरचॉफ के वोल्टेज कानून का तात्पर्य है कि प्रतिरोधी के पार वोल्टेज उसी दर से बढ़ेगा। जब वोल्टेज स्रोत को फिर शॉर्ट परिपथ से बदल दिया जाता है, तो प्रतिरोधक के पार वोल्टेज V से 0 की और t के साथ घातीय रूप से गिर जाता है। रोकनेवाला τ के बाद लगभग 37% तक डिस्चार्ज हो जाएगा , और लगभग 5τ के बाद अनिवार्य रूप से पूरे प्रकार से डिस्चार्ज (0.7%) हो जाएगा। ध्यान दें कि परिपथ में धारा, I, वैसा ही व्यवहार करती है जैसा ओम के नियम के अनुसार प्रतिरोध में वोल्टेज करता है।

परिपथ के उठने या गिरने के समय में देरी इस स्थिति में है, जो पीछे की ओर से है।) परिपथ के समय-निरंतर की तुलना में बहुत तेजी से बढ़ने या गिरने से। चूंकि सभी तारों में कुछ इंडक्शन होता है। आत्म-इंडक्शन और प्रतिरोध, सभी परिपथों में समय स्थिर होता है। परिणामस्वरूप, जब बिजली की आपूर्ति चालू हो जाती है, तो वर्तमान तुरंत अपने स्थिर-अवस्था मान V/R तक नहीं पहुंचता है। इसके अतिरिक्त वृद्धि को पूरा करने में कई समय-आस्तिक लगते हैं। यदि ऐसा नहीं होता, और करंट को तुरंत स्थिर अवस्था में पहुंचना होता तो चुंबकीय क्षेत्र में तेज बदलाव से बहुत शक्तिशाली आगमनात्मक विद्युत क्षेत्र उत्पन्न होते - इससे परिपथ में हवा का टूटना होता और इलेक्ट्रिक आर्किंग संभवत: नुकसानदेह घटक होती है (और उपयोगकर्ता)।

ये परिणाम परिपथ का वर्णन करने वाले अंतर समीकरण को समाधान करके भी प्राप्त हो सकते हैं:

पहला समीकरण एकीकृत कारक का उपयोग करके समाधान किया जाता है और वर्तमान को प्राप्त करता है जिसे VL देने के लिए विभेदित किया जाना चाहिए ;दूसरा समीकरण सीधा है। समाधान बिल्कुल वैसा ही हैं जैसा कि लाप्लास ट्रांसफॉर्म के माध्यम से प्राप्त होता है।

शार्ट परिपथ समीकरण

शॉर्ट परिपथ मूल्यांकन के लिए, आरएल परिपथ पर विचार किया जाता है। अधिक सामान्य समीकरण है:

प्रारंभिक शर्त के साथ:

जिसे लाप्लास ट्रांसफॉर्म द्वारा हल किया जा सकता है:

इस प्रकार:

तब एंटीट्रांसफॉर्म रिटर्न:

यदि स्रोत वोल्टेज हेविसाइड स्टेप फलन (DC) है:

रिटर्न:

यदि स्रोत वोल्टेज साइनसोइडल फलन (एसी) है:

रिटर्न:


समानांतर परिपथ

जब अवरोधक और प्रारंभ करनेवाला दोनों समानांतर कनेक्शन में जुड़े होते हैं और वोल्टेज स्रोत के माध्यम से आपूर्ति की जाती है, तो इसे आरएल समानांतर परिपथ के रूप में जाना जाता है।[2] समानांतर आरएल परिपथ सामान्यतःश्रृंखला परिपथ की तुलना में कम ब्याज का होता है जब तक कि वर्तमान स्रोत द्वारा खिलाया जाता है। यह अधिक सीमा तक है क्योंकि आउटपुट वोल्टेज (Vout) इनपुट वोल्टेज (Vin) के बराबर है; परिणामस्वरूप, यह परिपथ वोल्टेज इनपुट सिग्नल के लिए फ़िल्टर के रूप में कार्य नहीं करता है।

जटिल प्रतिबाधा के साथ:

इससे पता चलता है कि प्रारंभ करनेवाला 90 ° से प्रतिरोधी (और स्रोत) वर्तमान को पीछे छोड़ देता है।

समानांतर परिपथ को कई एम्पलीफायर परिपथ के आउटपुट पर देखा जाता है, और उच्च आवृत्तियों पर कैपेसिटिव लोडिंग प्रभावों से एम्पलीफायर को अलग करने के लिए उपयोग किया जाता है।कैपेसिटेंस द्वारा प्रस्तुत किए गए चरण शिफ्ट के कारण, कुछ एम्पलीफायर बहुत उच्च आवृत्तियों पर अस्थिर हो जाते हैं, और दोलन करते हैं। यह ध्वनि की गुणवत्ता और घटक जीवन को विशेष रूप से ट्रांजिस्टर को प्रभावित करता है।

यह भी देखें

संदर्भ

  1. "RL Circuit: Formula, Equitation & Diagram | Linquip" (in English). 2021-08-24. Retrieved 2022-03-16.
  2. 2.0 2.1 "RL Circuit : Working, Phasor Diagram, Impedance & Its Uses". ElProCus - Electronic Projects for Engineering Students (in English). 2021-04-06. Retrieved 2022-03-16.