सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक: Difference between revisions
m (Sugatha moved page सल्फर हेक्साफ्लोराइड सर्किट ब्रेकर to सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक without leaving a redirect) |
(text) |
||
Line 1: | Line 1: | ||
{{short description|Switching device used in high voltage power grids}} | {{short description|Switching device used in high voltage power grids}} | ||
[[File:Circuit Breaker 115 kV.jpg|thumb|right| एक एस एफ<sub>6</sub> पनबिजली जनरेटिंग स्टेशन पर 115 किलोवोल्ट, | [[File:Circuit Breaker 115 kV.jpg|thumb|right| एक एस एफ<sub>6</sub> पनबिजली जनरेटिंग स्टेशन पर 115 किलोवोल्ट, 1200 एम्पीयररेटेड परिपथ विच्छेदक लगाया गया है]][[सल्फर हेक्साफ्लोराइड]] परिपथ विच्छेदक [[सुरक्षात्मक रिले|रक्षी रिले]] द्वारा सक्रियकृत किए जाने पर विद्युत धाराओं को बाधित करके विद्युत [[बिजलीघर]] और वितरण प्रणालियों की रक्षा करते हैं। तेल, हवा या वैक्यूम के बजाय, सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक सर्किट खोलने पर चाप को ठंडा करने और बुझाने के लिए सल्फर हेक्साफ्लोराइड (SF<sub>6</sub>) गैस का उपयोग करता है। अन्य मीडिया की तुलना में लाभ में कम प्रचालन रव और गर्म गैसों का उत्सर्जन नहीं, और अपेक्षाकृत कम रखरखाव शामिल हैं। 1950 और उसके बाद विकसित, SF<sub>6</sub> परिपथ विच्छेदक व्यापक रूप से विद्युत ग्रिड में 800 किलोवोल्ट तक के संप्रेषण वोल्टेज पर, जनरेटर परिपथ विच्छेदक के रूप में और 35 किलोवोल्ट तक के वोल्टेज पर वितरण प्रणालियों में उपयोग किए जाते हैं। | ||
सल्फर हेक्साफ्लोराइड | सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक का उपयोग बाहरी वायु-रोधित उपकेंद्र में स्व-निहित उपकरण के रूप में किया जा सकता है या गैस-रोधित स्विचगियर में शामिल किया जा सकता है जो उच्च वोल्टेज पर सघन स्थापना की अनुमति देता है। | ||
== प्रचालन सिद्धांत == | == प्रचालन सिद्धांत == | ||
उच्च-वोल्टेज [[परिपथ वियोजक]] में वर्तमान व्यवधान माध्यम में दो संपर्कों को अलग करके प्राप्त की जाती है, जैसे कि सल्फर हेक्साफ्लोराइड (SF)<sub>6</sub>), उत्कृष्ट [[ढांकता हुआ|परावैद्युत]] और चाप-शमन गुण वाले होते हैं। संपर्क पृथक्करण के बाद, विद्युत प्रवाह चाप के माध्यम से ले जाया जाता है और जब इस चाप को पर्याप्त तीव्रता के गैस विस्फोट से ठंडा किया जाता है तो यह बाधित हो जाता है।<ref>{{Cite web|url = http://www.ewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2017-2_Tutorial_AC_HV_Circuit_Breakers_Dufournet.pdf|title = Tutorial AC HV Circuit Breakers |date=July 2017 |access-date=October 21, 2017 |website = ewh.ieee.org}}</ref> | उच्च-वोल्टेज [[परिपथ वियोजक|परिपथ विच्छेदक]] में वर्तमान व्यवधान माध्यम में दो संपर्कों को अलग करके प्राप्त की जाती है, जैसे कि सल्फर हेक्साफ्लोराइड (SF)<sub>6</sub>), उत्कृष्ट [[ढांकता हुआ|परावैद्युत]] और चाप-शमन गुण वाले होते हैं। संपर्क पृथक्करण के बाद, विद्युत प्रवाह चाप के माध्यम से ले जाया जाता है और जब इस चाप को पर्याप्त तीव्रता के गैस विस्फोट से ठंडा किया जाता है तो यह बाधित हो जाता है।<ref>{{Cite web|url = http://www.ewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2017-2_Tutorial_AC_HV_Circuit_Breakers_Dufournet.pdf|title = Tutorial AC HV Circuit Breakers |date=July 2017 |access-date=October 21, 2017 |website = ewh.ieee.org}}</ref> | ||
SF<sub>6</sub> गैस [[वैद्युतीयऋणात्मकता|विद्युत्-ऋणात्मकता]] है और मुक्त इलेक्ट्रॉनों को अवशोषित करने की मजबूत प्रवृत्ति है। वियोजक के संपर्क सल्फर हेक्साफ्लोराइड गैस के उच्च दबाव प्रवाह में खोले जाते हैं, और उनके बीच चाप टकरा जाता है। गैस अपेक्षाकृत अचल ऋणात्मक आयन बनाने के लिए चाप में संचालन मुक्त इलेक्ट्रॉनों को पकड़ती है। चाप में इलेक्ट्रॉनों के संचालन का यह नुकसान चाप को बुझाने के लिए पर्याप्त रोधन शक्ति बनाता है।<ref>{{Cite web|url = http://www.studyelectrical.com/2014/07/sulphur-hexaflouride-sf6-circuit-breaker-construction-working-advantages.html|title = Sulphur Hexafluoride (SF6) Circuit Breakers - Construction, Working and Advantages |date=July 2014 |access-date=July 7, 2015 |website = StudyElectrical.Com|publisher = usamayou|last = StudyElectrical.Com}}</ref> | SF<sub>6</sub> गैस [[वैद्युतीयऋणात्मकता|विद्युत्-ऋणात्मकता]] है और मुक्त इलेक्ट्रॉनों को अवशोषित करने की मजबूत प्रवृत्ति है। वियोजक के संपर्क सल्फर हेक्साफ्लोराइड गैस के उच्च दबाव प्रवाह में खोले जाते हैं, और उनके बीच चाप टकरा जाता है। गैस अपेक्षाकृत अचल ऋणात्मक आयन बनाने के लिए चाप में संचालन मुक्त इलेक्ट्रॉनों को पकड़ती है। चाप में इलेक्ट्रॉनों के संचालन का यह नुकसान चाप को बुझाने के लिए पर्याप्त रोधन शक्ति बनाता है।<ref>{{Cite web|url = http://www.studyelectrical.com/2014/07/sulphur-hexaflouride-sf6-circuit-breaker-construction-working-advantages.html|title = Sulphur Hexafluoride (SF6) Circuit Breakers - Construction, Working and Advantages |date=July 2014 |access-date=July 7, 2015 |website = StudyElectrical.Com|publisher = usamayou|last = StudyElectrical.Com}}</ref> | ||
चाप पर लगाया गया गैस ब्लास्ट इसे तेजी से ठंडा करने में सक्षम होना चाहिए ताकि कुछ सौ माइक्रोसेकंड में संपर्कों के बीच गैस का तापमान 20,000 केल्विन से 2000 केल्विन से कम हो जाए, ताकि यह क्षणिक उपलब्धि वोल्टेज का सामना करने में सक्षम हो वर्तमान व्यवधान के बाद सभी संपर्कों पर लागू किया गया। सल्फर हेक्साफ्लोराइड का उपयोग आमतौर पर वर्तमान उच्च-वोल्टेज | चाप पर लगाया गया गैस ब्लास्ट इसे तेजी से ठंडा करने में सक्षम होना चाहिए ताकि कुछ सौ माइक्रोसेकंड में संपर्कों के बीच गैस का तापमान 20,000 केल्विन से 2000 केल्विन से कम हो जाए, ताकि यह क्षणिक उपलब्धि वोल्टेज का सामना करने में सक्षम हो वर्तमान व्यवधान के बाद सभी संपर्कों पर लागू किया गया। सल्फर हेक्साफ्लोराइड का उपयोग आमतौर पर वर्तमान उच्च-वोल्टेज परिपथ विच्छेदक में 52 किलोवोल्ट से अधिक निर्धारित वोल्टेज पर किया जाता है। | ||
1980 के दशक में, चाप को विस्फोट करने के लिए आवश्यक दबाव ज्यादातर चाप ऊर्जा का उपयोग करके गैस ताप द्वारा उत्पन्न किया गया था। अब 800 किलोवोल्ट तक उच्च वोल्टेज | 1980 के दशक में, चाप को विस्फोट करने के लिए आवश्यक दबाव ज्यादातर चाप ऊर्जा का उपयोग करके गैस ताप द्वारा उत्पन्न किया गया था। अब 800 किलोवोल्ट तक उच्च वोल्टेज परिपथ विच्छेदक को चलाने के लिए कम ऊर्जा [[भरा हुआ वसंत|कमानी]] तंत्र का उपयोग करना संभव है। | ||
== संक्षिप्त इतिहास == | == संक्षिप्त इतिहास == | ||
1950 के दशक के मध्य में पेश किए जाने के बाद से | 1950 के दशक के मध्य में पेश किए जाने के बाद से उच्च-वोल्टेज परिपथ विच्छेदक बदल गए हैं, और कई बाधित करने वाले सिद्धांत विकसित किए गए हैं जिन्होंने संचालन ऊर्जा में बड़ी कमी के लिए क्रमिक रूप से योगदान दिया है। ये विच्छेदक आंतरिक या बहिरंग अनुप्रयोगों के लिए उपलब्ध हैं, बाद वाले विच्छेदक पोल के रूप में होते हैं जो संरचना पर लगे सिरेमिक अवरोधक में रखे जाते हैं। एक बाधाकारी माध्यम के रूप में SF<sub>6</sub> के उपयोग पर पहला पेटेंट जर्मनी में 1938 में विटाली ग्रोस ([[AEG|एईजी]]) द्वारा और स्वतंत्र रूप से बाद में संयुक्त राज्य अमेरिका में जुलाई 1951 में एच जे लिंगल, टी. ई ब्राउन और ए.पी. स्ट्रॉम ([[वेस्टिंगहाउस इलेक्ट्रिक (1886)]] द्वारा दायर किया गया था। | ||
वर्तमान रुकावट के लिए | वर्तमान रुकावट के लिए SF<sub>6</sub> का पहला औद्योगिक अनुप्रयोग 1953 तक है। उच्च-वोल्टेज 15 किलोवोल्ट से 161 किलोवोल्ट भार स्विच 600 एम्पीयर की विभंजन क्षमता के साथ विकसित किए गए थे। वेस्टिंगहाउस द्वारा 1956 में निर्मित पहला उच्च-वोल्टेज SF<sub>6</sub> परिपथ विच्छेदक, 115 किलोवोल्ट के तहत, 5 किलोएम्पीयर को बाधित कर सकता था, लेकिन इसमें प्रति पोल श्रृखला में छह बाधित कक्ष थे। | ||
1957 में, | 1957 में, SF<sub>6</sub> परिपथ विच्छेदक के लिए कश-प्रकार की तकनीक पेश की गई थी, जिसमें पिस्टन के सापेक्ष संचलन और गतिमान भाग से जुड़े सिलेंडर का उपयोग रोधन सामग्री से बने नोजल (चंचु) के माध्यम से चाप को विस्फोट करने के लिए आवश्यक दबाव वृद्धि उत्पन्न करने के लिए किया जाता है। इस तकनीक में, मुख्य रूप से गैस संपीड़न द्वारा दबाव वृद्धि प्राप्त की जाती है। | ||
1959 में वेस्टिंगहाउस द्वारा उच्च | 1959 में वेस्टिंगहाउस द्वारा उच्च लघुपथन विद्युत धारा क्षमता वाला पहला उच्च-वोल्टेज SF<sub>6</sub> परिपथ विच्छेदक बनाया गया था। यह परिपथ विच्छेदक भूसंपर्कित टैंक (जिसे डेड टैंक कहा जाता है) में 138 किलोवोल्ट (10,000 मेगावोल्ट एम्पीयर) के तहत 41.8 किलो एम्पीयर और 37.6 किलो एम्पीयर 230 किलोवोल्ट (15,000 मेगावोल्ट एम्पीयर) से कम को बाधित कर सकता है। यह प्रदर्शन पहले से ही महत्वपूर्ण था, लेकिन प्रति पोल तीन कक्ष और विस्फोट के लिए आवश्यक उच्च दबाव स्रोत (1.35 [[मेगापास्कल]]) एक बाधा थी जिसे बाद के घटनाक्रमों में टाला जाना था। | ||
SF<sub>6</sub> के उत्कृष्ट गुणों ने 1970 के दशक में इस तकनीक का तेजी से विस्तार किया और 800 किलोवोल्ट तक की उच्च रुकावट क्षमता वाले परिपथ विच्छेदक के विकास के लिए इसका उपयोग किया। | |||
[[Image:Gas circuit breaker operation 1.jpg|thumb|right|गैस | [[Image:Gas circuit breaker operation 1.jpg|thumb|right|गैस परिपथ विच्छेदक ऑपरेशन। नारंगी और लाल क्षेत्र विच्छेदक घटकों की गति से उत्पन्न उच्च दबाव वाली गैस दिखाते हैं।]]1983 के पहले एकल विराम 245 किलोवोल्ट और संबंधित 420 किलोवोल्ट से 550 किलोवोल्ट और 800 किलोवोल्ट की उपलब्धि, क्रमशः 2, 3, और 4 कक्ष प्रति पोल के साथ, उच्च वोल्टेज की पूरी श्रृंखला में SF<sub>6</sub> परिपथ विच्छेदक के प्रभुत्व का नेतृत्व किया। | ||
SF<sub>6</sub> परिपथ विच्छेदक की कई विशेषताएँ उनकी सफलता की व्याख्या कर सकती हैं: | |||
* बाधा डालने वाले कक्ष की सरलता जिसके लिए सहायक | * बाधा डालने वाले कक्ष की सरलता जिसके लिए सहायक विभंजन कक्ष की आवश्यकता नहीं होती है | ||
* पफर तकनीक द्वारा स्वायत्तता प्रदान की जाती है | * पफर तकनीक द्वारा स्वायत्तता प्रदान की जाती है | ||
* इंटरप्टिंग चैंबर्स की कम संख्या के साथ, 63 | * इंटरप्टिंग चैंबर्स की कम संख्या के साथ, 63 किलो एम्पीयर तक उच्चतम प्रदर्शन प्राप्त करने की संभावना | ||
* 2 से 2.5 चक्रों का लघु विराम समय | * 2 से 2.5 चक्रों का लघु विराम समय | ||
* उच्च विद्युत सहनशक्ति, बिना मरम्मत के कम से कम 25 वर्षों के संचालन की अनुमति देता है | * उच्च विद्युत सहनशक्ति, बिना मरम्मत के कम से कम 25 वर्षों के संचालन की अनुमति देता है | ||
Line 36: | Line 36: | ||
* कम रव का स्तर | * कम रव का स्तर | ||
प्रति पोल बाधित करने वाले कक्षों की संख्या में कमी से | प्रति पोल बाधित करने वाले कक्षों की संख्या में कमी से परिपथ विच्छेदक के साथ-साथ आवश्यक भागों और मुहरों की संख्या में काफी सरलता आई है। प्रत्यक्ष परिणाम के रूप में, परिपथ विच्छेदक की विश्वसनीयता में सुधार हुआ, जैसा कि बाद में [[बड़े इलेक्ट्रिक सिस्टम पर अंतर्राष्ट्रीय परिषद|इंटरनेशनल काउंसिल ऑन लार्ज इलेक्ट्रिक सिस्टम्स]] (CIGRE) के सर्वेक्षणों द्वारा सत्यापित किया गया। | ||
== डिजाइन सुविधाएँ == | == डिजाइन सुविधाएँ == | ||
=== थर्मल विस्फोट कक्ष === | === थर्मल विस्फोट कक्ष === | ||
परिपथ विच्छेदक की संचालन ऊर्जा को कम करने के उद्देश्य से पिछले 30 वर्षों में नए प्रकार के एसएफ 6 विभंजन चैंबर्स विकसित किए गए हैं, जो अभिनव व्यवधान सिद्धांतों को लागू करते हैं। इस विकास का एक उद्देश्य पोल में गतिशील बलों को कम करके विश्वसनीयता को और बढ़ाना था। 1980 के बाद से विकास ने SF<sub>6</sub> इंटरप्टिंग चैंबर्स के लिए रुकावट की सेल्फ-ब्लास्ट तकनीक का उपयोग देखा है। | |||
इन विकासों को डिजिटल सिमुलेशन में की गई प्रगति से सुगम बनाया गया है जो व्यापक रूप से बाधित कक्ष की ज्यामिति और ध्रुवों और तंत्र के बीच संबंध को अनुकूलित करने के लिए उपयोग किया जाता था। | इन विकासों को डिजिटल सिमुलेशन में की गई प्रगति से सुगम बनाया गया है जो व्यापक रूप से बाधित कक्ष की ज्यामिति और ध्रुवों और तंत्र के बीच संबंध को अनुकूलित करने के लिए उपयोग किया जाता था। | ||
यह तकनीक बहुत कुशल साबित हुई है और 550 | यह तकनीक बहुत कुशल साबित हुई है और 550 किलोवोल्ट तक के उच्च-वोल्टेज परिपथ विच्छेदक के लिए व्यापक रूप से लागू की गई है। इसने कम ऊर्जा वसंत-संचालित तंत्रों द्वारा संचालित परिपथ विच्छेदक की नई श्रेणियों के विकास की अनुमति दी है।[[File:Disjoncteur-autosoufflage.jpg|ऑटो-ब्लास्ट सर्किट ब्रेकर|अंगूठा|दाहिना]]प्रचालन ऊर्जा में कमी मुख्य रूप से गैस संपीड़न के लिए उपयोग की जाने वाली ऊर्जा को कम करके और चाप को बुझाने और वर्तमान रुकावट प्राप्त करने के लिए आवश्यक दबाव उत्पन्न करने के लिए चाप ऊर्जा का उपयोग करके हासिल की गई थी। कम वर्तमान रुकावट, रेटेड लघुपथन विद्युत धारा का लगभग 30% तक, एक पफर ब्लास्ट द्वारा प्राप्त किया जाता है। इसके अलावा उपलब्ध व्यापक ऊर्जा भी शामिल है। | ||
=== स्व-विस्फोट कक्ष === | === स्व-विस्फोट कक्ष === | ||
थर्मल ब्लास्ट तकनीक में और विकास विस्तार और संपीड़न वॉल्यूम के बीच एक वाल्व की शुरूआत के द्वारा किया गया था। कम धाराओं को बाधित करते समय वाल्व संपीड़न मात्रा में उत्पन्न अधिक दबाव के प्रभाव में खुलता है। पिस्टन क्रिया द्वारा प्राप्त गैस के संपीड़न के लिए चाप का ब्लो-आउट एक पफर | थर्मल ब्लास्ट तकनीक में और विकास विस्तार और संपीड़न वॉल्यूम के बीच एक वाल्व की शुरूआत के द्वारा किया गया था। कम धाराओं को बाधित करते समय वाल्व संपीड़न मात्रा में उत्पन्न अधिक दबाव के प्रभाव में खुलता है। पिस्टन क्रिया द्वारा प्राप्त गैस के संपीड़न के लिए चाप का ब्लो-आउट एक पफर परिपथ विच्छेदक के रूप में किया जाता है। उच्च धाराओं के रुकावट के मामले में, चाप ऊर्जा विस्तार की मात्रा में एक उच्च दबाव पैदा करती है, जिससे वाल्व बंद हो जाता है और इस प्रकार विस्तार की मात्रा को संपीड़न मात्रा से अलग कर दिया जाता है। विभंजन के लिए आवश्यक अधिक दबाव थर्मल प्रभाव और नोज़ल क्लॉगिंग प्रभाव के इष्टतम उपयोग द्वारा प्राप्त किया जाता है, जब भी आर्क का क्रॉस-सेक्शन नोज़ल में गैस के निकास को काफी कम कर देता है। गैस संपीड़न द्वारा अत्यधिक ऊर्जा खपत से बचने के लिए, कम शॉर्ट सर्किट धाराओं के रुकावट के लिए आवश्यक मूल्य तक संपीड़न में अधिक दबाव को सीमित करने के लिए पिस्टन पर एक वाल्व लगाया जाता है। | ||
[[Image:Disjoncteur-selfblast.svg|thumb|right|सेल्फ-ब्लास्ट | [[Image:Disjoncteur-selfblast.svg|thumb|right|सेल्फ-ब्लास्ट परिपथ विच्छेदक चैंबर (1) बंद, (2) कम विद्युत प्रवाह को बाधित करना, (3) उच्च विद्युत प्रवाह को बाधित करना, और (4) खुला।]]यह तकनीक, जिसे "स्व-विस्फोट" के रूप में जाना जाता है, अब 1980 के बाद से कई प्रकार के व्यवधान कक्षों के विकास के लिए बड़े पैमाने पर उपयोग किया गया है। विभंजन परीक्षणों के माध्यम से डिजिटल सिमुलेशन और सत्यापन द्वारा प्राप्त चाप रुकावट की बढ़ी हुई समझ, इन स्व-विस्फोट परिपथ विच्छेदक की उच्च विश्वसनीयता में योगदान करती है। इसके अलावा, स्व-विस्फोट तकनीक द्वारा अनुमत परिचालन ऊर्जा में कमी, लंबे समय तक सेवा जीवन की ओर ले जाती है। | ||
=== संपर्कों की दोहरी गति === | === संपर्कों की दोहरी गति === | ||
ट्रिपिंग ऑपरेशन के दौरान खपत होने वाली गतिज ऊर्जा को कम करके | ट्रिपिंग ऑपरेशन के दौरान खपत होने वाली गतिज ऊर्जा को कम करके संचालन ऊर्जा में एक महत्वपूर्ण कमी भी प्राप्त की जा सकती है। एक तरीका यह है कि दो आर्किंग संपर्कों को विपरीत दिशाओं में विस्थापित किया जाए ताकि चाप की गति एक एकल मोबाइल संपर्क के साथ पारंपरिक लेआउट की आधी हो। | ||
[[Image:Disjoncteur HT-fig5.svg|thumb|right]]थर्मल और सेल्फ-ब्लास्ट सिद्धांतों ने | [[Image:Disjoncteur HT-fig5.svg|thumb|right]]थर्मल और सेल्फ-ब्लास्ट सिद्धांतों ने उच्च-वोल्टेज परिपथ विच्छेदक के संचालन के लिए कम-ऊर्जा स्प्रिंग मैकेनिज्म के उपयोग को सक्षम किया है। उन्होंने 1980 के दशक में उत्तरोत्तर पफर तकनीक को बदल दिया; पहले 72.5 किलोवोल्ट विच्छेदक में और फिर 145 किलोवोल्ट से 800 किलोवोल्ट तक। | ||
=== सिंगल मोशन और डबल मोशन तकनीक की तुलना === | === सिंगल मोशन और डबल मोशन तकनीक की तुलना === | ||
डबल मोशन तकनीक गतिमान भाग की ट्रिपिंग गति को आधा कर देती है। सिद्धांत रूप में, गतिज ऊर्जा को चौथाई किया जा सकता है यदि कुल गतिमान द्रव्यमान में वृद्धि नहीं की गई। हालाँकि, जैसे-जैसे कुल गतिमान द्रव्यमान बढ़ता है, गतिज ऊर्जा में व्यावहारिक कमी 60% के करीब होती है। कुल ट्रिपिंग ऊर्जा में संपीड़न ऊर्जा भी शामिल है, जो दोनों तकनीकों के लिए लगभग समान है। इस प्रकार, कुल ट्रिपिंग ऊर्जा की कमी लगभग 30% कम है, हालांकि सटीक मूल्य अनुप्रयोग और | डबल मोशन तकनीक गतिमान भाग की ट्रिपिंग गति को आधा कर देती है। सिद्धांत रूप में, गतिज ऊर्जा को चौथाई किया जा सकता है यदि कुल गतिमान द्रव्यमान में वृद्धि नहीं की गई। हालाँकि, जैसे-जैसे कुल गतिमान द्रव्यमान बढ़ता है, गतिज ऊर्जा में व्यावहारिक कमी 60% के करीब होती है। कुल ट्रिपिंग ऊर्जा में संपीड़न ऊर्जा भी शामिल है, जो दोनों तकनीकों के लिए लगभग समान है। इस प्रकार, कुल ट्रिपिंग ऊर्जा की कमी लगभग 30% कम है, हालांकि सटीक मूल्य अनुप्रयोग और संचालन तंत्र पर निर्भर करता है। विशिष्ट मामले के आधार पर, या तो डबल मोशन या सिंगल मोशन तकनीक सस्ती हो सकती है। परिपथ विच्छेदक रेंज के युक्तिकरण जैसे अन्य विचार भी लागत को प्रभावित कर सकते हैं। | ||
आर्क-असिस्टेड ओपनिंग के साथ थर्मल ब्लास्ट चैंबर | आर्क-असिस्टेड ओपनिंग के साथ थर्मल ब्लास्ट चैंबर | ||
इस व्यवधान सिद्धांत में चाप ऊर्जा का उपयोग एक तरफ थर्मल विस्तार द्वारा विस्फोट उत्पन्न करने के लिए किया जाता है और दूसरी तरफ, उच्च धाराओं में बाधा डालने पर | इस व्यवधान सिद्धांत में चाप ऊर्जा का उपयोग एक तरफ थर्मल विस्तार द्वारा विस्फोट उत्पन्न करने के लिए किया जाता है और दूसरी तरफ, उच्च धाराओं में बाधा डालने पर परिपथ विच्छेदक के चलने वाले हिस्से को तेज करने के लिए किया जाता है। रुकावट क्षेत्र के डाउनस्ट्रीम चाप ऊर्जा द्वारा उत्पादित अधिक दबाव चलती हिस्से से जुड़े एक सहायक पिस्टन पर लागू होता है। परिणामी बल गतिमान भाग को गति देता है, इस प्रकार ट्रिपिंग के लिए उपलब्ध ऊर्जा में वृद्धि होती है। इस व्यवधान सिद्धांत के साथ, उच्च-वर्तमान रुकावटों के दौरान, संचालन तंत्र द्वारा वितरित ट्रिपिंग ऊर्जा में लगभग 30% की वृद्धि करना और वर्तमान से स्वतंत्र रूप से प्रारंभिक गति को बनाए रखना संभव है। यह जनरेटर परिपथ विच्छेदक जैसे उच्च विभंजन धाराओं वाले परिपथ विच्छेदक के लिए स्पष्ट रूप से बेहतर अनुकूल है। | ||
== जेनरेटर | == जेनरेटर परिपथ विच्छेदक == | ||
[[Image:Open sulfur hexafluoride circuit breaker.jpg|thumb|right|जेनरेटर | [[Image:Open sulfur hexafluoride circuit breaker.jpg|thumb|right|जेनरेटर परिपथ विच्छेदक को 17.5 किलोवोल्ट और 63 किलो एम्पीयर के लिए रेट किया गया]]जेनरेटर परिपथ विच्छेदक (GCB) एक जनरेटर और स्टेप-अप वोल्टेज ट्रांसफॉर्मर के बीच जुड़े होते हैं। वे आम तौर पर उच्च-शक्ति जनरेटर (30 एमवीए से 1800 एमवीए) के आउटलेट पर विश्वसनीय, तेज और आर्थिक तरीके से उनकी रक्षा के लिए उपयोग किए जाते हैं। इस तरह के परिपथ विच्छेदक में उच्च ले जाने वाली वर्तमान रेटिंग (4 किलो एम्पीयर से 40 किलो एम्पीयर) होती है, और उच्च विभंजन क्षमता (50 किलो एम्पीयर से 275 किलो एम्पीयर) होती है। | ||
वे मध्यम वोल्टेज रेंज से संबंधित हैं, लेकिन IEC/IEEE 62771-37-013 द्वारा आवश्यक क्षणिक रिकवरी वोल्टेज क्षमता ऐसी है कि विशेष रूप से विकसित इंटरप्टिंग सिद्धांतों का उपयोग किया जाना चाहिए। थर्मल ब्लास्ट तकनीक का एक विशेष अवतार विकसित किया गया है और जनरेटर | वे मध्यम वोल्टेज रेंज से संबंधित हैं, लेकिन IEC/IEEE 62771-37-013 द्वारा आवश्यक क्षणिक रिकवरी वोल्टेज क्षमता ऐसी है कि विशेष रूप से विकसित इंटरप्टिंग सिद्धांतों का उपयोग किया जाना चाहिए। थर्मल ब्लास्ट तकनीक का एक विशेष अवतार विकसित किया गया है और जनरेटर परिपथ विच्छेदक पर लागू किया गया है। ऊपर वर्णित स्व-विस्फोट तकनीक का व्यापक रूप से एसएफ 6 जनरेटर परिपथ विच्छेदक में भी उपयोग किया जाता है, जिसमें संपर्क प्रणाली कम ऊर्जा, वसंत-संचालित तंत्र द्वारा संचालित होती है। ऐसे उपकरण का एक उदाहरण नीचे चित्र में दिखाया गया है; यह परिपथ विच्छेदक 17.5 किलोवोल्ट और 63 किलो एम्पीयर के लिए रेट किया गया है। | ||
== उच्च-शक्ति परीक्षण == | == उच्च-शक्ति परीक्षण == | ||
उच्च-वोल्टेज | उच्च-वोल्टेज परिपथ विच्छेदक की लघुपथन इंटरप्टिंग क्षमता ऐसी है कि इसे आवश्यक शक्ति उत्पन्न करने में सक्षम एकल स्रोत के साथ प्रदर्शित नहीं किया जा सकता है। एक जनरेटर के साथ एक विशेष योजना का उपयोग किया जाता है जो वर्तमान रुकावट तक लघुपथन विद्युत धारा प्रदान करता है और बाद में एक वोल्टेज स्रोत परिपथ विच्छेदक के टर्मिनलों पर रिकवरी वोल्टेज लागू करता है। परीक्षण आमतौर पर एकल-चरण में किए जाते हैं, लेकिन तीन-चरण में भी किए जा सकते हैं<ref>[http://www.ewh.ieee.org/soc/pes/switchgear/Presentations/DufMont.pdf ''Three-phase short-circuit testing of high-voltage circuit breakers''], Presented by D. Dufournet & G. Montillet at IEEE switchgear committee meeting, May 1999 {{webarchive |url=https://web.archive.org/web/20050423184106/http://www.ewh.ieee.org/soc/pes/switchgear/Presentations/DufMont.pdf |date=April 23, 2005 }}</ref>शक्ति का एक छोटा सा नियंत्रण भी होता है। | ||
== | == SF<sub>6</sub> परिपथ विच्छेदक से संबंधित मुद्दे == | ||
निम्नलिखित मुद्दे | निम्नलिखित मुद्दे SF<sub>6</sub> परिपथ विच्छेदक से जुड़े हैं: | ||
जहरीली निचले क्रम की गैसें | जहरीली निचले क्रम की गैसें | ||
जब | जब SF<sub>6</sub> गैस में चाप बनता है तो कम मात्रा में निम्न कोटि की गैसें बनती हैं। इनमें से कुछ उपोत्पाद जहरीले होते हैं और आंखों और श्वसन तंत्र में जलन पैदा कर सकते हैं। यह एक चिंता का विषय है अगर इंटरप्टर्स रखरखाव के लिए या इंटरप्टर्स के निपटारे के लिए खोले जाते हैं। | ||
; ऑक्सीजन विस्थापन | ; ऑक्सीजन विस्थापन | ||
SF<sub>6</sub> हवा से भारी है, इसलिए ऑक्सीजन विस्थापन के जोखिम के कारण कम सीमित स्थानों में प्रवेश करते समय सावधानी बरतनी चाहिए। | |||
;ग्रीनहाउस गैस | ;ग्रीनहाउस गैस | ||
Line 83: | Line 83: | ||
{{main|सल्फर हेक्साफ्लोराइड § ग्रीनहाउस गैस}} | {{main|सल्फर हेक्साफ्लोराइड § ग्रीनहाउस गैस}} | ||
SF<sub>6</sub> सबसे शक्तिशाली ग्रीनहाउस गैस है जिसका जलवायु परिवर्तन पर अंतर सरकारी पैनल ने मूल्यांकन किया है। इसमें ग्लोबल वार्मिंग क्षमता है जो CO2 से 23,900 गुना खराब है।<ref>{{cite journal |pmid=10680375 |title=Sulfur hexafluoride (SF<sub>6</sub>): global environmental effects and toxic byproduct formation | volume=50 | issue=1 |date=January 2000 |journal=J Air Waste Manag Assoc |pages=137–41|last1=Dervos |first1=C. T. |last2=Vassiliou |first2=P. |doi=10.1080/10473289.2000.10463996 |s2cid=8533705 }}</ref> | |||
कुछ सरकारों ने वातावरण में | कुछ सरकारों ने वातावरण में SF<sub>6</sub> के उत्सर्जन की निगरानी और नियंत्रण के लिए प्रणालियां लागू की हैं।<ref>[http://www.mfe.govt.nz/publications/climate/synthetic-greenhouse-gases-ets-jun08/html/page2.html “Synthetic Greenhouse Gases and the Emissions Trading Scheme'', NZ Government, Ministry for the Environment, accessdate=23 September 2011]</ref> | ||
== अन्य प्रकारों के साथ तुलना == | == अन्य प्रकारों के साथ तुलना == | ||
सर्किट तोड़ने वाले आमतौर पर उनके | सर्किट तोड़ने वाले आमतौर पर उनके रोधन माध्यम पर वर्गीकृत होते हैं। निम्नलिखित प्रकार के परिपथ विच्छेदक SF<sub>6</sub> प्रकार के विकल्प हो सकते हैं। | ||
* वायु विस्फाेट | * वायु विस्फाेट | ||
* तेल | * तेल | ||
* खालीपन | * खालीपन | ||
* सीओ<sub>2</sub> | * सीओ<sub>2</sub> | ||
एयर-ब्लास्ट | एयर-ब्लास्ट विच्छेदक की तुलना में, SF<sub>6</sub> के साथ ऑपरेशन शांत है और सामान्य ऑपरेशन में कोई गर्म गैस नहीं निकलती है। ब्लास्ट एयर प्रेशर को बनाए रखने के लिए किसी कंप्रेस्ड-एयर प्लांट की आवश्यकता नहीं होती है। गैस की उच्च [[ढांकता हुआ ताकत|परावैद्युत ताकत]] अधिक कॉम्पैक्ट डिजाइन या एयर-ब्लास्ट परिपथ विच्छेदक के समान सापेक्ष आकार के लिए एक बड़ी रुकावट रेटिंग की अनुमति देती है। यह परिपथ विच्छेदक के आकार और वजन को कम करने, नींव बनाने और स्थापना को कम खर्चीला बनाने का वांछनीय प्रभाव भी है। संचालन तंत्र सरल होते हैं, और कम रखरखाव की आवश्यकता होती है, आम तौर पर निरीक्षण या रखरखाव के बीच अधिक यांत्रिक संचालन की अनुमति होती है। हालाँकि, SF<sub>6</sub> गैस की जाँच या प्रतिस्थापन के लिए आकस्मिक उत्सर्जन को रोकने के लिए विशेष उपकरण और प्रशिक्षण की आवश्यकता होती है। बहुत कम बाहरी तापमान पर, हवा के विपरीत, SF<sub>6</sub> गैस द्रवीभूत हो सकती है, जिससे परिपथ विच्छेदक की गलती धाराओं को बाधित करने की क्षमता कम हो जाती है। | ||
तेल से भरे ब्रेकरों में खनिज तेल की कुछ मात्रा होती है। ट्रांसमिशन वोल्टेज पर सैकड़ों लीटर तेल के क्रम में एक न्यूनतम-तेल | तेल से भरे ब्रेकरों में खनिज तेल की कुछ मात्रा होती है। ट्रांसमिशन वोल्टेज पर सैकड़ों लीटर तेल के क्रम में एक न्यूनतम-तेल विच्छेदक हो सकता है; एक डेड-टैंक थोक तेल से भरे परिपथ विच्छेदक में हजारों लीटर तेल हो सकता है। यदि यह विफलता के दौरान परिपथ विच्छेदक से निकल जाता है, तो यह आग का खतरा होगा। तेल जल प्रणालियों के लिए भी विषैला होता है और रिसावों को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। | ||
वैक्यूम | वैक्यूम परिपथ विच्छेदक की उपलब्धता सीमित होती है और इन्हें ट्रांसमिशन वोल्टेज के लिए नहीं बनाया जाता है, जबकि एसएफ6 ब्रेकर्स 800 किलोवोल्ट तक उपलब्ध होते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* परिपथ | * परिपथ विच्छेदक | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 13:17, 1 February 2023
सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक रक्षी रिले द्वारा सक्रियकृत किए जाने पर विद्युत धाराओं को बाधित करके विद्युत बिजलीघर और वितरण प्रणालियों की रक्षा करते हैं। तेल, हवा या वैक्यूम के बजाय, सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक सर्किट खोलने पर चाप को ठंडा करने और बुझाने के लिए सल्फर हेक्साफ्लोराइड (SF6) गैस का उपयोग करता है। अन्य मीडिया की तुलना में लाभ में कम प्रचालन रव और गर्म गैसों का उत्सर्जन नहीं, और अपेक्षाकृत कम रखरखाव शामिल हैं। 1950 और उसके बाद विकसित, SF6 परिपथ विच्छेदक व्यापक रूप से विद्युत ग्रिड में 800 किलोवोल्ट तक के संप्रेषण वोल्टेज पर, जनरेटर परिपथ विच्छेदक के रूप में और 35 किलोवोल्ट तक के वोल्टेज पर वितरण प्रणालियों में उपयोग किए जाते हैं।
सल्फर हेक्साफ्लोराइड परिपथ विच्छेदक का उपयोग बाहरी वायु-रोधित उपकेंद्र में स्व-निहित उपकरण के रूप में किया जा सकता है या गैस-रोधित स्विचगियर में शामिल किया जा सकता है जो उच्च वोल्टेज पर सघन स्थापना की अनुमति देता है।
प्रचालन सिद्धांत
उच्च-वोल्टेज परिपथ विच्छेदक में वर्तमान व्यवधान माध्यम में दो संपर्कों को अलग करके प्राप्त की जाती है, जैसे कि सल्फर हेक्साफ्लोराइड (SF)6), उत्कृष्ट परावैद्युत और चाप-शमन गुण वाले होते हैं। संपर्क पृथक्करण के बाद, विद्युत प्रवाह चाप के माध्यम से ले जाया जाता है और जब इस चाप को पर्याप्त तीव्रता के गैस विस्फोट से ठंडा किया जाता है तो यह बाधित हो जाता है।[1]
SF6 गैस विद्युत्-ऋणात्मकता है और मुक्त इलेक्ट्रॉनों को अवशोषित करने की मजबूत प्रवृत्ति है। वियोजक के संपर्क सल्फर हेक्साफ्लोराइड गैस के उच्च दबाव प्रवाह में खोले जाते हैं, और उनके बीच चाप टकरा जाता है। गैस अपेक्षाकृत अचल ऋणात्मक आयन बनाने के लिए चाप में संचालन मुक्त इलेक्ट्रॉनों को पकड़ती है। चाप में इलेक्ट्रॉनों के संचालन का यह नुकसान चाप को बुझाने के लिए पर्याप्त रोधन शक्ति बनाता है।[2]
चाप पर लगाया गया गैस ब्लास्ट इसे तेजी से ठंडा करने में सक्षम होना चाहिए ताकि कुछ सौ माइक्रोसेकंड में संपर्कों के बीच गैस का तापमान 20,000 केल्विन से 2000 केल्विन से कम हो जाए, ताकि यह क्षणिक उपलब्धि वोल्टेज का सामना करने में सक्षम हो वर्तमान व्यवधान के बाद सभी संपर्कों पर लागू किया गया। सल्फर हेक्साफ्लोराइड का उपयोग आमतौर पर वर्तमान उच्च-वोल्टेज परिपथ विच्छेदक में 52 किलोवोल्ट से अधिक निर्धारित वोल्टेज पर किया जाता है।
1980 के दशक में, चाप को विस्फोट करने के लिए आवश्यक दबाव ज्यादातर चाप ऊर्जा का उपयोग करके गैस ताप द्वारा उत्पन्न किया गया था। अब 800 किलोवोल्ट तक उच्च वोल्टेज परिपथ विच्छेदक को चलाने के लिए कम ऊर्जा कमानी तंत्र का उपयोग करना संभव है।
संक्षिप्त इतिहास
1950 के दशक के मध्य में पेश किए जाने के बाद से उच्च-वोल्टेज परिपथ विच्छेदक बदल गए हैं, और कई बाधित करने वाले सिद्धांत विकसित किए गए हैं जिन्होंने संचालन ऊर्जा में बड़ी कमी के लिए क्रमिक रूप से योगदान दिया है। ये विच्छेदक आंतरिक या बहिरंग अनुप्रयोगों के लिए उपलब्ध हैं, बाद वाले विच्छेदक पोल के रूप में होते हैं जो संरचना पर लगे सिरेमिक अवरोधक में रखे जाते हैं। एक बाधाकारी माध्यम के रूप में SF6 के उपयोग पर पहला पेटेंट जर्मनी में 1938 में विटाली ग्रोस (एईजी) द्वारा और स्वतंत्र रूप से बाद में संयुक्त राज्य अमेरिका में जुलाई 1951 में एच जे लिंगल, टी. ई ब्राउन और ए.पी. स्ट्रॉम (वेस्टिंगहाउस इलेक्ट्रिक (1886) द्वारा दायर किया गया था।
वर्तमान रुकावट के लिए SF6 का पहला औद्योगिक अनुप्रयोग 1953 तक है। उच्च-वोल्टेज 15 किलोवोल्ट से 161 किलोवोल्ट भार स्विच 600 एम्पीयर की विभंजन क्षमता के साथ विकसित किए गए थे। वेस्टिंगहाउस द्वारा 1956 में निर्मित पहला उच्च-वोल्टेज SF6 परिपथ विच्छेदक, 115 किलोवोल्ट के तहत, 5 किलोएम्पीयर को बाधित कर सकता था, लेकिन इसमें प्रति पोल श्रृखला में छह बाधित कक्ष थे।
1957 में, SF6 परिपथ विच्छेदक के लिए कश-प्रकार की तकनीक पेश की गई थी, जिसमें पिस्टन के सापेक्ष संचलन और गतिमान भाग से जुड़े सिलेंडर का उपयोग रोधन सामग्री से बने नोजल (चंचु) के माध्यम से चाप को विस्फोट करने के लिए आवश्यक दबाव वृद्धि उत्पन्न करने के लिए किया जाता है। इस तकनीक में, मुख्य रूप से गैस संपीड़न द्वारा दबाव वृद्धि प्राप्त की जाती है।
1959 में वेस्टिंगहाउस द्वारा उच्च लघुपथन विद्युत धारा क्षमता वाला पहला उच्च-वोल्टेज SF6 परिपथ विच्छेदक बनाया गया था। यह परिपथ विच्छेदक भूसंपर्कित टैंक (जिसे डेड टैंक कहा जाता है) में 138 किलोवोल्ट (10,000 मेगावोल्ट एम्पीयर) के तहत 41.8 किलो एम्पीयर और 37.6 किलो एम्पीयर 230 किलोवोल्ट (15,000 मेगावोल्ट एम्पीयर) से कम को बाधित कर सकता है। यह प्रदर्शन पहले से ही महत्वपूर्ण था, लेकिन प्रति पोल तीन कक्ष और विस्फोट के लिए आवश्यक उच्च दबाव स्रोत (1.35 मेगापास्कल) एक बाधा थी जिसे बाद के घटनाक्रमों में टाला जाना था।
SF6 के उत्कृष्ट गुणों ने 1970 के दशक में इस तकनीक का तेजी से विस्तार किया और 800 किलोवोल्ट तक की उच्च रुकावट क्षमता वाले परिपथ विच्छेदक के विकास के लिए इसका उपयोग किया।
1983 के पहले एकल विराम 245 किलोवोल्ट और संबंधित 420 किलोवोल्ट से 550 किलोवोल्ट और 800 किलोवोल्ट की उपलब्धि, क्रमशः 2, 3, और 4 कक्ष प्रति पोल के साथ, उच्च वोल्टेज की पूरी श्रृंखला में SF6 परिपथ विच्छेदक के प्रभुत्व का नेतृत्व किया।
SF6 परिपथ विच्छेदक की कई विशेषताएँ उनकी सफलता की व्याख्या कर सकती हैं:
- बाधा डालने वाले कक्ष की सरलता जिसके लिए सहायक विभंजन कक्ष की आवश्यकता नहीं होती है
- पफर तकनीक द्वारा स्वायत्तता प्रदान की जाती है
- इंटरप्टिंग चैंबर्स की कम संख्या के साथ, 63 किलो एम्पीयर तक उच्चतम प्रदर्शन प्राप्त करने की संभावना
- 2 से 2.5 चक्रों का लघु विराम समय
- उच्च विद्युत सहनशक्ति, बिना मरम्मत के कम से कम 25 वर्षों के संचालन की अनुमति देता है
- संभावित सघन समाधान जब गैस इंसुलेटेड स्विचगियर या हाइब्रिड स्विचगियर के लिए उपयोग किया जाता है
- स्विचिंग ओवर-वोल्टेज को कम करने के लिए इंटीग्रेटेड क्लोजिंग रेसिस्टर्स या सिंक्रोनाइज़्ड ऑपरेशंस
- विश्वसनीयता और उपलब्धता
- कम रव का स्तर
प्रति पोल बाधित करने वाले कक्षों की संख्या में कमी से परिपथ विच्छेदक के साथ-साथ आवश्यक भागों और मुहरों की संख्या में काफी सरलता आई है। प्रत्यक्ष परिणाम के रूप में, परिपथ विच्छेदक की विश्वसनीयता में सुधार हुआ, जैसा कि बाद में इंटरनेशनल काउंसिल ऑन लार्ज इलेक्ट्रिक सिस्टम्स (CIGRE) के सर्वेक्षणों द्वारा सत्यापित किया गया।
डिजाइन सुविधाएँ
थर्मल विस्फोट कक्ष
परिपथ विच्छेदक की संचालन ऊर्जा को कम करने के उद्देश्य से पिछले 30 वर्षों में नए प्रकार के एसएफ 6 विभंजन चैंबर्स विकसित किए गए हैं, जो अभिनव व्यवधान सिद्धांतों को लागू करते हैं। इस विकास का एक उद्देश्य पोल में गतिशील बलों को कम करके विश्वसनीयता को और बढ़ाना था। 1980 के बाद से विकास ने SF6 इंटरप्टिंग चैंबर्स के लिए रुकावट की सेल्फ-ब्लास्ट तकनीक का उपयोग देखा है।
इन विकासों को डिजिटल सिमुलेशन में की गई प्रगति से सुगम बनाया गया है जो व्यापक रूप से बाधित कक्ष की ज्यामिति और ध्रुवों और तंत्र के बीच संबंध को अनुकूलित करने के लिए उपयोग किया जाता था।
यह तकनीक बहुत कुशल साबित हुई है और 550 किलोवोल्ट तक के उच्च-वोल्टेज परिपथ विच्छेदक के लिए व्यापक रूप से लागू की गई है। इसने कम ऊर्जा वसंत-संचालित तंत्रों द्वारा संचालित परिपथ विच्छेदक की नई श्रेणियों के विकास की अनुमति दी है।प्रचालन ऊर्जा में कमी मुख्य रूप से गैस संपीड़न के लिए उपयोग की जाने वाली ऊर्जा को कम करके और चाप को बुझाने और वर्तमान रुकावट प्राप्त करने के लिए आवश्यक दबाव उत्पन्न करने के लिए चाप ऊर्जा का उपयोग करके हासिल की गई थी। कम वर्तमान रुकावट, रेटेड लघुपथन विद्युत धारा का लगभग 30% तक, एक पफर ब्लास्ट द्वारा प्राप्त किया जाता है। इसके अलावा उपलब्ध व्यापक ऊर्जा भी शामिल है।
स्व-विस्फोट कक्ष
थर्मल ब्लास्ट तकनीक में और विकास विस्तार और संपीड़न वॉल्यूम के बीच एक वाल्व की शुरूआत के द्वारा किया गया था। कम धाराओं को बाधित करते समय वाल्व संपीड़न मात्रा में उत्पन्न अधिक दबाव के प्रभाव में खुलता है। पिस्टन क्रिया द्वारा प्राप्त गैस के संपीड़न के लिए चाप का ब्लो-आउट एक पफर परिपथ विच्छेदक के रूप में किया जाता है। उच्च धाराओं के रुकावट के मामले में, चाप ऊर्जा विस्तार की मात्रा में एक उच्च दबाव पैदा करती है, जिससे वाल्व बंद हो जाता है और इस प्रकार विस्तार की मात्रा को संपीड़न मात्रा से अलग कर दिया जाता है। विभंजन के लिए आवश्यक अधिक दबाव थर्मल प्रभाव और नोज़ल क्लॉगिंग प्रभाव के इष्टतम उपयोग द्वारा प्राप्त किया जाता है, जब भी आर्क का क्रॉस-सेक्शन नोज़ल में गैस के निकास को काफी कम कर देता है। गैस संपीड़न द्वारा अत्यधिक ऊर्जा खपत से बचने के लिए, कम शॉर्ट सर्किट धाराओं के रुकावट के लिए आवश्यक मूल्य तक संपीड़न में अधिक दबाव को सीमित करने के लिए पिस्टन पर एक वाल्व लगाया जाता है।
यह तकनीक, जिसे "स्व-विस्फोट" के रूप में जाना जाता है, अब 1980 के बाद से कई प्रकार के व्यवधान कक्षों के विकास के लिए बड़े पैमाने पर उपयोग किया गया है। विभंजन परीक्षणों के माध्यम से डिजिटल सिमुलेशन और सत्यापन द्वारा प्राप्त चाप रुकावट की बढ़ी हुई समझ, इन स्व-विस्फोट परिपथ विच्छेदक की उच्च विश्वसनीयता में योगदान करती है। इसके अलावा, स्व-विस्फोट तकनीक द्वारा अनुमत परिचालन ऊर्जा में कमी, लंबे समय तक सेवा जीवन की ओर ले जाती है।
संपर्कों की दोहरी गति
ट्रिपिंग ऑपरेशन के दौरान खपत होने वाली गतिज ऊर्जा को कम करके संचालन ऊर्जा में एक महत्वपूर्ण कमी भी प्राप्त की जा सकती है। एक तरीका यह है कि दो आर्किंग संपर्कों को विपरीत दिशाओं में विस्थापित किया जाए ताकि चाप की गति एक एकल मोबाइल संपर्क के साथ पारंपरिक लेआउट की आधी हो।
थर्मल और सेल्फ-ब्लास्ट सिद्धांतों ने उच्च-वोल्टेज परिपथ विच्छेदक के संचालन के लिए कम-ऊर्जा स्प्रिंग मैकेनिज्म के उपयोग को सक्षम किया है। उन्होंने 1980 के दशक में उत्तरोत्तर पफर तकनीक को बदल दिया; पहले 72.5 किलोवोल्ट विच्छेदक में और फिर 145 किलोवोल्ट से 800 किलोवोल्ट तक।
सिंगल मोशन और डबल मोशन तकनीक की तुलना
डबल मोशन तकनीक गतिमान भाग की ट्रिपिंग गति को आधा कर देती है। सिद्धांत रूप में, गतिज ऊर्जा को चौथाई किया जा सकता है यदि कुल गतिमान द्रव्यमान में वृद्धि नहीं की गई। हालाँकि, जैसे-जैसे कुल गतिमान द्रव्यमान बढ़ता है, गतिज ऊर्जा में व्यावहारिक कमी 60% के करीब होती है। कुल ट्रिपिंग ऊर्जा में संपीड़न ऊर्जा भी शामिल है, जो दोनों तकनीकों के लिए लगभग समान है। इस प्रकार, कुल ट्रिपिंग ऊर्जा की कमी लगभग 30% कम है, हालांकि सटीक मूल्य अनुप्रयोग और संचालन तंत्र पर निर्भर करता है। विशिष्ट मामले के आधार पर, या तो डबल मोशन या सिंगल मोशन तकनीक सस्ती हो सकती है। परिपथ विच्छेदक रेंज के युक्तिकरण जैसे अन्य विचार भी लागत को प्रभावित कर सकते हैं।
आर्क-असिस्टेड ओपनिंग के साथ थर्मल ब्लास्ट चैंबर
इस व्यवधान सिद्धांत में चाप ऊर्जा का उपयोग एक तरफ थर्मल विस्तार द्वारा विस्फोट उत्पन्न करने के लिए किया जाता है और दूसरी तरफ, उच्च धाराओं में बाधा डालने पर परिपथ विच्छेदक के चलने वाले हिस्से को तेज करने के लिए किया जाता है। रुकावट क्षेत्र के डाउनस्ट्रीम चाप ऊर्जा द्वारा उत्पादित अधिक दबाव चलती हिस्से से जुड़े एक सहायक पिस्टन पर लागू होता है। परिणामी बल गतिमान भाग को गति देता है, इस प्रकार ट्रिपिंग के लिए उपलब्ध ऊर्जा में वृद्धि होती है। इस व्यवधान सिद्धांत के साथ, उच्च-वर्तमान रुकावटों के दौरान, संचालन तंत्र द्वारा वितरित ट्रिपिंग ऊर्जा में लगभग 30% की वृद्धि करना और वर्तमान से स्वतंत्र रूप से प्रारंभिक गति को बनाए रखना संभव है। यह जनरेटर परिपथ विच्छेदक जैसे उच्च विभंजन धाराओं वाले परिपथ विच्छेदक के लिए स्पष्ट रूप से बेहतर अनुकूल है।
जेनरेटर परिपथ विच्छेदक
जेनरेटर परिपथ विच्छेदक (GCB) एक जनरेटर और स्टेप-अप वोल्टेज ट्रांसफॉर्मर के बीच जुड़े होते हैं। वे आम तौर पर उच्च-शक्ति जनरेटर (30 एमवीए से 1800 एमवीए) के आउटलेट पर विश्वसनीय, तेज और आर्थिक तरीके से उनकी रक्षा के लिए उपयोग किए जाते हैं। इस तरह के परिपथ विच्छेदक में उच्च ले जाने वाली वर्तमान रेटिंग (4 किलो एम्पीयर से 40 किलो एम्पीयर) होती है, और उच्च विभंजन क्षमता (50 किलो एम्पीयर से 275 किलो एम्पीयर) होती है।
वे मध्यम वोल्टेज रेंज से संबंधित हैं, लेकिन IEC/IEEE 62771-37-013 द्वारा आवश्यक क्षणिक रिकवरी वोल्टेज क्षमता ऐसी है कि विशेष रूप से विकसित इंटरप्टिंग सिद्धांतों का उपयोग किया जाना चाहिए। थर्मल ब्लास्ट तकनीक का एक विशेष अवतार विकसित किया गया है और जनरेटर परिपथ विच्छेदक पर लागू किया गया है। ऊपर वर्णित स्व-विस्फोट तकनीक का व्यापक रूप से एसएफ 6 जनरेटर परिपथ विच्छेदक में भी उपयोग किया जाता है, जिसमें संपर्क प्रणाली कम ऊर्जा, वसंत-संचालित तंत्र द्वारा संचालित होती है। ऐसे उपकरण का एक उदाहरण नीचे चित्र में दिखाया गया है; यह परिपथ विच्छेदक 17.5 किलोवोल्ट और 63 किलो एम्पीयर के लिए रेट किया गया है।
उच्च-शक्ति परीक्षण
उच्च-वोल्टेज परिपथ विच्छेदक की लघुपथन इंटरप्टिंग क्षमता ऐसी है कि इसे आवश्यक शक्ति उत्पन्न करने में सक्षम एकल स्रोत के साथ प्रदर्शित नहीं किया जा सकता है। एक जनरेटर के साथ एक विशेष योजना का उपयोग किया जाता है जो वर्तमान रुकावट तक लघुपथन विद्युत धारा प्रदान करता है और बाद में एक वोल्टेज स्रोत परिपथ विच्छेदक के टर्मिनलों पर रिकवरी वोल्टेज लागू करता है। परीक्षण आमतौर पर एकल-चरण में किए जाते हैं, लेकिन तीन-चरण में भी किए जा सकते हैं[3]शक्ति का एक छोटा सा नियंत्रण भी होता है।
SF6 परिपथ विच्छेदक से संबंधित मुद्दे
निम्नलिखित मुद्दे SF6 परिपथ विच्छेदक से जुड़े हैं:
जहरीली निचले क्रम की गैसें
जब SF6 गैस में चाप बनता है तो कम मात्रा में निम्न कोटि की गैसें बनती हैं। इनमें से कुछ उपोत्पाद जहरीले होते हैं और आंखों और श्वसन तंत्र में जलन पैदा कर सकते हैं। यह एक चिंता का विषय है अगर इंटरप्टर्स रखरखाव के लिए या इंटरप्टर्स के निपटारे के लिए खोले जाते हैं।
- ऑक्सीजन विस्थापन
SF6 हवा से भारी है, इसलिए ऑक्सीजन विस्थापन के जोखिम के कारण कम सीमित स्थानों में प्रवेश करते समय सावधानी बरतनी चाहिए।
- ग्रीनहाउस गैस
SF6 सबसे शक्तिशाली ग्रीनहाउस गैस है जिसका जलवायु परिवर्तन पर अंतर सरकारी पैनल ने मूल्यांकन किया है। इसमें ग्लोबल वार्मिंग क्षमता है जो CO2 से 23,900 गुना खराब है।[4]
कुछ सरकारों ने वातावरण में SF6 के उत्सर्जन की निगरानी और नियंत्रण के लिए प्रणालियां लागू की हैं।[5]
अन्य प्रकारों के साथ तुलना
सर्किट तोड़ने वाले आमतौर पर उनके रोधन माध्यम पर वर्गीकृत होते हैं। निम्नलिखित प्रकार के परिपथ विच्छेदक SF6 प्रकार के विकल्प हो सकते हैं।
- वायु विस्फाेट
- तेल
- खालीपन
- सीओ2
एयर-ब्लास्ट विच्छेदक की तुलना में, SF6 के साथ ऑपरेशन शांत है और सामान्य ऑपरेशन में कोई गर्म गैस नहीं निकलती है। ब्लास्ट एयर प्रेशर को बनाए रखने के लिए किसी कंप्रेस्ड-एयर प्लांट की आवश्यकता नहीं होती है। गैस की उच्च परावैद्युत ताकत अधिक कॉम्पैक्ट डिजाइन या एयर-ब्लास्ट परिपथ विच्छेदक के समान सापेक्ष आकार के लिए एक बड़ी रुकावट रेटिंग की अनुमति देती है। यह परिपथ विच्छेदक के आकार और वजन को कम करने, नींव बनाने और स्थापना को कम खर्चीला बनाने का वांछनीय प्रभाव भी है। संचालन तंत्र सरल होते हैं, और कम रखरखाव की आवश्यकता होती है, आम तौर पर निरीक्षण या रखरखाव के बीच अधिक यांत्रिक संचालन की अनुमति होती है। हालाँकि, SF6 गैस की जाँच या प्रतिस्थापन के लिए आकस्मिक उत्सर्जन को रोकने के लिए विशेष उपकरण और प्रशिक्षण की आवश्यकता होती है। बहुत कम बाहरी तापमान पर, हवा के विपरीत, SF6 गैस द्रवीभूत हो सकती है, जिससे परिपथ विच्छेदक की गलती धाराओं को बाधित करने की क्षमता कम हो जाती है।
तेल से भरे ब्रेकरों में खनिज तेल की कुछ मात्रा होती है। ट्रांसमिशन वोल्टेज पर सैकड़ों लीटर तेल के क्रम में एक न्यूनतम-तेल विच्छेदक हो सकता है; एक डेड-टैंक थोक तेल से भरे परिपथ विच्छेदक में हजारों लीटर तेल हो सकता है। यदि यह विफलता के दौरान परिपथ विच्छेदक से निकल जाता है, तो यह आग का खतरा होगा। तेल जल प्रणालियों के लिए भी विषैला होता है और रिसावों को सावधानीपूर्वक नियंत्रित किया जाना चाहिए।
वैक्यूम परिपथ विच्छेदक की उपलब्धता सीमित होती है और इन्हें ट्रांसमिशन वोल्टेज के लिए नहीं बनाया जाता है, जबकि एसएफ6 ब्रेकर्स 800 किलोवोल्ट तक उपलब्ध होते हैं।
यह भी देखें
- परिपथ विच्छेदक
टिप्पणियाँ
- ↑ "Tutorial AC HV Circuit Breakers" (PDF). ewh.ieee.org. July 2017. Retrieved October 21, 2017.
- ↑ StudyElectrical.Com (July 2014). "Sulphur Hexafluoride (SF6) Circuit Breakers - Construction, Working and Advantages". StudyElectrical.Com. usamayou. Retrieved July 7, 2015.
- ↑ Three-phase short-circuit testing of high-voltage circuit breakers, Presented by D. Dufournet & G. Montillet at IEEE switchgear committee meeting, May 1999 Archived April 23, 2005, at the Wayback Machine
- ↑ Dervos, C. T.; Vassiliou, P. (January 2000). "Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation". J Air Waste Manag Assoc. 50 (1): 137–41. doi:10.1080/10473289.2000.10463996. PMID 10680375. S2CID 8533705.
- ↑ “Synthetic Greenhouse Gases and the Emissions Trading Scheme, NZ Government, Ministry for the Environment, accessdate=23 September 2011
[Category:Electric power systems componen