शीत गैस थ्रस्टर: Difference between revisions
No edit summary |
|||
Line 60: | Line 60: | ||
|+प्रणोदक और दक्षता <ref name=":0" /> | |+प्रणोदक और दक्षता <ref name=":0" /> | ||
! शीत गैस | ! शीत गैस | ||
! आणविक भार | ! आणविक भार M | ||
! सैद्धान्तिक<br> '' | (u) | ||
! मापन<br>'' | ! सैद्धान्तिक<br> ''I<sub>sp</sub>'' | ||
! घनत्व<br> ( | (sec) | ||
! मापन<br>''I<sub>sp</sub>'' | |||
(sec) | |||
! घनत्व<br> (g/cm<sup>3</sup>) | |||
|- | |- | ||
| [[ | | [[:en:Hydrogen_gas|H<sub>2</sub>]] | ||
| 2.0 | | 2.0 | ||
| 296 | | 296 | ||
Line 71: | Line 74: | ||
| 0.02 | | 0.02 | ||
|- | |- | ||
| [[Helium| | | [[:en:Helium|He]] | ||
| 4.0 | | 4.0 | ||
| 179 | | 179 | ||
Line 77: | Line 80: | ||
| 0.04 | | 0.04 | ||
|- | |- | ||
| [[Neon| | | [[:en:Neon|Ne]] | ||
| 20.2 | | 20.2 | ||
| 82 | | 82 | ||
Line 83: | Line 86: | ||
| 0.19 | | 0.19 | ||
|- | |- | ||
| [[Nitrogen| | | [[:en:Nitrogen|N<sub>2</sub>]] | ||
| 28.0 | | 28.0 | ||
| 80 | | 80 | ||
Line 89: | Line 92: | ||
| 0.28 | | 0.28 | ||
|- | |- | ||
| [[Oxygen| | | [[:en:Oxygen|O<sub>2</sub>]] | ||
| 32.0 | | 32.0 | ||
| ? | | ? | ||
Line 95: | Line 98: | ||
| | | | ||
|- | |- | ||
| [[Argon| | | [[:en:Argon|Ar]] | ||
| 40.0 | | 40.0 | ||
| 57 | | 57 | ||
Line 101: | Line 104: | ||
| 0.44 | | 0.44 | ||
|- | |- | ||
| [[Krypton| | | [[:en:Krypton|Kr]] | ||
| 83.8 | | 83.8 | ||
| 39 | | 39 | ||
Line 107: | Line 110: | ||
| 1.08 | | 1.08 | ||
|- | |- | ||
| [[Xenon| | | [[:en:Xenon|Xe]] | ||
| 131.3 | | 131.3 | ||
| 31 | | 31 | ||
Line 113: | Line 116: | ||
| 2.74 | | 2.74 | ||
|- | |- | ||
| [[Dichlorodifluoromethane| | | [[:en:Dichlorodifluoromethane|CCl<sub>2</sub>F<sub>2</sub>]] (Freon-12) | ||
| 120.9 | | 120.9 | ||
| 46 | | 46 | ||
Line 119: | Line 122: | ||
| तरल | | तरल | ||
|- | |- | ||
| [[Tetrafluoromethane| | | [[:en:Tetrafluoromethane|CF<sub>4</sub>]] | ||
| 88.0 | | 88.0 | ||
| 55 | | 55 | ||
Line 125: | Line 128: | ||
| 0.96 | | 0.96 | ||
|- | |- | ||
| [[Methane| | | [[:en:Methane|CH<sub>4</sub>]] | ||
| 16.0 | | 16.0 | ||
| 114 | | 114 | ||
Line 131: | Line 134: | ||
| 0.19 | | 0.19 | ||
|- | |- | ||
| [[Ammonia| | | [[:en:Ammonia|NH<sub>3</sub>]] | ||
| 17.0 | | 17.0 | ||
| 105 | | 105 | ||
Line 137: | Line 140: | ||
| तरल | | तरल | ||
|- | |- | ||
| [[ | | [[:en:Nitrous_oxide|N<sub>2</sub>O]] | ||
| 44.0 | | 44.0 | ||
| 67 | | 67 | ||
Line 143: | Line 146: | ||
| तरल | | तरल | ||
|- | |- | ||
| [[ | | [[:en:Carbon_dioxide|CO<sub>2</sub>]] | ||
| 44.0 | | 44.0 | ||
| 67 | | 67 |
Revision as of 17:16, 2 February 2023
शीत गैस थ्रस्टर (या शीत गैस प्रणोदन प्रणाली) एक प्रकार का रॉकेट इंजन है जो थ्रस्ट उत्पन्न करने के लिए (सामान्य रूप से निष्क्रिय) दबाव वाली गैस के विस्तार का उपयोग करता है। पारंपरिक रॉकेट इंजनों के विपरीत शीत गैस थ्रस्टर में कोई दहन नहीं होता है और इसलिए पारंपरिक मोनोप्रोपेलेंट और तरल प्रणोदक रॉकेट इंजनों की तुलना में कम थ्रस्ट और विशिष्ट आवेग होता है। शीत गैस थ्रस्टर्स को रॉकेट इंजन की सबसे सरल अभिव्यक्ति के रूप में संदर्भित किया गया है क्योंकि उनके प्रारूप में केवल एक ईंधन टैंक, विनियमन वाल्व, प्रणोदी नोजल और आवश्यक नलकर्म निहित है। ये कक्षीय रखरखाव, मैन्यूवरिंग और अंतरिक्ष यान के स्वभाव नियंत्रण के लिए उपलब्ध सबसे कम मूल्य पर, सरल और सबसे विश्वसनीय प्रणोदन प्रणाली हैं। शीत गैस थ्रस्टर्स मुख्य रूप से छोटे अंतरिक्ष अभियानों के लिए स्थिरीकरण प्रदान करने के लिए उपयोग किए जाते हैं जिनके लिए दूषण-मुक्त संचालन की आवश्यकता होती है।[1] विशेष रूप से क्यूबसैट प्रणोदन प्रणाली का विकास मुख्य रूप से शीत गैस प्रणालियों पर केंद्रित रहा है क्योंकि क्यूबसैट में पायरोटेक्निक वाल्व और संकटजनक सामग्री हेतु कठोर नियम हैं।[2]
प्रारूप
शीत गैस थ्रस्टर का नोज़ल सामान्य रूप से डी लवल नोजल (अभिसारी-अपसारी) नोज़ल होता है जो उड़ान में आवश्यक थ्रस्ट प्रदान करता है। नोज़ल का आकार ऐसा होता है कि उच्च दाब, कम-वेग वाली गैस जो नोज़ल में प्रवेश करती है उसकी गर्दन (नोज़ल का सबसे संकरा भाग) तक पहुँचने पर त्वरित हो जाती है जहाँ गैस का वेग ध्वनि की गति से समानता प्राप्त करता है।
प्रदर्शन
शीत गैस थ्रस्टर्स को उनके साधारण रूप से लाभ होता है; जबकि वे अन्य स्थितियों में धीमे पड़ जाते हैं। शीत गैस प्रणाली के लाभ और हानि को संक्षेप में प्रस्तुत किया जा सकता है:
लाभ
- शीत गैस थ्रस्टर के नोज़ल में दहन की कमी उन स्थितियों में इसके उपयोग को करने की अनुमति देती है जहां नियमित तरल रॉकेट इंजन बहुत गर्म हो जाते है। यह इंजीनियर ताप प्रबंधन प्रणालियों की आवश्यकता को समाप्त करता है।
- इनका सरल प्रारूप थ्रस्टर्स को नियमित रॉकेट इंजनों की तुलना में छोटा होने की अनुमति देता है जो उन्हें सीमित मात्रा और भार की आवश्यकताओं वाले अभियानों के लिए उपयुक्त विकल्प बनाता है।
- नियमित रॉकेट इंजनों की तुलना में शीत गैस प्रणाली और इसका ईंधन कम मूल्य पर उपलब्ध है।
- पारंपरिक रॉकेट इंजन की तुलना में सरल प्रारूप में विफलतायें कम होती है।
- शीत गैस प्रणाली में प्रयुक्त ईंधन इंजन को चालू करने से पहले और बाद में दोनों को व्यवस्थित करने के लिए सुरक्षित होते हैं। यदि अक्रिय ईंधन का उपयोग किया जाता है तो शीत गैस प्रणाली सबसे सुरक्षित संभव रॉकेट इंजनों में से एक है।[1]
- शीत गैस थ्रस्टर संचालन के समय अंतरिक्ष यान पर शुद्ध आवेश का निर्माण नहीं करते हैं।
- शीत गैस थ्रस्टर को संचालित करने के लिए उपयोगी विद्युत ऊर्जा की बहुत कम आवश्यकता होती है, उदाहरण के लिए जब कोई अंतरिक्ष यान उस ग्रह की छाया में होता है जिसकी वह परिक्रमा कर रहा होता है।
हानि
- शीत गैस प्रणाली उच्च प्रणोद उत्पन्न नहीं कर सकती जो दहनशील रॉकेट इंजन प्राप्त कर सकते हैं।
- पारंपरिक रॉकेट इंजनों की तुलना में शीत गैस थ्रस्टर में द्रव्यमान कुशलता की कमी होती हैं।
- शीत गैस थ्रस्टर का अधिकतम थ्रस्ट संग्रहण टैंक में दबाव पर निर्भर करता है। जैसे ही ईंधन का उपयोग सरल संपीड़ित-गैस प्रणालियों के साथ किया जाता है, दबाव कम हो जाता है और अधिकतम थ्रस्ट कम हो जाता है।[3] तरलीकृत गैसों के साथ दबाव अपेक्षाकृत स्थिर रहेगा क्योंकि तरल गैस अस्थिर होती है और एयरोसोल के डिब्बे के समान प्रकार ही उपयोग की जाती है।
थ्रस्ट
थ्रस्ट, निकास और अंतरिक्ष यान के बीच संवेग विनिमय द्वारा उत्पन्न होता है जो न्यूटन के दूसरे नियम द्वारा दिया गया है जहाँ द्रव्यमान प्रवाह दर है और निकास का वेग है।
अंतरिक्ष में शीत गैस थ्रस्टर को उनके अनंत विस्तार के अनुसार प्रारूप दिया गया है (चूंकि परिवेश का दबाव शून्य है), थ्रस्ट के रूप में दिया गया है:
जहाँ गर्दन (नेक) का क्षेत्र है, नोजल में कक्ष का दबाव है, विशिष्ट ताप अनुपात है, प्रणोदक के निकास का दबाव है, और नोजल का निकास क्षेत्र है।
विशिष्ट आवेग
विशिष्ट आवेग (आईsp) रॉकेट इंजन की दक्षता का सबसे महत्वपूर्ण मापन है जिसमें उच्च विशिष्ट आवेग सामान्य रूप से वांछित होता है। शीत गैस थ्रस्टर्स में अन्य रॉकेट इंजनों की तुलना में बहुत कम विशिष्ट आवेग होता है क्योंकि वे प्रणोदक में संग्रहीत रासायनिक ऊर्जा का लाभ नहीं उठाते हैं। शीत गैसों के लिए सैद्धांतिक विशिष्ट आवेग निम्न के द्वारा दिया जाता है,
जहाँ मानक गुरुत्वाकर्षण है और विशेषता वेग है जो निम्न के द्वारा दिया जाता है,
जहाँ प्रणोदक का ध्वनि वेग है।[citation needed]
प्रणोदक
शीत गैस प्रणालियां ठोस, तरल या गैसीय प्रणोदक भंडारण प्रणाली का उपयोग कर सकती हैं लेकिन प्रणोदक गैसीय रूप में नोज़ल से बाहर निकलना चाहिए। तरल प्रणोदक के भंडारण से इसके टैंक में ईंधन की कमी के कारण अभिवृत्ति नियंत्रण की समस्या हो सकती है।
प्रणोदक चुनते समय, एक उच्च विशिष्ट आवेग, और प्रणोदक की प्रति इकाई मात्रा में एक उच्च विशिष्ट आवेग पर विचार किया जाना चाहिए।[3]
शीत गैस प्रणोदन प्रणाली के लिए उपयुक्त प्रणोदकों के विशिष्ट आवेगों का अवलोकन:
शीत गैस | आणविक भार M
(u) |
सैद्धान्तिक Isp (sec) |
मापन Isp (sec) |
घनत्व (g/cm3) |
---|---|---|---|---|
H2 | 2.0 | 296 | 272 | 0.02 |
He | 4.0 | 179 | 165 | 0.04 |
Ne | 20.2 | 82 | 75 | 0.19 |
N2 | 28.0 | 80 | 73 | 0.28 |
O2 | 32.0 | ? | ||
Ar | 40.0 | 57 | 52 | 0.44 |
Kr | 83.8 | 39 | 37 | 1.08 |
Xe | 131.3 | 31 | 28 | 2.74 |
CCl2F2 (Freon-12) | 120.9 | 46 | 37 | तरल |
CF4 | 88.0 | 55 | 45 | 0.96 |
CH4 | 16.0 | 114 | 105 | 0.19 |
NH3 | 17.0 | 105 | 96 | तरल |
N2O | 44.0 | 67 | 61 | तरल |
CO2 | 44.0 | 67 | 61 | तरल |
0 डिग्री सेल्सियस और 241 बार पर गुण।
अनुप्रयोग
मानव प्रणोदन
शीत गैस थ्रस्टर्स अपने प्रणोदकों की निष्क्रिय और अविषैली प्रकृति के कारण अंतरिक्ष यात्री प्रणोदन इकाइयों के लिए विशेष रूप से उपयुक्त हैं।
हाथ से चलने वाली मैन्यूवरिंग इकाई
मुख्य लेख: हैंड-हेल्ड मैन्यूवरिंग यूनिट (एचएचएमयू)
जेमिनी 4 और जेमिनी 10 अभियानों पर उपयोग होने वाली हाथ से चलने वाली मैन्यूवरिंग यूनिट (एचएचएमयू) ने अंतरिक्ष यात्रियों की असाधारण गतिविधि को सुविधाजनक बनाने के लिए दबाव वाली ऑक्सीजन का उपयोग किया।[4] यद्यपि एचएचएमयू का पेटेंट (किसी आविष्कार का पूर्ण अधिकार) उपकरण को शीत गैस थ्रस्टर के रूप में वर्गीकृत नहीं करता है। एचएचएमयू को एक प्रणोदन इकाई के रूप में वर्णित किया गया है जो विभिन्न नोजल साधनों से बची हुयी दबाव वाली गैस द्वारा विकसित थ्रस्ट का उपयोग करती है।[5]
मानवयुक्त मैन्यूवरिंग इकाई
मानवयुक्त मैन्यूवरिंग इकाई (एमएमयू) पर दबाव वाली गैसीय नाइट्रोजन का उपयोग करने वाले चौबीस शीत गैस थ्रस्टर्स का उपयोग किया गया था। थ्रस्टर्स ने एमएमयू पहने अंतरिक्ष यात्री को पूर्ण 6-डिग्री-स्वतंत्रता का नियंत्रण प्रदान किया। प्रत्येक थ्रस्टर ने 1.4 lbs (6.23 N) थ्रस्ट प्रदान किया। अंतरिक्ष यान पर दो प्रणोदक टैंकों ने 4500 पीएसआई पर कुल 40 पौंड (18 किग्रा) गैसीय नाइट्रोजन प्रदान की जो 110 से 135 फीट/सेकंड (33.53 से 41.15 मी/से) के वेग में परिवर्तन उत्पन्न करने के लिए पर्याप्त प्रणोदक प्रदान करता है। सामान्य द्रव्यमान पर एमएमयू में 0.3±0.05 फीट/सेकंड का अनुवादी त्वरण (9.1±1.5 सेमी/से2) और 10.0±3.0 डिग्री/सेकंड का घूर्णी त्वरण2 (0.1745±0.052 रेडियन/सेकंड2)[6] था।
वर्नियर इंजन
मुख्य लेख: वर्नियर थ्रस्टर
स्पेसएक्स फाल्कन 9 रॉकेट के धरती पर लौटने के प्रथम चरण की अभिवृत्ति को नियंत्रित करने में मदद करने के लिए बड़े शीत गैस थ्रस्टर्स कार्यरत हैं।[7]
मोटर वाहन
जून 2018 में एक ट्विटर (सोशल मीडिया का एक रूप) में एलन मस्क ने कार के प्रदर्शन को सुविधाजनक बनाने के लिए वायु-आधारित शीत गैस थ्रस्टर्स के उपयोग का प्रस्ताव दिया।[8]
सितंबर 2018 में रॉबर्ट बॉश GmbH ने शीत गैस थ्रस्टर्स का उपयोग करके फिसलती हुई मोटरसाइकिल को ठीक करने के लिए अपनी प्रूफ-ऑफ-कॉन्सेप्ट सुरक्षा प्रणाली का सफलतापूर्वक परीक्षण किया। यह सिस्टम एक किनारे के पहिये की फिसलन को अनुभव करता है और मोटरसाइकिल को और फिसलने से बचाने के लिए पार्श्विक शीत गैस थ्रस्टर का उपयोग करता है।[9]
अनुसंधान
2014 में अनुसंधान का मुख्य फोकस माइक्रोइलेक्ट्रॉनिक प्रणाली का उपयोग करके ठंडे गैस थ्रस्टर्स का लघुकरण है।[10]
यह भी देखें
- रेसिस्टोजेट रॉकेट
- मोनोप्रोपेलेंट रॉकेट
- क्यूबसैट
संदर्भ
- ↑ 1.0 1.1 1.2 Nguyen, Hugo; Köhler, Johan; Stenmark, Lars (2002-01-01). "The merits of cold gas micropropulsion in state-of-the-art space missions". Iaf Abstracts: 785. Bibcode:2002iaf..confE.785N.
- ↑ "Micropropulsion systems for cubesats". ResearchGate (in English). Retrieved 2018-12-14.
- ↑ 3.0 3.1 Tummala, Akshay; Dutta, Atri; Tummala, Akshay Reddy; Dutta, Atri (9 December 2017). "An Overview of Cube-Satellite Propulsion Technologies and Trends". Aerospace (in English). 4 (4): 58. doi:10.3390/aerospace4040058.
- ↑ "Maneuvering Unit, Hand-Held, White, Gemini 4". National Air and Space Museum (in English). 2016-03-20. Retrieved 2018-12-12.
- ↑ US 3270986 Hand-Held Self-Maneuvering Unit
- ↑ Lenda, J. A. "Manned maneuvering unit: User's guide." (1978).
- ↑ plarson (2015-06-25). "The why and how of landing rockets". SpaceX. Retrieved 2018-12-16.
- ↑ Elon Musk [@elonmusk] (June 9, 2018). "SpaceX option package for new Tesla Roadster will include ~10 small rocket thrusters arranged seamlessly around car. These rocket engines dramatically improve acceleration, top speed, braking & cornering. Maybe they will even allow a Tesla to fly …" (Tweet) – via Twitter.
- ↑ "Greater safety on two wheels: Bosch innovations for the motorcycles of the future". Bosch Media Service (in English). Retrieved 2018-12-14.
- ↑ Kvell, U; Puusepp, M; Kaminski, F; Past, J-E; Palmer, K; Grönland, T-A; Noorma, M (2014). "Nanosatellite orbit control using MEMS cold gas thrusters". Proceedings of the Estonian Academy of Sciences. 63 (2S): 279. doi:10.3176/proc.2014.2s.09. ISSN 1736-6046.