संरचनात्मक स्थिरता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Concept in mathematics}} {{One source|text=This article lacks inline citations.|date=December 2010}} गणित...")
 
No edit summary
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Concept in mathematics}}
{{Short description|Concept in mathematics}}
{{One source|text=This article lacks [[WP:citing sources#Inline citations|inline citations]].|date=December 2010}}
गणित में '''संरचनात्मक स्थिरता''' गतिशील प्रणाली की मौलिक संपत्ति होती है, जिसका अर्थ है कि प्रक्षेपवक्रों का गुणात्मक व्यवहार छोटे अल्प क्षोभ (त्रुटिहीन रूप से'' C<sup>1</sup>-अल्प क्षोभ)'' से अप्रभावित होता है
[[ गणित ]] में, संरचनात्मक स्थिरता एक गतिशील प्रणाली की एक मौलिक संपत्ति है, जिसका अर्थ है कि प्रक्षेपवक्रों का गुणात्मक व्यवहार छोटे गड़बड़ियों से अप्रभावित है (सटीक रूप से लगातार अलग होने के लिए | '' C '' '' 'C' '<sup>1 </sup> -small गड़बड़ी)।


इस तरह के गुणात्मक गुणों के उदाहरण निश्चित बिंदु (गणित) और [[ आवधिक कक्षा ]]ओं (लेकिन उनकी अवधि नहीं) की संख्या हैं।Lyapunov स्थिरता के विपरीत, जो एक निश्चित प्रणाली के लिए प्रारंभिक स्थितियों के गड़बड़ी पर विचार करता है, संरचनात्मक स्थिरता प्रणाली के गड़बड़ी से संबंधित है।इस धारणा के वेरिएंट [[ साधारण [[ अंतर ]] समीकरण ]]ों की प्रणालियों पर लागू होते हैं, चिकनी कई गुना और [[ प्रवाह (गणित) ]] पर [[ वेक्टर क्षेत्र ]] उनके द्वारा उत्पन्न होते हैं, और diffeomorphisms।
इस तरह के गुणात्मक गुणों के उदाहरण निश्चित बिंदु और आवधिक कक्षाओं की संख्या (लेकिन उनकी अवधि नहीं) हैं।  ल्यापुनॉफ कि स्थिरता के विपरीत, जो निश्चित प्रणाली के लिए प्रारंभिक स्थितियों के अल्प क्षोभ पर विचार करता है, संरचनात्मक स्थिरता प्रणाली अल्प क्षोभ से संबंधित है। इस धारणा के परिवर्त रूप सामान्यतः अंतर समीकरणों की प्रणालियों पर लागू होते हैं, समतल मैनिफोल्ड पर सदिश क्षेत्र और उनके द्वारा उत्पन्न प्रवाह, और उनके द्वारा भिन्नता उत्पन्न होती है।


संरचनात्मक रूप से स्थिर प्रणालियों को 1937 में [[ Aleksandr Andronov ]] और [[ Lev Pontryagin ]] द्वारा Systèmes Grossiers, या किसी न किसी सिस्टम के नाम से पेश किया गया था।उन्होंने विमान, एंड्रोनोव -पोंट्रीगिन मानदंड में किसी न किसी सिस्टम के लक्षण वर्णन की घोषणा की।इस मामले में, संरचनात्मक रूप से स्थिर सिस्टम '' विशिष्ट '' हैं, वे उपयुक्त टोपोलॉजी के साथ संपन्न सभी प्रणालियों के स्थान में एक खुला घना सेट बनाते हैं।उच्च आयामों में, यह अब सच नहीं है, यह दर्शाता है कि विशिष्ट गतिशीलता बहुत जटिल हो सकती है (सीएफ [[ अजीब आकर्षण ]])।मनमाना आयामों में संरचनात्मक रूप से स्थिर प्रणालियों का एक महत्वपूर्ण वर्ग [[ एनोसोव डिफोमोर्फिज्म ]] और प्रवाह द्वारा दिया गया है।
1937 में '''अलेक्जेंडर एंड्रोनोव''' और '''लेव पोंट्रीगिन''' द्वारा संरचनात्मक रूप से स्थिर प्रणालियों को '''"प्रणाली्स ग्रॉसियर्स"''' या रफ प्रणाली्स के नाम से प्रस्तुत किया गया था। उन्होंने विमान, एंड्रोनोव -पोंट्रीगिन मानदंड में किसी न किसी प्रणाली के लक्षण के वर्णन की घोषणा की।  इस स्थितियों में, संरचनात्मक रूप से स्थिर प्रणालियां विशिष्ट हैं, वे उपयुक्त टोपोलॉजी से संपन्न सभी प्रणालियों के स्थान में एक खुले घने सेट का निर्माण करती हैं। उच्च आयामों में, यह दर्शाता जाता है कि विशिष्ट गतिशीलता बहुत जटिल हो सकती है (सीएफ [[ अजीब आकर्षण |असामान्यतः अत्ट्रेक्टर]] ) यादृच्छिक आयामों संरचनात्मक रूप से स्थिर प्रणालियों का एक महत्वपूर्ण वर्ग '''एनोसोव डिफियोमोर्फिज्म''' और प्रवाह द्वारा दिया गया है।


== परिभाषा ==
== परिभाषा ==


चलो जी 'आर' में एक [[ खुला सेट ]] है<sup>N </sup> [[ कॉम्पैक्ट सेट ]] क्लोजर और स्मूथ (n & minus; 1) -डिमेंशनल [[ सीमा (टोपोलॉजी) ]] के साथ।अंतरिक्ष एक्स पर विचार करें<sup>1 </sup> (g) c के g पर प्रतिबंधों से युक्त<sup>आर पर 1 </sup> वेक्टर फ़ील्ड<sup>n </sup> जो G की सीमा के लिए ट्रांसवर्सल हैं और आवक उन्मुख हैं।यह स्थान सी के साथ संपन्न है<sup>सामान्य फैशन में 1 </sup> मीट्रिक (गणित)।एक वेक्टर फ़ील्ड f x<sup>1 </sup> (g) 'कमजोर रूप से संरचनात्मक रूप से स्थिर' है यदि किसी भी पर्याप्त रूप से छोटे गड़बड़ी f के लिए<sub>1</sub>, इसी प्रवाह जी पर टोपोलॉजिकल रूप से समतुल्य हैं: एक [[ गृहिणी ]] H: G → G मौजूद है जो F के उन्मुख प्रक्षेपवक्रों को F के उन्मुख प्रक्षेपवक्र में बदल देता है<sub>1</sub>।यदि, इसके अलावा, किसी भी ε> 0 के लिए होमोमोर्फिज्म एच को सी के लिए चुना जा सकता है<sup>0 </sup> ε-Close Idectition Map पर जब f<sub>1</sub> f के आधार पर f के एक उपयुक्त पड़ोस से संबंधित है, फिर f को (दृढ़ता से) 'संरचनात्मक रूप से स्थिर' कहा जाता है।ये परिभाषाएं सीमा के साथ एन-डायमेंशनल कॉम्पैक्ट चिकनी कई गुना के मामले में एक सीधा तरीके से विस्तारित होती हैं।एंड्रोनोव और पोंट्रीगिन ने मूल रूप से मजबूत संपत्ति माना।वेक्टर क्षेत्रों और प्रवाह के स्थान पर डिफोमोर्फिज्म के लिए अनुरूप परिभाषाएं दी जा सकती हैं: इस सेटिंग में, होमोमोर्फिज्म एच को एक सामयिक संयुग्म होना चाहिए।
मान लेते है , G को '''R'''<sup>''n''</sup> में [[ कॉम्पैक्ट सेट |कॉम्पैक्ट क्लोजर]] और समतल (n-1) -आयामी सीमा के साथ डोमेन बना होता है। स्थान  ''X''<sup>1</sup>(''G'') पर विचार करें  जिसमें '''R'''<sup>''n''</sup> पर ''C''<sup>1</sup> सदिश क्षेत्रों में ''G प्रतिबंध'' सम्मलित होता हैं जो G की सीमा के अनुप्रस्थ हैं और आवक उन्मुख होता हैं। यह स्थान सामान्य रूप से ''C''<sup>1</sup> मीट्रिक से संपन्न है। एक सदिश क्षेत्र ''F'' ''X''<sup>1</sup>(''G'') ' अशक्त  संरचनात्मक रूप से स्थिर' होता है यदि किसी पर्याप्त रूप से अल्प क्षोभ ''F''<sub>1</sub> के लिए, संबंधित प्रवाह G पर सामयिक रूप से समतुल्य होता हैं: होमोमोर्फिज्म उपस्थित है:G → G जो F के उन्मुख प्रक्षेपवक्र को F1 उन्मुख प्रक्षेपवक्र में बदल देता है। यदि, इसके अतिरिक्त, किसी भी ε> 0 के लिए होमोमोर्फिज्म h को C0 ε- पहचान मानचित्र के समीप चुना जा सकता है जब F1 ε के आधार पर F के उपयुक्त निकटतम से संबंधित होता है, तो F को संरचनात्मक रूप से स्थिर करा जाता है। ये परिभाषाएं सीमांत के साथ एन-डायमेंशनल सघन स्मूथ मैनिफोल्ड्स के स्थितियों में सीधे तरीके से विस्तारित होती हैं।  एंड्रोनोव और पोंट्रीगिन को मूल रूप से मजबूत संपत्ति माना जाता था। सदिश क्षेत्रों और प्रवाह के स्थान पर भिन्नता के अनुरूप परिभाषाएं दी जा सकती हैं: इस प्रणाली में, होमोमोर्फिज्म एच को एक सांस्थितिक संयुग्मन होना चाहिए।


यह ध्यान रखना महत्वपूर्ण है कि टोपोलॉजिकल तुल्यता को चिकनाई के नुकसान के साथ महसूस किया जाता है: मानचित्र एच, सामान्य रूप से, एक अंतर नहीं हो सकता है।इसके अलावा, हालांकि टोपोलॉजिकल तुल्यता उन्मुख प्रक्षेपवक्रों का सम्मान करती है, टोपोलॉजिकल संयुग्मन के विपरीत, यह समय-संगत नहीं है।इस प्रकार, टोपोलॉजिकल तुल्यता की प्रासंगिक धारणा भोले सी की काफी कमजोर है<sup>1 </sup> वेक्टर क्षेत्रों की संयुग्मता।इन प्रतिबंधों के बिना, निश्चित बिंदुओं या आवधिक कक्षाओं के साथ कोई निरंतर समय प्रणाली संरचनात्मक रूप से स्थिर नहीं हो सकती थी।कमजोर संरचनात्मक रूप से स्थिर सिस्टम x में एक खुला सेट बनाते हैं<sup>1 </sup> (g), लेकिन यह अज्ञात है कि क्या एक ही संपत्ति मजबूत मामले में रखती है।
यह ध्यान रखना महत्वपूर्ण है कि टोपोलॉजिकल समतुल्यता को सहजता नुकसान के साथ संपादित किया जाता है: मानचित्र ''h'', सामान्यतः रूप से, एक भिन्नता नहीं हो होती है। इसके अतिरिक्त, चूंकि टोपोलॉजिकल समकक्ष उन्मुख प्रक्षेपवक्रों का सम्मान करता है, इसलिए टोपोलॉजिकल संयुग्मन के विपरीत, यह समय-संगत नहीं होता है। इस प्रकार, सामयिक तुल्यता की प्रासंगिक धारणा सदिश क्षेत्रों के सरल ''C''<sup>1</sup> संयुग्मन का अधिक कमजोर बनता है।  इन प्रतिबंधों के बिना, निश्चित बिंदुओं या आवधिक कक्षाओं वाली कोई निरंतर समय प्रणाली संरचनात्मक रूप से स्थिर नहीं हो सकती थी। कमजोर संरचनात्मक रूप से स्थिर प्रणालियां ''X''<sup>1</sup>(''G''), में एक खुला सेट बनाते हैं,  किन्तु यह अज्ञात है कि मजबूत स्थितियों में समान गुण धारण करता है या नहीं।


== उदाहरण ==
== उदाहरण ==


सी की संरचनात्मक स्थिरता के लिए आवश्यक और पर्याप्त स्थिति<sup>1 </sup> यूनिट डिस्क डी पर वेक्टर फ़ील्ड जो सीमा के लिए और [[ दो-क्षेत्र ]] के लिए ट्रांसवर्सल हैं<sup>2 </sup> को एंड्रोनोव और पोंट्रीगिन के संस्थापक पेपर में निर्धारित किया गया है।एंड्रोनोव-पोंट्रीगिन मानदंड के अनुसार, ऐसे क्षेत्र संरचनात्मक रूप से स्थिर होते हैं यदि और केवल अगर उनके पास केवल कई विलक्षण बिंदु (हाइपरबोलिक संतुलन बिंदु) और आवधिक प्रक्षेपवक्र ([[ सीमा चक्र ]]) हैं, जो सभी गैर-पतित (हाइपरबोलिक) हैं, और नहीं करते हैं, और नहीं करते हैं, और नहीं करते हैं।काठी-से-साहसी कनेक्शन हैं।इसके अलावा, सिस्टम का गैर-भटकने वाला सेट ठीक एकवचन बिंदुओं और आवधिक कक्षाओं का मिलन है।विशेष रूप से, दो आयामों में संरचनात्मक रूप से स्थिर वेक्टर क्षेत्रों में [[ होमोक्लिनिनिक ]] प्रक्षेपवक्र नहीं हो सकते हैं, जो कि हेनरी पोइंकेरे द्वारा खोजे गए गतिशीलता को बहुत जटिल करते हैं।
यूनिट डिस्क D पर ''C''<sup>1</sup>  वेक्टर क्षेत्रों की संरचनात्मक स्थिरता के लिए आवश्यक और पर्याप्त स्थिति जो सीमांत क्षेत्रों के लिए अनुप्रस्थ हैं और दो-क्षेत्र ''S''<sup>2</sup> पर एंड्रोनोव और पोंट्रीगिन के मूलभूत दस्तावेज़ में निर्धारित की गई हैं। एंड्रोनोव-पोंट्रीगिन मानदंड के अनुसार, ऐसे क्षेत्र संरचनात्मक रूप से स्थिर होते हैं यदि उनके पास केवल कई विलक्षण बिंदु (हाइपरबोलिक संतुलन बिंदु) और आवधिक प्रक्षेपवक्र ([[ सीमा चक्र |सीमा चक्र]]) हैं, जो सभी गैर-पतित (अतिपरवलीय) और सैडल-टू-सैडल कनेक्शन नहीं होते हैं। इसके अतिरिक्त, प्रणाली का गैर-घूमने वाला सेट ठीक विलक्षण बिंदु और आवधिक कक्षाओं का मिलान होता है। विशेष रूप से, दो आयामों में संरचनात्मक रूप से स्थिर वेक्टर क्षेत्रों में होमक्लिनिक प्रक्षेपवक्र नहीं हो सकते हैं, जो गतिशीलता को अत्यधिक जटिल करते हैं, जैसा कि '''हेनरी पॉइनकेयर''' द्वारा खोजा गया था।


[[ टोरस्र्स ]] पर गैर-विलय चिकनी वेक्टर क्षेत्रों की संरचनात्मक स्थिरता की जांच पॉइंकेरे और [[ अरनौद डेनजॉय ]] द्वारा विकसित सिद्धांत का उपयोग करके की जा सकती है।Poincaré पुनरा[[ वृत्त ]]ि मानचित्र का उपयोग करते हुए, सर्कल के diffeomorphisms की संरचनात्मक स्थिरता का निर्धारण करने के लिए प्रश्न कम हो जाता है।रोटेशन नंबर पर डेनजॉय के प्रमेय के परिणामस्वरूप, एक ओरिएंटेशन को संरक्षित करता है<sup>2 </sup> सर्कल का diffeomorphism the संरचनात्मक रूप से स्थिर है यदि और केवल अगर इसकी [[ रोटेशन संख्या ]] तर्कसंगत है, ρ (ƒ) = p/q, और आवधिक प्रक्षेपवक्र, जो सभी की अवधि Q है, गैर-पतित हैं: जैकबियन हैंमैट्रिक्स और to का निर्धारक<sup>Q </sup> आवधिक बिंदुओं पर 1 से अलग है, [[ सर्कल मैप ]] देखें।
[[ टोरस्र्स |'''टोरस्र्स''']] पर गैर-विलय समतल सदिश क्षेत्रों की संरचनात्मक स्थिरता की जांच '''पोंकारे''' और '''अरनॉड डेंजॉय''' द्वारा विकसित सिद्धांत का उपयोग करके की जा सकती है। पॉइनकेयर पुनरावृत्ति मानचित्र का उपयोग करते हुए, प्रश्न को वृत्त के डिफियोमोर्फिज्म की संरचनात्मक स्थिरता का निर्धारण करने के लिए कम किया जाता है। डेनजॉय प्रमेय के परिणाम के रूप में, वृत्त के ''C''<sup>2</sup> डिफियोमोर्फिज्म ''ƒ'' को संरक्षित करने वाला एक निर्देशन संरचनात्मक रूप से स्थिर होता है, यदि इसकी रोटेशन संख्या तर्कसंगत है, ''ρ''(''ƒ'') = ''p''/''q'', और आवधिक प्रक्षेपवक्र, जिसमें सभी की अवधि ''q'' गैर-पतित हैं:आवधिक बिंदुओं पर ''ƒ<sup>q</sup>'' का जैकोबियन 1 से भिन्न होता है, वृत्त मानचित्र देखें।


[[ दिमित्री एनोसोव ]] ने पाया कि टोरस के हाइपरबोलिक ऑटोमोर्फिज्म, जैसे कि अर्नोल्ड के कैट मैप, संरचनात्मक रूप से स्थिर हैं।इसके बाद उन्होंने इस कथन को एक व्यापक वर्ग के सिस्टम के लिए सामान्य किया, जिसे तब से Anosov diffeomorphisms और Anosov प्रवाह कहा जाता है।एनोसोव प्रवाह का एक प्रसिद्ध उदाहरण जियोडेसिक प्रवाह द्वारा निरंतर नकारात्मक वक्रता, सीएफ [[ हदामार्ड बिलियर्ड्स ]] की सतह पर दिया गया है।
[[ दिमित्री एनोसोव | '''दिमित्री एनोसोव''']] ने पाया कि टोरस के हाइपरबोलिक ऑटोमोर्फिज्म, जैसे कि अर्नोल्ड के कैट मैप, संरचनात्मक रूप से स्थिर हैं। इसके बाद उन्होंने इस कथन को प्रणाली के एक व्यापक वर्ग के लिए सामान्यीकृत किया, जिसे तब से एनोसोव डिफियोमोर्फिज्म और एनोसोव प्रवाह कहा जाता है। एनोसोव प्रवाह का एक प्रसिद्ध उदाहरण जियोडेसिक प्रवाह द्वारा निरंतर नकारात्मक वक्रता, '''सीएफ हैडमार्ड बिलियर्ड्स''' की सतह पर दिया गया है।


== इतिहास और महत्व ==
== इतिहास और महत्व ==


सिस्टम की संरचनात्मक स्थिरता ठोस भौतिक प्रणालियों के विश्लेषण के लिए गतिशील प्रणालियों के गुणात्मक सिद्धांत को लागू करने के लिए एक औचित्य प्रदान करती है।इस तरह के गुणात्मक विश्लेषण का विचार [[ आकाशीय यांत्रिकी ]] में [[ तीन-शरीर की समस्या ]] पर हेनरी पोइंकेरे के काम पर वापस जाता है।एक ही समय के आसपास, [[ अलेक्जेंडर ल्यापुनोव ]] ने एक व्यक्तिगत प्रणाली के छोटे गड़बड़ियों की स्थिरता की सख्ती से जांच की।व्यवहार में, विभिन्न छोटे इंटरैक्शन की उपस्थिति के कारण सिस्टम (यानी विभेदक समीकरण) का विकास कानून कभी नहीं जाना जाता है।इसलिए, यह जानना महत्वपूर्ण है कि गतिशीलता की बुनियादी विशेषताएं मॉडल प्रणाली के किसी भी छोटे गड़बड़ी के लिए समान हैं, जिसका विकास एक निश्चित ज्ञात भौतिक कानून द्वारा नियंत्रित होता है।गुणात्मक विश्लेषण को आगे 1920 के दशक में [[ जॉर्ज बिरखॉफ़ ]] द्वारा विकसित किया गया था, लेकिन पहली बार 1937 में एंड्रोनोव और पोंट्रीगिन द्वारा किसी न किसी प्रणाली की अवधारणा की शुरुआत के साथ औपचारिक रूप दिया गया था। यह तुरंत एंड्रोनोव, विट, और खाइकिन द्वारा दोलनों के साथ भौतिक प्रणालियों के विश्लेषण के लिए लागू किया गया था।संरचनात्मक स्थिरता शब्द [[ सोलोमन लेफसचेट्ज़ ]] के कारण है, जिन्होंने अंग्रेजी में अपने मोनोग्राफ के अनुवाद की देखरेख की।1960 के दशक में हाइपरबोलिक डायनामिक्स के संदर्भ में [[ स्टीफन स्मेल ]] और उनके स्कूल द्वारा संरचनात्मक स्थिरता के विचारों को लिया गया था।इससे पहले, [[ मार्स्टन मोर्स ]] और [[ हस्लर व्हिटनी ]] ने पहल की और रेने थॉम ने अलग -अलग मानचित्रों के लिए स्थिरता का एक समानांतर सिद्धांत विकसित किया, जो [[ विलक्षणता सिद्धांत ]] का एक महत्वपूर्ण हिस्सा है।थॉम ने जैविक प्रणालियों के लिए इस सिद्धांत के अनुप्रयोगों की परिकल्पना की।स्मेल और थॉम दोनों ने मौरिसियो पेक्सोटो के साथ सीधे संपर्क में काम किया, जिन्होंने 1950 के दशक के अंत में पेक्सोटो के प्रमेय को विकसित किया।
प्रणाली की संरचनात्मक स्थिरता ठोस भौतिक प्रणालियों के विश्लेषण के लिए गतिशील प्रणालियों के गुणात्मक सिद्धांत को लागू करने का औचित्य प्रदान करती है। इस तरह के गुणात्मक विश्लेषण का विचार [[ आकाशीय यांत्रिकी |खगोलीय यांत्रिकी]] में '''त्रिपिंड समस्या''' पर हेनरी पोंकारे काम पर वापस जाते है। लगभग उसी समय, अलेक्सांद्र लायपुनोव ने एक व्यक्तिगत प्रणाली के अल्प क्षोभ की स्थिरता की सख्ती से जांच की गयी। व्यवहार में, विभिन्न छोटी-छोटी अंतःक्रियाओं की उपस्थिति के कारण प्रणाली का विकास नियम  (अर्थात विभेदक समीकरण) कभी भी त्रुटिहीन रूप से ज्ञात नहीं होता है। इसलिए, यह जानना महत्वपूर्ण है कि गतिशीलता की बुनियादी विशेषताएं मॉडल प्रणाली किसी भी छोटे अल्प क्षोभ के लिए समान हैं, जिसका विकास एक निश्चित ज्ञात भौतिक कानून द्वारा नियंत्रित होता है। 1920 के दशक में जॉर्ज बिरखॉफ द्वारा गुणात्मक विश्लेषण को और विकसित किया गया था,   किन्तु पहली बार 1937 में '''एंड्रोनोव और पोंट्रीगिन''' द्वारा किसी न किसी प्रणाली की अवधारणा की शुरुआत के साथ इसे औपचारिक रूप दिया गया था। इसे तुरंत एंड्रोनोव, विट और खैकिन द्वारा दोलनों के साथ भौतिक प्रणालियों के विश्लेषण पर लागू किया गया था। "संरचनात्मक स्थिरता" शब्द सोलोमन लेफ्शेट्ज़ के कारण है, जिन्होंने अंग्रेजी में अपने मोनोग्राफ के अनुवाद का निरीक्षण किया। 1960 के दशक में अतिशयोक्तिपूर्ण गतिकी के संदर्भ में संरचनात्मक स्थिरता के विचार '''स्टीफन स्मेल''' और उनके स्कूल द्वारा उठाए गए थे। इससे पहले, मारस्टन मोर्स और '''हस्लर व्हिटनी''' ने पहल की और रेने थॉम ने अलग-अलग मानचित्रों के लिए स्थिरता का एक समानांतर सिद्धांत विकसित किया,जो विलक्षणता सिद्धांत का एक महत्वपूर्ण हिस्सा है। थॉम ने जैविक प्रणालियों के लिए इस सिद्धांत के अनुप्रयोगों की परिकल्पना की। स्मेल और थॉम दोनों ने '''मौरिसियो पेक्सोटो''' के साथ सीधे संपर्क में काम किया, जिन्होंने 1950 के दशक के अंत में '''पिक्सोटो''' के प्रमेय को विकसित किया था।


जब स्मेल ने हाइपरबोलिक डायनेमिक सिस्टम के सिद्धांत को विकसित करना शुरू किया, तो उन्हें उम्मीद थी कि संरचनात्मक रूप से स्थिर सिस्टम विशिष्ट होंगे।यह कम आयामों में स्थिति के अनुरूप होता: प्रवाह दो प्रवाह के लिए और डिफोमोर्फिज्म के लिए आयाम एक।हालांकि, उन्होंने जल्द ही उच्च-आयामी कई गुना पर वेक्टर क्षेत्रों के उदाहरण पाए, जिन्हें एक मनमाने ढंग से छोटे गड़बड़ी द्वारा संरचनात्मक रूप से स्थिर नहीं बनाया जा सकता है (ऐसे उदाहरण बाद में आयाम तीन के कई गुना पर निर्मित किए गए हैं)।इसका मतलब यह है कि उच्च आयामों में, संरचनात्मक रूप से स्थिर सिस्टम [[ घने सेट ]] नहीं हैं।इसके अलावा, एक संरचनात्मक रूप से स्थिर प्रणाली में हाइपरबोलिक काठी बंद कक्षाओं और असीम रूप से कई आवधिक कक्षाओं के ट्रांसवर्सल होमोक्लिनिक प्रक्षेपवक्र हो सकते हैं, भले ही चरण स्थान कॉम्पैक्ट हो।एंड्रोनोव और पोंट्रीगिन द्वारा माना जाता है कि संरचनात्मक रूप से स्थिर प्रणालियों के निकटतम उच्च-आयामी एनालॉग को मोर्स-स्मेल सिस्टम द्वारा दिया गया है।
जब स्मेल ने अतिशयोक्तिपूर्ण गतिशील प्रणालियों के सिद्धांत को विकसित करना प्रारंभ किया, तो उन्होंने आशा व्यक्त की कि संरचनात्मक रूप से स्थिर प्रणाली विशिष्ट होगी। यह कम आयामों में स्थिति के अनुरूप होता: प्रवाह दो प्रवाह के लिए और डिफोमोर्फिज्म के लिए आयाम एक  होता है। चूंकि, उन्होंने जल्द ही उच्च-आयामी कई गुना पर वेक्टर क्षेत्रों के उदाहरण पाए, जिन्हें एक मनमाने ढंग से छोटे अल्प क्षोभ द्वारा संरचनात्मक रूप से स्थिर नहीं बनाया जा सकता है (ऐसे उदाहरण बाद में आयाम तीन के कई गुना पर निर्मित किए गए हैं)। इसका मतलब है कि उच्च आयामों में, संरचनात्मक रूप से स्थिर प्रणालियां सघन नहीं होती हैं।  इसके अतिरिक्त, एक संरचनात्मक रूप से स्थिर प्रणाली में अतिशयोक्तिपूर्ण सैडल बंद कक्षाओं और ट्रांसवर्सल होमक्लिनिक प्रक्षेपवक्र और असीम रूप से कई आवधिक कक्षाओं के ट्रांसवर्सल होमोक्लिनिक प्रक्षेपवक्र हो सकते हैं, यदिचरण स्थान सघन हो। एंड्रोनोव और पोंट्रीगिन द्वारा माना जाता है कि संरचनात्मक रूप से स्थिर प्रणालियों के निकटतम उच्च-आयामी एनालॉग को '''मोर्स-स्मेल''' प्रणाली द्वारा दिया गया है।


== यह भी देखें ==
== यह भी देखें ==
Line 40: Line 39:


{{Authority control}}
{{Authority control}}
[[Category: विभेदक समीकरण]] [[Category: गतिशील प्रणाली]] [[Category: स्थिरता सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 19/01/2023]]
[[Category:Created On 19/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गतिशील प्रणाली]]
[[Category:विभेदक समीकरण]]
[[Category:स्थिरता सिद्धांत]]

Latest revision as of 19:55, 3 February 2023

गणित में संरचनात्मक स्थिरता गतिशील प्रणाली की मौलिक संपत्ति होती है, जिसका अर्थ है कि प्रक्षेपवक्रों का गुणात्मक व्यवहार छोटे अल्प क्षोभ (त्रुटिहीन रूप से C1-अल्प क्षोभ) से अप्रभावित होता है ।

इस तरह के गुणात्मक गुणों के उदाहरण निश्चित बिंदु और आवधिक कक्षाओं की संख्या (लेकिन उनकी अवधि नहीं) हैं। ल्यापुनॉफ कि स्थिरता के विपरीत, जो निश्चित प्रणाली के लिए प्रारंभिक स्थितियों के अल्प क्षोभ पर विचार करता है, संरचनात्मक स्थिरता प्रणाली अल्प क्षोभ से संबंधित है। इस धारणा के परिवर्त रूप सामान्यतः अंतर समीकरणों की प्रणालियों पर लागू होते हैं, समतल मैनिफोल्ड पर सदिश क्षेत्र और उनके द्वारा उत्पन्न प्रवाह, और उनके द्वारा भिन्नता उत्पन्न होती है।

1937 में अलेक्जेंडर एंड्रोनोव और लेव पोंट्रीगिन द्वारा संरचनात्मक रूप से स्थिर प्रणालियों को "प्रणाली्स ग्रॉसियर्स" या रफ प्रणाली्स के नाम से प्रस्तुत किया गया था। उन्होंने विमान, एंड्रोनोव -पोंट्रीगिन मानदंड में किसी न किसी प्रणाली के लक्षण के वर्णन की घोषणा की। इस स्थितियों में, संरचनात्मक रूप से स्थिर प्रणालियां विशिष्ट हैं, वे उपयुक्त टोपोलॉजी से संपन्न सभी प्रणालियों के स्थान में एक खुले घने सेट का निर्माण करती हैं। उच्च आयामों में, यह दर्शाता जाता है कि विशिष्ट गतिशीलता बहुत जटिल हो सकती है (सीएफ असामान्यतः अत्ट्रेक्टर ) यादृच्छिक आयामों संरचनात्मक रूप से स्थिर प्रणालियों का एक महत्वपूर्ण वर्ग एनोसोव डिफियोमोर्फिज्म और प्रवाह द्वारा दिया गया है।

परिभाषा

मान लेते है , G को Rn में कॉम्पैक्ट क्लोजर और समतल (n-1) -आयामी सीमा के साथ डोमेन बना होता है। स्थान X1(G) पर विचार करें जिसमें Rn पर C1 सदिश क्षेत्रों में G प्रतिबंध सम्मलित होता हैं जो G की सीमा के अनुप्रस्थ हैं और आवक उन्मुख होता हैं। यह स्थान सामान्य रूप से C1 मीट्रिक से संपन्न है। एक सदिश क्षेत्र FX1(G) ' अशक्त संरचनात्मक रूप से स्थिर' होता है यदि किसी पर्याप्त रूप से अल्प क्षोभ F1 के लिए, संबंधित प्रवाह G पर सामयिक रूप से समतुल्य होता हैं: होमोमोर्फिज्म उपस्थित है:G → G जो F के उन्मुख प्रक्षेपवक्र को F1 उन्मुख प्रक्षेपवक्र में बदल देता है। यदि, इसके अतिरिक्त, किसी भी ε> 0 के लिए होमोमोर्फिज्म h को C0 ε- पहचान मानचित्र के समीप चुना जा सकता है जब F1 ε के आधार पर F के उपयुक्त निकटतम से संबंधित होता है, तो F को संरचनात्मक रूप से स्थिर करा जाता है। ये परिभाषाएं सीमांत के साथ एन-डायमेंशनल सघन स्मूथ मैनिफोल्ड्स के स्थितियों में सीधे तरीके से विस्तारित होती हैं। एंड्रोनोव और पोंट्रीगिन को मूल रूप से मजबूत संपत्ति माना जाता था। सदिश क्षेत्रों और प्रवाह के स्थान पर भिन्नता के अनुरूप परिभाषाएं दी जा सकती हैं: इस प्रणाली में, होमोमोर्फिज्म एच को एक सांस्थितिक संयुग्मन होना चाहिए।

यह ध्यान रखना महत्वपूर्ण है कि टोपोलॉजिकल समतुल्यता को सहजता नुकसान के साथ संपादित किया जाता है: मानचित्र h, सामान्यतः रूप से, एक भिन्नता नहीं हो होती है। इसके अतिरिक्त, चूंकि टोपोलॉजिकल समकक्ष उन्मुख प्रक्षेपवक्रों का सम्मान करता है, इसलिए टोपोलॉजिकल संयुग्मन के विपरीत, यह समय-संगत नहीं होता है। इस प्रकार, सामयिक तुल्यता की प्रासंगिक धारणा सदिश क्षेत्रों के सरल C1 संयुग्मन का अधिक कमजोर बनता है। इन प्रतिबंधों के बिना, निश्चित बिंदुओं या आवधिक कक्षाओं वाली कोई निरंतर समय प्रणाली संरचनात्मक रूप से स्थिर नहीं हो सकती थी। कमजोर संरचनात्मक रूप से स्थिर प्रणालियां X1(G), में एक खुला सेट बनाते हैं, किन्तु यह अज्ञात है कि मजबूत स्थितियों में समान गुण धारण करता है या नहीं।

उदाहरण

यूनिट डिस्क D पर C1 वेक्टर क्षेत्रों की संरचनात्मक स्थिरता के लिए आवश्यक और पर्याप्त स्थिति जो सीमांत क्षेत्रों के लिए अनुप्रस्थ हैं और दो-क्षेत्र S2 पर एंड्रोनोव और पोंट्रीगिन के मूलभूत दस्तावेज़ में निर्धारित की गई हैं। एंड्रोनोव-पोंट्रीगिन मानदंड के अनुसार, ऐसे क्षेत्र संरचनात्मक रूप से स्थिर होते हैं यदि उनके पास केवल कई विलक्षण बिंदु (हाइपरबोलिक संतुलन बिंदु) और आवधिक प्रक्षेपवक्र (सीमा चक्र) हैं, जो सभी गैर-पतित (अतिपरवलीय) और सैडल-टू-सैडल कनेक्शन नहीं होते हैं। इसके अतिरिक्त, प्रणाली का गैर-घूमने वाला सेट ठीक विलक्षण बिंदु और आवधिक कक्षाओं का मिलान होता है। विशेष रूप से, दो आयामों में संरचनात्मक रूप से स्थिर वेक्टर क्षेत्रों में होमक्लिनिक प्रक्षेपवक्र नहीं हो सकते हैं, जो गतिशीलता को अत्यधिक जटिल करते हैं, जैसा कि हेनरी पॉइनकेयर द्वारा खोजा गया था।

टोरस्र्स पर गैर-विलय समतल सदिश क्षेत्रों की संरचनात्मक स्थिरता की जांच पोंकारे और अरनॉड डेंजॉय द्वारा विकसित सिद्धांत का उपयोग करके की जा सकती है। पॉइनकेयर पुनरावृत्ति मानचित्र का उपयोग करते हुए, प्रश्न को वृत्त के डिफियोमोर्फिज्म की संरचनात्मक स्थिरता का निर्धारण करने के लिए कम किया जाता है। डेनजॉय प्रमेय के परिणाम के रूप में, वृत्त के C2 डिफियोमोर्फिज्म ƒ को संरक्षित करने वाला एक निर्देशन संरचनात्मक रूप से स्थिर होता है, यदि इसकी रोटेशन संख्या तर्कसंगत है, ρ(ƒ) = p/q, और आवधिक प्रक्षेपवक्र, जिसमें सभी की अवधि q गैर-पतित हैं:आवधिक बिंदुओं पर ƒq का जैकोबियन 1 से भिन्न होता है, वृत्त मानचित्र देखें।

दिमित्री एनोसोव ने पाया कि टोरस के हाइपरबोलिक ऑटोमोर्फिज्म, जैसे कि अर्नोल्ड के कैट मैप, संरचनात्मक रूप से स्थिर हैं। इसके बाद उन्होंने इस कथन को प्रणाली के एक व्यापक वर्ग के लिए सामान्यीकृत किया, जिसे तब से एनोसोव डिफियोमोर्फिज्म और एनोसोव प्रवाह कहा जाता है। एनोसोव प्रवाह का एक प्रसिद्ध उदाहरण जियोडेसिक प्रवाह द्वारा निरंतर नकारात्मक वक्रता, सीएफ हैडमार्ड बिलियर्ड्स की सतह पर दिया गया है।

इतिहास और महत्व

प्रणाली की संरचनात्मक स्थिरता ठोस भौतिक प्रणालियों के विश्लेषण के लिए गतिशील प्रणालियों के गुणात्मक सिद्धांत को लागू करने का औचित्य प्रदान करती है। इस तरह के गुणात्मक विश्लेषण का विचार खगोलीय यांत्रिकी में त्रिपिंड समस्या पर हेनरी पोंकारे काम पर वापस जाते है। लगभग उसी समय, अलेक्सांद्र लायपुनोव ने एक व्यक्तिगत प्रणाली के अल्प क्षोभ की स्थिरता की सख्ती से जांच की गयी। व्यवहार में, विभिन्न छोटी-छोटी अंतःक्रियाओं की उपस्थिति के कारण प्रणाली का विकास नियम (अर्थात विभेदक समीकरण) कभी भी त्रुटिहीन रूप से ज्ञात नहीं होता है। इसलिए, यह जानना महत्वपूर्ण है कि गतिशीलता की बुनियादी विशेषताएं मॉडल प्रणाली किसी भी छोटे अल्प क्षोभ के लिए समान हैं, जिसका विकास एक निश्चित ज्ञात भौतिक कानून द्वारा नियंत्रित होता है। 1920 के दशक में जॉर्ज बिरखॉफ द्वारा गुणात्मक विश्लेषण को और विकसित किया गया था, किन्तु पहली बार 1937 में एंड्रोनोव और पोंट्रीगिन द्वारा किसी न किसी प्रणाली की अवधारणा की शुरुआत के साथ इसे औपचारिक रूप दिया गया था। इसे तुरंत एंड्रोनोव, विट और खैकिन द्वारा दोलनों के साथ भौतिक प्रणालियों के विश्लेषण पर लागू किया गया था। "संरचनात्मक स्थिरता" शब्द सोलोमन लेफ्शेट्ज़ के कारण है, जिन्होंने अंग्रेजी में अपने मोनोग्राफ के अनुवाद का निरीक्षण किया। 1960 के दशक में अतिशयोक्तिपूर्ण गतिकी के संदर्भ में संरचनात्मक स्थिरता के विचार स्टीफन स्मेल और उनके स्कूल द्वारा उठाए गए थे। इससे पहले, मारस्टन मोर्स और हस्लर व्हिटनी ने पहल की और रेने थॉम ने अलग-अलग मानचित्रों के लिए स्थिरता का एक समानांतर सिद्धांत विकसित किया,जो विलक्षणता सिद्धांत का एक महत्वपूर्ण हिस्सा है। थॉम ने जैविक प्रणालियों के लिए इस सिद्धांत के अनुप्रयोगों की परिकल्पना की। स्मेल और थॉम दोनों ने मौरिसियो पेक्सोटो के साथ सीधे संपर्क में काम किया, जिन्होंने 1950 के दशक के अंत में पिक्सोटो के प्रमेय को विकसित किया था।

जब स्मेल ने अतिशयोक्तिपूर्ण गतिशील प्रणालियों के सिद्धांत को विकसित करना प्रारंभ किया, तो उन्होंने आशा व्यक्त की कि संरचनात्मक रूप से स्थिर प्रणाली विशिष्ट होगी। यह कम आयामों में स्थिति के अनुरूप होता: प्रवाह दो प्रवाह के लिए और डिफोमोर्फिज्म के लिए आयाम एक होता है। चूंकि, उन्होंने जल्द ही उच्च-आयामी कई गुना पर वेक्टर क्षेत्रों के उदाहरण पाए, जिन्हें एक मनमाने ढंग से छोटे अल्प क्षोभ द्वारा संरचनात्मक रूप से स्थिर नहीं बनाया जा सकता है (ऐसे उदाहरण बाद में आयाम तीन के कई गुना पर निर्मित किए गए हैं)। इसका मतलब है कि उच्च आयामों में, संरचनात्मक रूप से स्थिर प्रणालियां सघन नहीं होती हैं। इसके अतिरिक्त, एक संरचनात्मक रूप से स्थिर प्रणाली में अतिशयोक्तिपूर्ण सैडल बंद कक्षाओं और ट्रांसवर्सल होमक्लिनिक प्रक्षेपवक्र और असीम रूप से कई आवधिक कक्षाओं के ट्रांसवर्सल होमोक्लिनिक प्रक्षेपवक्र हो सकते हैं, यदिचरण स्थान सघन हो। एंड्रोनोव और पोंट्रीगिन द्वारा माना जाता है कि संरचनात्मक रूप से स्थिर प्रणालियों के निकटतम उच्च-आयामी एनालॉग को मोर्स-स्मेल प्रणाली द्वारा दिया गया है।

यह भी देखें

संदर्भ

  • Andronov, Aleksandr A.; Lev S. Pontryagin (1988) [1937]. V. I. Arnold (ed.). "Грубые системы" [Coarse systems]. Geometric Methods in the Theory of Differential Equations. Grundlehren der Mathematischen Wissenschaften, 250. Springer-Verlag, New York. ISBN 0-387-96649-8.
  • D. V. Anosov (2001) [1994], "Rough system", Encyclopedia of Mathematics, EMS Press
  • Charles Pugh and Maurício Matos Peixoto (ed.). "Structural stability". Scholarpedia.