रॉकेट प्रणोदक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:


== सिंहावलोकन ==
== सिंहावलोकन ==
रॉकेट बड़े पैमाने पर रियर-वार्ड को उच्च वेग से बाहर निकालकर जोर पैदा करते हैं। रॉकेट ([[विशिष्ट आवेग]]) के सापेक्ष उनके निकास वेग द्वारा प्रणोदकों के [[द्रव्यमान]] प्रवाह दर को गुणा करके उत्पादित जोर की गणना की जा सकती है। एक रॉकेट को [[दहन]] कक्ष और [[रॉकेट इंजन नोजल]] के खिलाफ दहनशील गैसों के दबाव से तेज होने के बारे में सोचा जा सकता है, न कि इसके पीछे या नीचे हवा के खिलाफ धक्का देकर। इंजन के बाहर हवा के दबाव की कमी के कारण रॉकेट इंजन बाहरी अंतरिक्ष में सर्वश्रेष्ठ प्रदर्शन करते हैं। अंतरिक्ष में प्रवाह पृथक्करण से पीड़ित हुए बिना एक लंबे नोजल को फिट करना भी संभव है।
रॉकेट बड़े पैमाने पर रियर-वार्ड को उच्च वेग से बाहर निकालकर जोर पैदा करते हैं। रॉकेट ([[विशिष्ट आवेग]]) के सापेक्ष उनके निकास वेग द्वारा प्रणोदकों के [[द्रव्यमान]] प्रवाह दर को गुणा करके उत्पादित जोर की गणना की जा सकती है। रॉकेट को [[दहन]] कक्ष और [[रॉकेट इंजन नोजल]] के विरुद्ध दहनशील गैसों के दबाव से तेज होने के बारे में सोचा जा सकता है, न कि इसके पीछे या नीचे हवा के खिलाफ धकेलकर। इंजन के बाहर हवा के दबाव की कमी के कारण रॉकेट इंजन बाहरी अंतरिक्ष में सर्वश्रेष्ठ प्रदर्शन करते हैं। अंतरिक्ष में प्रवाह पृथक्करण से पीड़ित हुए बिना लंबे नोजल को फिट करना भी संभव है।


अधिकांश रासायनिक प्रणोदक रेडॉक्स रसायन के माध्यम से ऊर्जा छोड़ते हैं, विशेष रूप से दहन। इस प्रकार, मिश्रण में एक [[ऑक्सीकरण एजेंट]] और एक कम करने वाला एजेंट (ईंधन) दोनों मौजूद होना चाहिए। अपघटन, जैसे कि [[मोनोप्रोपेलेंट]] रॉकेट में अत्यधिक अस्थिर [[पेरोक्साइड]] बंधन, ऊर्जा का स्रोत भी हो सकता है।
अधिकांश रासायनिक प्रणोदक रेडॉक्स रसायन के माध्यम से ऊर्जा छोड़ते हैं, विशेष रूप से दहन इस प्रकार, मिश्रण में [[ऑक्सीकरण एजेंट]] और एक कम करने वाला एजेंट (ईंधन) दोनों उपस्थित होना चाहिए। अपघटन, जैसे कि [[मोनोप्रोपेलेंट]] रॉकेट में अत्यधिक अस्थिर [[पेरोक्साइड]] बंधन, ऊर्जा का स्रोत भी हो सकता है।


[[द्विप्रणोदक]] तरल रॉकेट के मामले में, ईंधन को कम करने और ऑक्सीकरण ऑक्सीडाइज़र का मिश्रण [[दहन कक्ष]] में पेश किया जाता है, आमतौर पर दबाव को दूर करने के लिए एक [[टर्बोपंप]] का उपयोग किया जाता है। जैसे ही दहन होता है, तरल प्रणोदक द्रव्यमान उच्च तापमान और दबाव पर भारी मात्रा में गैस में परिवर्तित हो जाता है। इस निकास धारा को इंजन नोजल से उच्च वेग से बाहर निकाला जाता है, जिससे एक विरोधी बल बनता है जो न्यूटन के गति के नियमों के अनुसार रॉकेट को आगे बढ़ाता है।
[[द्विप्रणोदक]] तरल रॉकेट के स्थिति में, ईंधन को कम करने और ऑक्सीकरण ऑक्सीडाइज़र का मिश्रण [[दहन कक्ष]] में प्रस्तुत किया जाता है, सामान्यतः दबाव को दूर करने के लिए [[टर्बोपंप]] का उपयोग किया जाता है। जैसे ही दहन होता है, तरल प्रणोदक द्रव्यमान उच्च तापमान और दबाव पर भारी मात्रा में गैस में परिवर्तित हो जाता है। इस निकास धारा को इंजन नोजल से उच्च वेग से बाहर निकाला जाता है, जिससे विरोधी बल बनता है जो न्यूटन के गति के नियमों के अनुसार रॉकेट को आगे बढ़ाता है।


रासायनिक रॉकेटों को चरण द्वारा समूहीकृत किया जा सकता है। ठोस रॉकेट ठोस चरण में प्रणोदक का उपयोग करते हैं, तरल ईंधन रॉकेट तरल चरण में प्रणोदक का उपयोग करते हैं, गैस ईंधन रॉकेट गैस चरण में प्रणोदक का उपयोग करते हैं, और [[हाइब्रिड रॉकेट]] ठोस और तरल या गैसीय प्रणोदक के संयोजन का उपयोग करते हैं।
रासायनिक रॉकेटों को चरण द्वारा समूहीकृत किया जा सकता है। ठोस रॉकेट ठोस चरण में प्रणोदक का उपयोग करते हैं, तरल ईंधन रॉकेट तरल चरण में प्रणोदक का उपयोग करते हैं, गैस ईंधन रॉकेट गैस चरण में प्रणोदक का उपयोग करते हैं, और [[हाइब्रिड रॉकेट]] ठोस और तरल या गैसीय प्रणोदक के संयोजन का उपयोग करते हैं।


ठोस रॉकेट मोटर्स के मामले में, जब मोटर डाली जाती है तो ईंधन और ऑक्सीडाइज़र संयुक्त होते हैं। प्रणोदक दहन मोटर आवरण के अंदर होता है, जिसमें विकसित दबाव होना चाहिए। ठोस रॉकेटों में आमतौर पर उच्च जोर, कम विशिष्ट आवेग, कम जलने का समय और तरल रॉकेटों की तुलना में अधिक द्रव्यमान होता है, और एक बार जलने के बाद इसे रोका नहीं जा सकता है।
ठोस रॉकेट मोटर्स के स्थिति में, जब मोटर डाली जाती है तो ईंधन और ऑक्सीडाइज़र संयुक्त होते हैं। प्रणोदक दहन मोटर आवरण के अंदर होता है, जिसमें विकसित दबाव होना चाहिए। ठोस रॉकेटों में सामान्यतः उच्च जोर, कम विशिष्ट आवेग, कम जलने का समय और तरल रॉकेटों की तुलना में अधिक द्रव्यमान होता है, और एक बार जलने के बाद इसे रोका नहीं जा सकता है।


===रॉकेट चरणों===
===रॉकेट चरणों===
अंतरिक्ष में, अधिकतम [[डेल्टा-सी]]ी जो एक रॉकेट चरण अपने पेलोड पर प्रदान कर सकता है, मुख्य रूप से इसके [[द्रव्यमान अनुपात]] और इसके निकास वेग का एक कार्य है। यह संबंध [[रॉकेट समीकरण]] द्वारा वर्णित है। निकास वेग प्रयुक्त प्रणोदक और इंजन पर निर्भर है और विशिष्ट आवेग से निकटता से संबंधित है, खपत किए गए प्रणोदक द्रव्यमान की प्रति इकाई रॉकेट वाहन को दी गई कुल ऊर्जा। किसी दिए गए प्रणोदक की पसंद से द्रव्यमान अनुपात भी प्रभावित हो सकता है।
अंतरिक्ष में, अधिकतम [[डेल्टा-सी]]ी जो एक रॉकेट चरण अपने पेलोड पर प्रदान कर सकता है, मुख्य रूप से इसके [[द्रव्यमान अनुपात]] और इसके निकास वेग का एक कार्य है। यह संबंध [[रॉकेट समीकरण]] द्वारा वर्णित है। निकास वेग प्रयुक्त प्रणोदक और इंजन पर निर्भर है और विशिष्ट आवेग से निकटता से संबंधित है, खपत किए गए प्रणोदक द्रव्यमान की प्रति इकाई रॉकेट वाहन को दी गई कुल ऊर्जा। किसी दिए गए प्रणोदक की पसंद से द्रव्यमान अनुपात भी प्रभावित हो सकता है।


रॉकेट चरण जो वायुमंडल के माध्यम से उड़ते हैं, आमतौर पर आवश्यक छोटे और हल्के टैंकेज के कारण कम प्रदर्शन, उच्च आणविक द्रव्यमान, उच्च घनत्व वाले प्रणोदक का उपयोग करते हैं। ऊपरी चरण, जो ज्यादातर या केवल अंतरिक्ष के निर्वात में काम करते हैं, उच्च ऊर्जा, उच्च प्रदर्शन, कम घनत्व वाले तरल हाइड्रोजन ईंधन का उपयोग करते हैं।
रॉकेट चरण जो वायुमंडल के माध्यम से उड़ते हैं, सामान्यतः पर आवश्यक छोटे और हल्के टैंकेज के कारण कम प्रदर्शन, उच्च आणविक द्रव्यमान, उच्च घनत्व वाले प्रणोदक का उपयोग करते हैं। ऊपरी चरण, जो ज्यादातर या केवल अंतरिक्ष के निर्वात में काम करते हैं, उच्च ऊर्जा, उच्च प्रदर्शन, कम घनत्व वाले तरल हाइड्रोजन ईंधन का उपयोग करते हैं।


== ठोस रासायनिक प्रणोदक ==
== ठोस रासायनिक प्रणोदक ==
Line 23: Line 23:
सिंगल-, डबल-, या ट्रिपल-बेस (प्राथमिक अवयवों की संख्या के आधार पर) एक से तीन प्राथमिक अवयवों के सजातीय मिश्रण हैं। इन प्राथमिक सामग्रियों में ईंधन और ऑक्सीडाइज़र शामिल होना चाहिए और अक्सर बाइंडर और प्लास्टिसाइज़र भी शामिल होते हैं। सभी घटक मैक्रोस्कोपिक रूप से अप्रभेद्य हैं और अक्सर तरल के रूप में मिश्रित होते हैं और एक ही बैच में ठीक हो जाते हैं। सामग्री में अक्सर कई भूमिकाएँ हो सकती हैं। उदाहरण के लिए, RDX एक ईंधन और ऑक्सीकारक दोनों है जबकि नाइट्रोसेल्युलोज एक ईंधन, ऑक्सीकारक और संरचनात्मक बहुलक है।
सिंगल-, डबल-, या ट्रिपल-बेस (प्राथमिक अवयवों की संख्या के आधार पर) एक से तीन प्राथमिक अवयवों के सजातीय मिश्रण हैं। इन प्राथमिक सामग्रियों में ईंधन और ऑक्सीडाइज़र शामिल होना चाहिए और अक्सर बाइंडर और प्लास्टिसाइज़र भी शामिल होते हैं। सभी घटक मैक्रोस्कोपिक रूप से अप्रभेद्य हैं और अक्सर तरल के रूप में मिश्रित होते हैं और एक ही बैच में ठीक हो जाते हैं। सामग्री में अक्सर कई भूमिकाएँ हो सकती हैं। उदाहरण के लिए, RDX एक ईंधन और ऑक्सीकारक दोनों है जबकि नाइट्रोसेल्युलोज एक ईंधन, ऑक्सीकारक और संरचनात्मक बहुलक है।


आगे जटिल वर्गीकरण, ऐसे कई प्रणोदक हैं जिनमें डबल-बेस और समग्र प्रणोदक के तत्व होते हैं, जिनमें अक्सर कुछ मात्रा में ऊर्जावान योजक होते हैं जो बाइंडर में सजातीय रूप से मिश्रित होते हैं। गनपाउडर (पॉलीमेरिक बाइंडर के बिना एक दबाया हुआ सम्मिश्र) के मामले में ईंधन लकड़ी का कोयला है, ऑक्सीडाइज़र पोटेशियम नाइट्रेट है, और सल्फर एक प्रतिक्रिया उत्प्रेरक के रूप में कार्य करता है, जबकि [[पोटेशियम सल्फाइड]] जैसे विभिन्न प्रकार के प्रतिक्रिया उत्पादों को बनाने के लिए इसका सेवन किया जाता है।
आगे जटिल वर्गीकरण, ऐसे कई प्रणोदक हैं जिनमें डबल-बेस और समग्र प्रणोदक के तत्व होते हैं, जिनमें अक्सर कुछ मात्रा में ऊर्जावान योजक होते हैं जो बाइंडर में सजातीय रूप से मिश्रित होते हैं। गनपाउडर (पॉलीमेरिक बाइंडर के बिना एक दबाया हुआ सम्मिश्र) के स्थिति में ईंधन लकड़ी का कोयला है, ऑक्सीडाइज़र पोटेशियम नाइट्रेट है, और सल्फर एक प्रतिक्रिया उत्प्रेरक के रूप में कार्य करता है, जबकि [[पोटेशियम सल्फाइड]] जैसे विभिन्न प्रकार के प्रतिक्रिया उत्पादों को बनाने के लिए इसका सेवन किया जाता है।


[[Hexanitrohexaazaisowurtzitane]]|CL-20 (HNIW) पर आधारित नवीनतम नाइट्रामाइन ठोस प्रणोदक NTO/UDMH संग्रहणीय तरल प्रणोदकों के प्रदर्शन से मेल खा सकते हैं, लेकिन इन्हें थ्रॉटल या फिर से चालू नहीं किया जा सकता है।
[[Hexanitrohexaazaisowurtzitane]]|CL-20 (HNIW) पर आधारित नवीनतम नाइट्रामाइन ठोस प्रणोदक NTO/UDMH संग्रहणीय तरल प्रणोदकों के प्रदर्शन से मेल खा सकते हैं, लेकिन इन्हें थ्रॉटल या फिर से चालू नहीं किया जा सकता है।
Line 33: Line 33:


=== नुकसान ===
=== नुकसान ===
तरल ईंधन रॉकेट की तुलना में ठोस ईंधन रॉकेट में कम विशिष्ट आवेग, प्रणोदक दक्षता का एक उपाय है। नतीजतन, ठोस ऊपरी चरणों का समग्र प्रदर्शन तरल चरणों से कम होता है, हालांकि ठोस द्रव्यमान अनुपात आमतौर पर .91 से .93 रेंज में होता है, जो कि अधिकांश तरल प्रणोदक ऊपरी चरणों की तुलना में अच्छा या बेहतर होता है। इन अखंडित ठोस ऊपरी चरणों के साथ संभव उच्च द्रव्यमान अनुपात उच्च प्रणोदक घनत्व और बहुत उच्च शक्ति-से-भार अनुपात फिलामेंट-घाव मोटर आवरण का परिणाम है।{{citation_needed|date=June 2019}}
तरल ईंधन रॉकेट की तुलना में ठोस ईंधन रॉकेट में कम विशिष्ट आवेग, प्रणोदक दक्षता का एक उपाय है। नतीजतन, ठोस ऊपरी चरणों का समग्र प्रदर्शन तरल चरणों से कम होता है, हालांकि ठोस द्रव्यमान अनुपात सामान्यतः पर .91 से .93 रेंज में होता है, जो कि अधिकांश तरल प्रणोदक ऊपरी चरणों की तुलना में अच्छा या बेहतर होता है। इन अखंडित ठोस ऊपरी चरणों के साथ संभव उच्च द्रव्यमान अनुपात उच्च प्रणोदक घनत्व और बहुत उच्च शक्ति-से-भार अनुपात फिलामेंट-घाव मोटर आवरण का परिणाम है।{{citation_needed|date=June 2019}}
ठोस रॉकेटों में एक कमी यह है कि उन्हें वास्तविक समय में थ्रॉटल नहीं किया जा सकता है, हालांकि आंतरिक प्रणोदक ज्यामिति को समायोजित करके एक क्रमादेशित थ्रस्ट शेड्यूल बनाया जा सकता है। रेंज को नियंत्रित करने या स्टेज सेपरेशन को समायोजित करने के साधन के रूप में दहन या रिवर्स थ्रस्ट को बुझाने के लिए सॉलिड रॉकेट्स को निकाल दिया जा सकता है। बड़ी मात्रा में प्रणोदक की ढलाई के लिए पूर्ण मोटर में दरारें और रिक्तियों से बचने के लिए स्थिरता और दोहराव की आवश्यकता होती है। सम्मिश्रण और ढलाई एक निर्वात में कंप्यूटर नियंत्रण के तहत होती है, और प्रणोदक मिश्रण को पतला फैलाया जाता है और यह सुनिश्चित करने के लिए स्कैन किया जाता है कि मोटर में कोई बड़ा गैस बुलबुला न आए।
ठोस रॉकेटों में एक कमी यह है कि उन्हें वास्तविक समय में थ्रॉटल नहीं किया जा सकता है, हालांकि आंतरिक प्रणोदक ज्यामिति को समायोजित करके एक क्रमादेशित थ्रस्ट शेड्यूल बनाया जा सकता है। रेंज को नियंत्रित करने या स्टेज सेपरेशन को समायोजित करने के साधन के रूप में दहन या रिवर्स थ्रस्ट को बुझाने के लिए सॉलिड रॉकेट्स को निकाल दिया जा सकता है। बड़ी मात्रा में प्रणोदक की ढलाई के लिए पूर्ण मोटर में दरारें और रिक्तियों से बचने के लिए स्थिरता और दोहराव की आवश्यकता होती है। सम्मिश्रण और ढलाई एक निर्वात में कंप्यूटर नियंत्रण के तहत होती है, और प्रणोदक मिश्रण को पतला फैलाया जाता है और यह सुनिश्चित करने के लिए स्कैन किया जाता है कि मोटर में कोई बड़ा गैस बुलबुला न आए।


ठोस ईंधन रॉकेट दरारों और रिक्तियों के प्रति असहिष्णु होते हैं और दोषों की पहचान करने के लिए एक्स-रे स्कैन जैसे पोस्ट-प्रोसेसिंग की आवश्यकता होती है। दहन प्रक्रिया ईंधन के सतह क्षेत्र पर निर्भर है। आवाजें और दरारें जलती हुई सतह क्षेत्र में स्थानीय वृद्धि का प्रतिनिधित्व करती हैं, जिससे स्थानीय तापमान में वृद्धि होती है, जिससे दहन की स्थानीय दर बढ़ जाती है। यह सकारात्मक प्रतिक्रिया पाश आसानी से मामले या नोजल की विपत्तिपूर्ण विफलता का कारण बन सकता है।
ठोस ईंधन रॉकेट दरारों और रिक्तियों के प्रति असहिष्णु होते हैं और दोषों की पहचान करने के लिए एक्स-रे स्कैन जैसे पोस्ट-प्रोसेसिंग की आवश्यकता होती है। दहन प्रक्रिया ईंधन के सतह क्षेत्र पर निर्भर है। आवाजें और दरारें जलती हुई सतह क्षेत्र में स्थानीय वृद्धि का प्रतिनिधित्व करती हैं, जिससे स्थानीय तापमान में वृद्धि होती है, जिससे दहन की स्थानीय दर बढ़ जाती है। यह सकारात्मक प्रतिक्रिया पाश आसानी से स्थिति या नोजल की विपत्तिपूर्ण विफलता का कारण बन सकता है।


=== इतिहास ===
=== इतिहास ===
ठोस रॉकेट प्रणोदक पहली बार 13 वीं शताब्दी के दौरान चीनी सांग राजवंश के तहत विकसित किया गया था। सॉन्ग चाइनीज ने पहली बार 1232 में कैफेंग (1234) की घेराबंदी के दौरान [[बारूद]] का इस्तेमाल किया था।<ref>{{Cite book |title=Space Race: The Mission, the Men, the Moon |last=McGowen |first=Tom |publisher=Enslow Pub Inc. |year=2008 |isbn=978-0766029101 |pages=7}}</ref><ref>{{Cite book |title=Balderdash & Piffle |url=https://archive.org/details/balderdashpiffle0000game |url-access=registration |last=Games |first=Alex  |publisher= BBC Books |year=2007 |isbn=978-0563493365 |pages=[https://archive.org/details/balderdashpiffle0000game/page/199 199]}}</ref><ref>{{Cite book |title=The Rise and Fall of American Technology |last= Gref |first=Lynn G. |publisher=Algora  |year=2010 |isbn= 978-0875867533 |pages=95}}</ref><ref>{{Cite book |title=Powered Flight: The Engineering of Aerospace Propulsion |url=https://archive.org/details/poweredflighteng00grea |url-access=limited |last=Greatrix |first= David R.  |publisher=Springer |year=2012 |isbn=978-1447124849 |pages=[https://archive.org/details/poweredflighteng00grea/page/n23 1]}}</ref><ref>{{Cite book |title=Atomic Adventures: Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey Through The Wild World of Nuclear Science |last= Mahaffey |first= James |publisher=Pegasus Books  |year=2017 |isbn= 978-1681774213}}</ref>
ठोस रॉकेट प्रणोदक पहली बार 13 वीं शताब्दी के दौरान चीनी सांग राजवंश के तहत विकसित किया गया था। सॉन्ग चाइनीज ने पहली बार 1232 में कैफेंग (1234) की घेराबंदी के दौरान [[बारूद]] का इस्तेमाल किया था।<ref>{{Cite book |title=Space Race: The Mission, the Men, the Moon |last=McGowen |first=Tom |publisher=Enslow Pub Inc. |year=2008 |isbn=978-0766029101 |pages=7}}</ref><ref>{{Cite book |title=Balderdash & Piffle |url=https://archive.org/details/balderdashpiffle0000game |url-access=registration |last=Games |first=Alex  |publisher= BBC Books |year=2007 |isbn=978-0563493365 |pages=[https://archive.org/details/balderdashpiffle0000game/page/199 199]}}</ref><ref>{{Cite book |title=The Rise and Fall of American Technology |last= Gref |first=Lynn G. |publisher=Algora  |year=2010 |isbn= 978-0875867533 |pages=95}}</ref><ref>{{Cite book |title=Powered Flight: The Engineering of Aerospace Propulsion |url=https://archive.org/details/poweredflighteng00grea |url-access=limited |last=Greatrix |first= David R.  |publisher=Springer |year=2012 |isbn=978-1447124849 |pages=[https://archive.org/details/poweredflighteng00grea/page/n23 1]}}</ref><ref>{{Cite book |title=Atomic Adventures: Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey Through The Wild World of Nuclear Science |last= Mahaffey |first= James |publisher=Pegasus Books  |year=2017 |isbn= 978-1681774213}}</ref>
1950 और 60 के दशक के दौरान, संयुक्त राज्य अमेरिका में शोधकर्ताओं ने अमोनियम परक्लोरेट समग्र प्रणोदक (APCP) विकसित किया। यह मिश्रण आमतौर पर 69-70% बारीक पिसा हुआ अमोनियम पर्क्लोरेट (एक ऑक्सीडाइज़र) होता है, जिसे 16-20% बारीक [[एल्यूमीनियम पाउडर]] (एक ईंधन) के साथ मिलाकर 11-14% [[पॉलीब्यूटाडाइन एक्रिलोनिट्राइल]] (PBAN) या [[हाइड्रॉक्सिल-टर्मिनेटेड पॉलीब्यूटाडाइन]] बेस में एक साथ रखा जाता है। पॉलीब्यूटाडाइन (पॉलीब्यूटाडाइन रबर ईंधन)। मिश्रण एक गाढ़े तरल के रूप में बनता है और फिर सही आकार में डाला जाता है और एक दृढ़ लेकिन लचीले भार वहन करने वाले ठोस में ठीक हो जाता है। ऐतिहासिक रूप से, APCP ठोस प्रणोदकों के [[कक्षीय प्रक्षेपण प्रणालियों की तुलना]] अपेक्षाकृत छोटी है। सेना, हालांकि, विभिन्न प्रकार के ठोस प्रणोदकों की एक विस्तृत विविधता का उपयोग करती है, जिनमें से कुछ APCP के प्रदर्शन से अधिक हैं। वर्तमान लॉन्च वाहनों में उपयोग किए जाने वाले विभिन्न ठोस और तरल प्रणोदक संयोजनों के साथ प्राप्त उच्चतम विशिष्ट आवेगों की तुलना ठोस-ईंधन रॉकेट पर लेख में दी गई है।<ref>M. D. Black, ''The Evolution of ROCKET TECHNOLOGY'', 3rd Ed., 2012, payloadz.com ''ebook/History'' pp. 109-112 and pp. 114-119</ref>
1950 और 60 के दशक के दौरान, संयुक्त राज्य अमेरिका में शोधकर्ताओं ने अमोनियम परक्लोरेट समग्र प्रणोदक (APCP) विकसित किया। यह मिश्रण सामान्यतः पर 69-70% बारीक पिसा हुआ अमोनियम पर्क्लोरेट (एक ऑक्सीडाइज़र) होता है, जिसे 16-20% बारीक [[एल्यूमीनियम पाउडर]] (एक ईंधन) के साथ मिलाकर 11-14% [[पॉलीब्यूटाडाइन एक्रिलोनिट्राइल]] (PBAN) या [[हाइड्रॉक्सिल-टर्मिनेटेड पॉलीब्यूटाडाइन]] बेस में एक साथ रखा जाता है। पॉलीब्यूटाडाइन (पॉलीब्यूटाडाइन रबर ईंधन)। मिश्रण एक गाढ़े तरल के रूप में बनता है और फिर सही आकार में डाला जाता है और एक दृढ़ लेकिन लचीले भार वहन करने वाले ठोस में ठीक हो जाता है। ऐतिहासिक रूप से, APCP ठोस प्रणोदकों के [[कक्षीय प्रक्षेपण प्रणालियों की तुलना]] अपेक्षाकृत छोटी है। सेना, हालांकि, विभिन्न प्रकार के ठोस प्रणोदकों की एक विस्तृत विविधता का उपयोग करती है, जिनमें से कुछ APCP के प्रदर्शन से अधिक हैं। वर्तमान लॉन्च वाहनों में उपयोग किए जाने वाले विभिन्न ठोस और तरल प्रणोदक संयोजनों के साथ प्राप्त उच्चतम विशिष्ट आवेगों की तुलना ठोस-ईंधन रॉकेट पर लेख में दी गई है।<ref>M. D. Black, ''The Evolution of ROCKET TECHNOLOGY'', 3rd Ed., 2012, payloadz.com ''ebook/History'' pp. 109-112 and pp. 114-119</ref>
1970 और 1980 के दशक में, अमेरिका ने पूरी तरह से ठोस-ईंधन वाले ICBM: [[LGM-30 Minuteman]] और [[LG-118A पीसकीपर]] (MX) पर स्विच किया। 1980 और 1990 के दशक में, USSR/रूस ने भी ठोस-ईंधन वाले ICBMs ([[RT-23 Molodets]]|RT-23, [[RT-2PM]], और [[RT-2UTTH]]) को तैनात किया, लेकिन दो तरल-ईंधन वाले ICBM ([[R-36 (मिसाइल)]] को बरकरार रखा। |आर-36 और [[यू.आर.-100N]])। दोनों पक्षों के सभी ठोस-ईंधन वाले ICBM में तीन प्रारंभिक ठोस चरण थे, और जिनके पास कई स्वतंत्र रूप से लक्षित वारहेड्स थे, उनके पास एक सटीक पैंतरेबाज़ी बस थी जिसका उपयोग पुन: प्रवेश वाहनों के प्रक्षेपवक्र को ठीक करने के लिए किया जाता था।
1970 और 1980 के दशक में, अमेरिका ने पूरी तरह से ठोस-ईंधन वाले ICBM: [[LGM-30 Minuteman]] और [[LG-118A पीसकीपर]] (MX) पर स्विच किया। 1980 और 1990 के दशक में, USSR/रूस ने भी ठोस-ईंधन वाले ICBMs ([[RT-23 Molodets]]|RT-23, [[RT-2PM]], और [[RT-2UTTH]]) को तैनात किया, लेकिन दो तरल-ईंधन वाले ICBM ([[R-36 (मिसाइल)]] को बरकरार रखा। |आर-36 और [[यू.आर.-100N]])। दोनों पक्षों के सभी ठोस-ईंधन वाले ICBM में तीन प्रारंभिक ठोस चरण थे, और जिनके पास कई स्वतंत्र रूप से लक्षित वारहेड्स थे, उनके पास एक सटीक पैंतरेबाज़ी बस थी जिसका उपयोग पुन: प्रवेश वाहनों के प्रक्षेपवक्र को ठीक करने के लिए किया जाता था।


Line 75: Line 75:
प्रणोदक द्रव्यमान की प्रति इकाई जारी ऊर्जा के समानुपाती (विशिष्ट
प्रणोदक द्रव्यमान की प्रति इकाई जारी ऊर्जा के समानुपाती (विशिष्ट
ऊर्जा)। रासायनिक रॉकेटों में, बिना जला हुआ ईंधन या ऑक्सीडाइज़र [[रासायनिक संभावित ऊर्जा]] के नुकसान का प्रतिनिधित्व करता है, जो [[विशिष्ट ऊर्जा]] को कम करता है। हालांकि, अधिकांश रॉकेट ईंधन-समृद्ध मिश्रण चलाते हैं, जिसके परिणामस्वरूप सैद्धांतिक निकास वेग कम होता है।<ref name=braeunig2012>[http://www.braeunig.us/space/propuls.htm Rocket Propulsion], Robert A. Braeunig, ''Rocket and Space Technology'', 2012.</ref>
ऊर्जा)। रासायनिक रॉकेटों में, बिना जला हुआ ईंधन या ऑक्सीडाइज़र [[रासायनिक संभावित ऊर्जा]] के नुकसान का प्रतिनिधित्व करता है, जो [[विशिष्ट ऊर्जा]] को कम करता है। हालांकि, अधिकांश रॉकेट ईंधन-समृद्ध मिश्रण चलाते हैं, जिसके परिणामस्वरूप सैद्धांतिक निकास वेग कम होता है।<ref name=braeunig2012>[http://www.braeunig.us/space/propuls.htm Rocket Propulsion], Robert A. Braeunig, ''Rocket and Space Technology'', 2012.</ref>
हालांकि, ईंधन से भरपूर मिश्रण में कम आणविक भार वाली निकास प्रजातियां भी होती हैं। रॉकेट का नोज़ल प्रणोदक की [[तापीय ऊर्जा]] को निर्देशित [[गतिज ऊर्जा]] में परिवर्तित करता है। यह रूपांतरण उस समय में होता है जब प्रणोदक दहन कक्ष से इंजन गले के माध्यम से और नोजल से बाहर निकलते हैं, आमतौर पर एक मिलीसेकंड के क्रम में। अणु थर्मल ऊर्जा को रोटेशन, कंपन और अनुवाद में संग्रहीत करते हैं, जिनमें से केवल बाद वाले का उपयोग रॉकेट चरण में ऊर्जा जोड़ने के लिए आसानी से किया जा सकता है। कम परमाणुओं वाले अणु (जैसे CO और H<sub>2</sub>) अधिक परमाणुओं वाले अणुओं की तुलना में कम उपलब्ध कंपन और [[घूर्णी मोड]] हैं (जैसे CO<sub>2</sub> और वह<sub>2</sub>ओ). नतीजतन, छोटे अणु ऊष्मा इनपुट की दी गई मात्रा के लिए कम कंपन और [[घूर्णी ऊर्जा]] को संग्रहित करते हैं, जिसके परिणामस्वरूप गतिज ऊर्जा में परिवर्तित होने के लिए अधिक अनुवाद ऊर्जा उपलब्ध होती है। नोजल दक्षता में परिणामी सुधार इतना बड़ा है कि वास्तविक रॉकेट इंजन कुछ कम सैद्धांतिक निकास वेगों के साथ समृद्ध मिश्रण चलाकर अपने वास्तविक निकास वेग में सुधार करते हैं।<ref name=braeunig2012/>
हालांकि, ईंधन से भरपूर मिश्रण में कम आणविक भार वाली निकास प्रजातियां भी होती हैं। रॉकेट का नोज़ल प्रणोदक की [[तापीय ऊर्जा]] को निर्देशित [[गतिज ऊर्जा]] में परिवर्तित करता है। यह रूपांतरण उस समय में होता है जब प्रणोदक दहन कक्ष से इंजन गले के माध्यम से और नोजल से बाहर निकलते हैं, सामान्यतः पर एक मिलीसेकंड के क्रम में। अणु थर्मल ऊर्जा को रोटेशन, कंपन और अनुवाद में संग्रहीत करते हैं, जिनमें से केवल बाद वाले का उपयोग रॉकेट चरण में ऊर्जा जोड़ने के लिए आसानी से किया जा सकता है। कम परमाणुओं वाले अणु (जैसे CO और H<sub>2</sub>) अधिक परमाणुओं वाले अणुओं की तुलना में कम उपलब्ध कंपन और [[घूर्णी मोड]] हैं (जैसे CO<sub>2</sub> और वह<sub>2</sub>ओ). नतीजतन, छोटे अणु ऊष्मा इनपुट की दी गई मात्रा के लिए कम कंपन और [[घूर्णी ऊर्जा]] को संग्रहित करते हैं, जिसके परिणामस्वरूप गतिज ऊर्जा में परिवर्तित होने के लिए अधिक अनुवाद ऊर्जा उपलब्ध होती है। नोजल दक्षता में परिणामी सुधार इतना बड़ा है कि वास्तविक रॉकेट इंजन कुछ कम सैद्धांतिक निकास वेगों के साथ समृद्ध मिश्रण चलाकर अपने वास्तविक निकास वेग में सुधार करते हैं।<ref name=braeunig2012/>


समुद्र तल के निकट संचालित नलिकाओं के लिए नोजल दक्षता पर निकास आणविक भार का प्रभाव सबसे महत्वपूर्ण है। निर्वात में संचालित होने वाले उच्च विस्तार वाले रॉकेट बहुत कम प्रभाव देखते हैं, और इसलिए कम समृद्ध होते हैं।
समुद्र तल के निकट संचालित नलिकाओं के लिए नोजल दक्षता पर निकास आणविक भार का प्रभाव सबसे महत्वपूर्ण है। निर्वात में संचालित होने वाले उच्च विस्तार वाले रॉकेट बहुत कम प्रभाव देखते हैं, और इसलिए कम समृद्ध होते हैं।
Line 81: Line 81:
LOX/हाइड्रोकार्बन रॉकेट थोड़े समृद्ध (3.4 से 4 के [[स्तुईचिओमेटरी]] के बजाय 3 के O/F द्रव्यमान अनुपात) चलाए जाते हैं क्योंकि प्रति यूनिट द्रव्यमान में ऊर्जा रिलीज जल्दी से गिर जाती है क्योंकि मिश्रण अनुपात स्टोइकोमेट्रिक से विचलित हो जाता है। लोक्स / एलएच<sub>2</sub> रॉकेट बहुत समृद्ध चलाए जाते हैं (स्टोइकियोमेट्रिक 8 के बजाय 4 का ओ/एफ द्रव्यमान अनुपात) क्योंकि हाइड्रोजन इतना हल्का है कि प्रणोदक के प्रति इकाई द्रव्यमान में ऊर्जा अतिरिक्त हाइड्रोजन के साथ बहुत धीरे-धीरे गिरती है। वास्तव में, एलओएक्स/एलएच<sub>2</sub> रॉकेट आम तौर पर सीमित होते हैं कि वे अंतर्निहित रसायन विज्ञान के बजाय अतिरिक्त हाइड्रोजन टैंकेज के द्रव्यमान के प्रदर्शन दंड से कितने समृद्ध होते हैं।<ref name=braeunig2012/>
LOX/हाइड्रोकार्बन रॉकेट थोड़े समृद्ध (3.4 से 4 के [[स्तुईचिओमेटरी]] के बजाय 3 के O/F द्रव्यमान अनुपात) चलाए जाते हैं क्योंकि प्रति यूनिट द्रव्यमान में ऊर्जा रिलीज जल्दी से गिर जाती है क्योंकि मिश्रण अनुपात स्टोइकोमेट्रिक से विचलित हो जाता है। लोक्स / एलएच<sub>2</sub> रॉकेट बहुत समृद्ध चलाए जाते हैं (स्टोइकियोमेट्रिक 8 के बजाय 4 का ओ/एफ द्रव्यमान अनुपात) क्योंकि हाइड्रोजन इतना हल्का है कि प्रणोदक के प्रति इकाई द्रव्यमान में ऊर्जा अतिरिक्त हाइड्रोजन के साथ बहुत धीरे-धीरे गिरती है। वास्तव में, एलओएक्स/एलएच<sub>2</sub> रॉकेट आम तौर पर सीमित होते हैं कि वे अंतर्निहित रसायन विज्ञान के बजाय अतिरिक्त हाइड्रोजन टैंकेज के द्रव्यमान के प्रदर्शन दंड से कितने समृद्ध होते हैं।<ref name=braeunig2012/>


समृद्ध होने का एक अन्य कारण यह है कि ऑफ-स्टोइकियोमेट्रिक मिश्रण स्टोइकियोमेट्रिक मिश्रणों की तुलना में अधिक ठंडा होता है, जिससे इंजन को ठंडा करना आसान हो जाता है। क्योंकि ईंधन से भरपूर दहन उत्पाद ऑक्सीडाइज़र युक्त दहन उत्पादों की तुलना में रासायनिक रूप से कम प्रतिक्रियाशील ([[संक्षारक]]) होते हैं, रॉकेट इंजनों का एक बड़ा हिस्सा ईंधन से भरपूर चलाने के लिए डिज़ाइन किया गया है। कम से कम एक अपवाद मौजूद है: रूसी [[RD-180]] प्रीबर्नर, जो LOX और RP-1 को 2.72 के अनुपात में जलाता है।
समृद्ध होने का एक अन्य कारण यह है कि ऑफ-स्टोइकियोमेट्रिक मिश्रण स्टोइकियोमेट्रिक मिश्रणों की तुलना में अधिक ठंडा होता है, जिससे इंजन को ठंडा करना आसान हो जाता है। क्योंकि ईंधन से भरपूर दहन उत्पाद ऑक्सीडाइज़र युक्त दहन उत्पादों की तुलना में रासायनिक रूप से कम प्रतिक्रियाशील ([[संक्षारक]]) होते हैं, रॉकेट इंजनों का एक बड़ा हिस्सा ईंधन से भरपूर चलाने के लिए डिज़ाइन किया गया है। कम से कम एक अपवाद उपस्थित है: रूसी [[RD-180]] प्रीबर्नर, जो LOX और RP-1 को 2.72 के अनुपात में जलाता है।


इसके अतिरिक्त, प्रक्षेपण के दौरान मिश्रण अनुपात गतिशील हो सकते हैं। इसका उपयोग उन डिज़ाइनों के साथ किया जा सकता है जो संपूर्ण सिस्टम प्रदर्शन को अधिकतम करने के लिए एक उड़ान के दौरान ऑक्सीडाइज़र को ईंधन अनुपात (समग्र थ्रस्ट के साथ) में समायोजित करते हैं। उदाहरण के लिए, लिफ्ट-ऑफ थ्रस्ट के दौरान विशिष्ट आवेग की तुलना में अधिक मूल्यवान होता है, और ओ/एफ अनुपात का सावधानीपूर्वक समायोजन उच्च थ्रस्ट स्तरों की अनुमति दे सकता है। एक बार जब रॉकेट लॉन्चपैड से दूर हो जाता है, तो उच्च दक्षता के लिए इंजन O/F अनुपात को ट्यून किया जा सकता है।
इसके अतिरिक्त, प्रक्षेपण के दौरान मिश्रण अनुपात गतिशील हो सकते हैं। इसका उपयोग उन डिज़ाइनों के साथ किया जा सकता है जो संपूर्ण सिस्टम प्रदर्शन को अधिकतम करने के लिए एक उड़ान के दौरान ऑक्सीडाइज़र को ईंधन अनुपात (समग्र थ्रस्ट के साथ) में समायोजित करते हैं। उदाहरण के लिए, लिफ्ट-ऑफ थ्रस्ट के दौरान विशिष्ट आवेग की तुलना में अधिक मूल्यवान होता है, और ओ/एफ अनुपात का सावधानीपूर्वक समायोजन उच्च थ्रस्ट स्तरों की अनुमति दे सकता है। एक बार जब रॉकेट लॉन्चपैड से दूर हो जाता है, तो उच्च दक्षता के लिए इंजन O/F अनुपात को ट्यून किया जा सकता है।
Line 98: Line 98:
हाइब्रिड प्रणोदक: एक ठोस ईंधन के साथ उपयोग किया जाने वाला एक आकर्षक ऑक्सीडाइज़र, जो तरल पदार्थ (उच्च आईएसपी) और ठोस (सरलता) दोनों के अधिकांश गुणों को बरकरार रखता है।
हाइब्रिड प्रणोदक: एक ठोस ईंधन के साथ उपयोग किया जाने वाला एक आकर्षक ऑक्सीडाइज़र, जो तरल पदार्थ (उच्च आईएसपी) और ठोस (सरलता) दोनों के अधिकांश गुणों को बरकरार रखता है।


एक संकर-प्रणोदक रॉकेट में आमतौर पर एक ठोस ईंधन और एक तरल या NEMA ऑक्सीडाइज़र होता है।{{Clarify|reason=What is a NEMA oxidizer?|date=January 2020}} द्रव ऑक्सीडाइज़र तरल-ईंधन वाले रॉकेट की तरह ही मोटर को थ्रॉटल और रीस्टार्ट करना संभव बनाता है। हाइब्रिड रॉकेट ठोस रॉकेट की तुलना में पर्यावरण की दृष्टि से अधिक सुरक्षित भी हो सकते हैं क्योंकि कुछ उच्च-प्रदर्शन ठोस-चरण ऑक्सीडाइज़र में क्लोरीन (विशेष रूप से अमोनियम परक्लोरेट के साथ कंपोजिट) ​​होता है, बनाम अधिक सौम्य तरल ऑक्सीजन या नाइट्रस ऑक्साइड अक्सर हाइब्रिड में उपयोग किया जाता है। यह केवल विशिष्ट संकर प्रणालियों के लिए सही है। ऐसे संकर हैं जिन्होंने क्लोरीन या फ्लोरीन यौगिकों को ऑक्सीडाइज़र और खतरनाक सामग्री जैसे बेरिलियम यौगिकों को ठोस ईंधन अनाज में मिलाया है। क्योंकि केवल एक घटक एक द्रव है, तरल रॉकेट की तुलना में संकर सरल हो सकते हैं, जो तरल पदार्थ को दहन कक्ष में ले जाने के लिए उपयोग किए जाने वाले प्रेरक बल पर निर्भर करता है। कम तरल पदार्थ आमतौर पर कम और छोटे पाइपिंग सिस्टम, वाल्व और पंप (यदि उपयोग किए जाते हैं) का मतलब है।
एक संकर-प्रणोदक रॉकेट में सामान्यतः पर एक ठोस ईंधन और एक तरल या NEMA ऑक्सीडाइज़र होता है।{{Clarify|reason=What is a NEMA oxidizer?|date=January 2020}} द्रव ऑक्सीडाइज़र तरल-ईंधन वाले रॉकेट की तरह ही मोटर को थ्रॉटल और रीस्टार्ट करना संभव बनाता है। हाइब्रिड रॉकेट ठोस रॉकेट की तुलना में पर्यावरण की दृष्टि से अधिक सुरक्षित भी हो सकते हैं क्योंकि कुछ उच्च-प्रदर्शन ठोस-चरण ऑक्सीडाइज़र में क्लोरीन (विशेष रूप से अमोनियम परक्लोरेट के साथ कंपोजिट) ​​होता है, बनाम अधिक सौम्य तरल ऑक्सीजन या नाइट्रस ऑक्साइड अक्सर हाइब्रिड में उपयोग किया जाता है। यह केवल विशिष्ट संकर प्रणालियों के लिए सही है। ऐसे संकर हैं जिन्होंने क्लोरीन या फ्लोरीन यौगिकों को ऑक्सीडाइज़र और खतरनाक सामग्री जैसे बेरिलियम यौगिकों को ठोस ईंधन अनाज में मिलाया है। क्योंकि केवल एक घटक एक द्रव है, तरल रॉकेट की तुलना में संकर सरल हो सकते हैं, जो तरल पदार्थ को दहन कक्ष में ले जाने के लिए उपयोग किए जाने वाले प्रेरक बल पर निर्भर करता है। कम तरल पदार्थ सामान्यतः पर कम और छोटे पाइपिंग सिस्टम, वाल्व और पंप (यदि उपयोग किए जाते हैं) का मतलब है।


हाइब्रिड मोटर्स में दो बड़ी कमियां हैं। ठोस रॉकेट मोटर्स के साथ साझा किया गया पहला, यह है कि ईंधन अनाज के चारों ओर आवरण को पूर्ण दहन दबाव और अक्सर अत्यधिक तापमान का सामना करने के लिए बनाया जाना चाहिए। हालांकि, आधुनिक समग्र संरचनाएं इस समस्या को अच्छी तरह से संभालती हैं, और जब नाइट्रस ऑक्साइड और एक ठोस रबड़ प्रणोदक (एचटीपीबी) के साथ प्रयोग किया जाता है, वैसे भी अपेक्षाकृत कम प्रतिशत ईंधन की आवश्यकता होती है, इसलिए दहन कक्ष विशेष रूप से बड़ा नहीं होता है।{{citation_needed|date=June 2019}}
हाइब्रिड मोटर्स में दो बड़ी कमियां हैं। ठोस रॉकेट मोटर्स के साथ साझा किया गया पहला, यह है कि ईंधन अनाज के चारों ओर आवरण को पूर्ण दहन दबाव और अक्सर अत्यधिक तापमान का सामना करने के लिए बनाया जाना चाहिए। हालांकि, आधुनिक समग्र संरचनाएं इस समस्या को अच्छी तरह से संभालती हैं, और जब नाइट्रस ऑक्साइड और एक ठोस रबड़ प्रणोदक (एचटीपीबी) के साथ प्रयोग किया जाता है, वैसे भी अपेक्षाकृत कम प्रतिशत ईंधन की आवश्यकता होती है, इसलिए दहन कक्ष विशेष रूप से बड़ा नहीं होता है।{{citation_needed|date=June 2019}}
दहन प्रक्रिया के दौरान प्रणोदक मिश्रण के साथ संकर के साथ प्राथमिक शेष कठिनाई है। ठोस प्रणोदक में, ऑक्सीडाइज़र और ईंधन को कारखाने में सावधानीपूर्वक नियंत्रित स्थितियों में मिलाया जाता है। तरल प्रणोदक आम तौर पर दहन कक्ष के शीर्ष पर इंजेक्टर द्वारा मिश्रित होते हैं, जो ईंधन और ऑक्सीडाइज़र की कई छोटी तेज गति वाली धाराओं को एक दूसरे में निर्देशित करता है। तरल-ईंधन वाले रॉकेट इंजेक्टर डिजाइन का काफी विस्तार से अध्ययन किया गया है और अभी भी विश्वसनीय प्रदर्शन भविष्यवाणी का विरोध करता है। हाइब्रिड मोटर में, मिश्रण ईंधन के पिघलने या वाष्पित होने वाली सतह पर होता है। मिश्रण एक अच्छी तरह से नियंत्रित प्रक्रिया नहीं है और आम तौर पर काफी प्रणोदक बिना जला हुआ छोड़ दिया जाता है,<ref>''Ignition! An Informal History of Liquid Rocket Propellants'', [[John Drury Clark|John D. Clark]] (Rutgers University Press, 1972), Chapter 12</ref> जो मोटर की दक्षता को सीमित करता है। ईंधन की दहन दर काफी हद तक ऑक्सीडाइज़र फ्लक्स और उजागर ईंधन सतह क्षेत्र द्वारा निर्धारित की जाती है। यह दहन दर आमतौर पर उच्च शक्ति संचालन जैसे बूस्ट चरणों के लिए पर्याप्त नहीं होती है जब तक कि सतह क्षेत्र या ऑक्सीडाइज़र प्रवाह उच्च न हो। बहुत अधिक ऑक्सीडाइज़र प्रवाह से बाढ़ आ सकती है और ज्वाला की हानि हो सकती है जो स्थानीय रूप से दहन को बुझा देती है। सतह क्षेत्र को बढ़ाया जा सकता है, आमतौर पर लंबे अनाज या कई बंदरगाहों से, लेकिन यह दहन कक्ष का आकार बढ़ा सकता है, अनाज की ताकत कम कर सकता है और / या वॉल्यूमेट्रिक लोडिंग कम कर सकता है। इसके अतिरिक्त, जैसे-जैसे जलना जारी रहता है, अनाज के केंद्र ('बंदरगाह') के नीचे का छेद चौड़ा हो जाता है और मिश्रण अनुपात अधिक ऑक्सीकारक युक्त हो जाता है।
दहन प्रक्रिया के दौरान प्रणोदक मिश्रण के साथ संकर के साथ प्राथमिक शेष कठिनाई है। ठोस प्रणोदक में, ऑक्सीडाइज़र और ईंधन को कारखाने में सावधानीपूर्वक नियंत्रित स्थितियों में मिलाया जाता है। तरल प्रणोदक आम तौर पर दहन कक्ष के शीर्ष पर इंजेक्टर द्वारा मिश्रित होते हैं, जो ईंधन और ऑक्सीडाइज़र की कई छोटी तेज गति वाली धाराओं को एक दूसरे में निर्देशित करता है। तरल-ईंधन वाले रॉकेट इंजेक्टर डिजाइन का काफी विस्तार से अध्ययन किया गया है और अभी भी विश्वसनीय प्रदर्शन भविष्यवाणी का विरोध करता है। हाइब्रिड मोटर में, मिश्रण ईंधन के पिघलने या वाष्पित होने वाली सतह पर होता है। मिश्रण एक अच्छी तरह से नियंत्रित प्रक्रिया नहीं है और आम तौर पर काफी प्रणोदक बिना जला हुआ छोड़ दिया जाता है,<ref>''Ignition! An Informal History of Liquid Rocket Propellants'', [[John Drury Clark|John D. Clark]] (Rutgers University Press, 1972), Chapter 12</ref> जो मोटर की दक्षता को सीमित करता है। ईंधन की दहन दर काफी हद तक ऑक्सीडाइज़र फ्लक्स और उजागर ईंधन सतह क्षेत्र द्वारा निर्धारित की जाती है। यह दहन दर सामान्यतः पर उच्च शक्ति संचालन जैसे बूस्ट चरणों के लिए पर्याप्त नहीं होती है जब तक कि सतह क्षेत्र या ऑक्सीडाइज़र प्रवाह उच्च न हो। बहुत अधिक ऑक्सीडाइज़र प्रवाह से बाढ़ आ सकती है और ज्वाला की हानि हो सकती है जो स्थानीय रूप से दहन को बुझा देती है। सतह क्षेत्र को बढ़ाया जा सकता है, सामान्यतः पर लंबे अनाज या कई बंदरगाहों से, लेकिन यह दहन कक्ष का आकार बढ़ा सकता है, अनाज की ताकत कम कर सकता है और / या वॉल्यूमेट्रिक लोडिंग कम कर सकता है। इसके अतिरिक्त, जैसे-जैसे जलना जारी रहता है, अनाज के केंद्र ('बंदरगाह') के नीचे का छेद चौड़ा हो जाता है और मिश्रण अनुपात अधिक ऑक्सीकारक युक्त हो जाता है।


ठोस और तरल मोटरों की तुलना में संकर मोटरों का बहुत कम विकास हुआ है। सैन्य उपयोग के लिए, संचालन में आसानी और रखरखाव ने ठोस रॉकेटों के उपयोग को प्रेरित किया है। कक्षीय कार्य के लिए, तरल ईंधन संकर की तुलना में अधिक कुशल होते हैं और अधिकांश विकास वहीं केंद्रित होते हैं। गैर-सैन्य उपकक्षीय कार्य के लिए हाल ही में हाइब्रिड मोटर विकास में वृद्धि हुई है:
ठोस और तरल मोटरों की तुलना में संकर मोटरों का बहुत कम विकास हुआ है। सैन्य उपयोग के लिए, संचालन में आसानी और रखरखाव ने ठोस रॉकेटों के उपयोग को प्रेरित किया है। कक्षीय कार्य के लिए, तरल ईंधन संकर की तुलना में अधिक कुशल होते हैं और अधिकांश विकास वहीं केंद्रित होते हैं। गैर-सैन्य उपकक्षीय कार्य के लिए हाल ही में हाइब्रिड मोटर विकास में वृद्धि हुई है:
Line 112: Line 112:


== निष्क्रिय प्रणोदक ==
== निष्क्रिय प्रणोदक ==
कुछ रॉकेट डिज़ाइन बाहरी ऊर्जा स्रोतों से अपने प्रणोदकों को ऊर्जा प्रदान करते हैं। उदाहरण के लिए, पानी के रॉकेट रॉकेट से पानी प्रतिक्रिया द्रव्यमान को मजबूर करने के लिए एक संपीड़ित गैस, आमतौर पर हवा का उपयोग करते हैं।
कुछ रॉकेट डिज़ाइन बाहरी ऊर्जा स्रोतों से अपने प्रणोदकों को ऊर्जा प्रदान करते हैं। उदाहरण के लिए, पानी के रॉकेट रॉकेट से पानी प्रतिक्रिया द्रव्यमान को मजबूर करने के लिए एक संपीड़ित गैस, सामान्यतः पर हवा का उपयोग करते हैं।


=== आयन थ्रस्टर ===
=== आयन थ्रस्टर ===
Line 120: Line 120:
=== थर्मल रॉकेट ===
=== थर्मल रॉकेट ===
{{main|Thermal rocket}}
{{main|Thermal rocket}}
[[थर्मल रॉकेट]] कम आणविक भार के अक्रिय प्रणोदक का उपयोग करते हैं जो उच्च तापमान पर ताप तंत्र के साथ रासायनिक रूप से संगत होते हैं। सौर तापीय रॉकेट और परमाणु तापीय रॉकेट आमतौर पर लगभग 600-900 सेकंड के विशिष्ट आवेग के लिए तरल हाइड्रोजन का उपयोग करने का प्रस्ताव करते हैं, या कुछ मामलों में पानी जो लगभग 190 सेकंड के विशिष्ट आवेग के लिए भाप के रूप में समाप्त हो जाता है। [[[[सोलर थर्मल रॉकेट]]]] प्रणोदक में ऊर्जा जोड़ने के लिए [[परमाणु विखंडन]] की गर्मी का उपयोग करते हैं। कुछ डिजाइन परमाणु ईंधन और काम कर रहे द्रव को अलग करते हैं, रेडियोधर्मी संदूषण की संभावना को कम करते हैं, लेकिन वास्तविक दुनिया के परीक्षण कार्यक्रमों के दौरान परमाणु ईंधन की कमी एक सतत समस्या थी। परमाणु रिएक्टर का उपयोग करने के बजाय सौर तापीय रॉकेट प्रणोदक को गर्म करने के लिए केंद्रित सूर्य के प्रकाश का उपयोग करते हैं।
[[थर्मल रॉकेट]] कम आणविक भार के अक्रिय प्रणोदक का उपयोग करते हैं जो उच्च तापमान पर ताप तंत्र के साथ रासायनिक रूप से संगत होते हैं। सौर तापीय रॉकेट और परमाणु तापीय रॉकेट सामान्यतः पर लगभग 600-900 सेकंड के विशिष्ट आवेग के लिए तरल हाइड्रोजन का उपयोग करने का प्रस्ताव करते हैं, या कुछ मामलों में पानी जो लगभग 190 सेकंड के विशिष्ट आवेग के लिए भाप के रूप में समाप्त हो जाता है। [[[[सोलर थर्मल रॉकेट]]]] प्रणोदक में ऊर्जा जोड़ने के लिए [[परमाणु विखंडन]] की गर्मी का उपयोग करते हैं। कुछ डिजाइन परमाणु ईंधन और काम कर रहे द्रव को अलग करते हैं, रेडियोधर्मी संदूषण की संभावना को कम करते हैं, लेकिन वास्तविक दुनिया के परीक्षण कार्यक्रमों के दौरान परमाणु ईंधन की कमी एक सतत समस्या थी। परमाणु रिएक्टर का उपयोग करने के बजाय सौर तापीय रॉकेट प्रणोदक को गर्म करने के लिए केंद्रित सूर्य के प्रकाश का उपयोग करते हैं।


===संपीड़ित गैस===
===संपीड़ित गैस===

Revision as of 00:27, 31 January 2023

लिफ्टऑफ के दौरान एक डेल्टा IV भारी। रॉकेट पूरी तरह से तरल हाइड्रोजन और तरल ऑक्सीजन क्रायोजेनिक प्रणोदक से भरा हुआ है।

राकेट प्रणोदक रॉकेट का प्रतिक्रिया द्रव्यमान है। इस प्रतिक्रिया द्रव्यमान को जोर देने के लिए रॉकेट इंजन से उच्चतम प्राप्त करने योग्य वेग से निकाला जाता है। आवश्यक ऊर्जा या तो स्वयं प्रणोदक से आ सकती है, जैसा कि रासायनिक रॉकेट के साथ, या किसी बाहरी स्रोत से, जैसा कि आयन इंजन के साथ होता है। राकेट प्रणोदक रॉकेट का प्रतिक्रिया द्रव्यमान है। इस प्रतिक्रिया द्रव्यमान को जोर देने के लिए रॉकेट इंजन से उच्चतम प्राप्त करने योग्य वेग से निकाला जाता है। आवश्यक ऊर्जा या तो स्वयं प्रणोदक से आ सकती है, जैसा कि रासायनिक रॉकेट के साथ, या किसी बाहरी स्रोत से, जैसा कि आयन इंजन के साथ होता है।

सिंहावलोकन

रॉकेट बड़े पैमाने पर रियर-वार्ड को उच्च वेग से बाहर निकालकर जोर पैदा करते हैं। रॉकेट (विशिष्ट आवेग) के सापेक्ष उनके निकास वेग द्वारा प्रणोदकों के द्रव्यमान प्रवाह दर को गुणा करके उत्पादित जोर की गणना की जा सकती है। रॉकेट को दहन कक्ष और रॉकेट इंजन नोजल के विरुद्ध दहनशील गैसों के दबाव से तेज होने के बारे में सोचा जा सकता है, न कि इसके पीछे या नीचे हवा के खिलाफ धकेलकर। इंजन के बाहर हवा के दबाव की कमी के कारण रॉकेट इंजन बाहरी अंतरिक्ष में सर्वश्रेष्ठ प्रदर्शन करते हैं। अंतरिक्ष में प्रवाह पृथक्करण से पीड़ित हुए बिना लंबे नोजल को फिट करना भी संभव है।

अधिकांश रासायनिक प्रणोदक रेडॉक्स रसायन के माध्यम से ऊर्जा छोड़ते हैं, विशेष रूप से दहन इस प्रकार, मिश्रण में ऑक्सीकरण एजेंट और एक कम करने वाला एजेंट (ईंधन) दोनों उपस्थित होना चाहिए। अपघटन, जैसे कि मोनोप्रोपेलेंट रॉकेट में अत्यधिक अस्थिर पेरोक्साइड बंधन, ऊर्जा का स्रोत भी हो सकता है।

द्विप्रणोदक तरल रॉकेट के स्थिति में, ईंधन को कम करने और ऑक्सीकरण ऑक्सीडाइज़र का मिश्रण दहन कक्ष में प्रस्तुत किया जाता है, सामान्यतः दबाव को दूर करने के लिए टर्बोपंप का उपयोग किया जाता है। जैसे ही दहन होता है, तरल प्रणोदक द्रव्यमान उच्च तापमान और दबाव पर भारी मात्रा में गैस में परिवर्तित हो जाता है। इस निकास धारा को इंजन नोजल से उच्च वेग से बाहर निकाला जाता है, जिससे विरोधी बल बनता है जो न्यूटन के गति के नियमों के अनुसार रॉकेट को आगे बढ़ाता है।

रासायनिक रॉकेटों को चरण द्वारा समूहीकृत किया जा सकता है। ठोस रॉकेट ठोस चरण में प्रणोदक का उपयोग करते हैं, तरल ईंधन रॉकेट तरल चरण में प्रणोदक का उपयोग करते हैं, गैस ईंधन रॉकेट गैस चरण में प्रणोदक का उपयोग करते हैं, और हाइब्रिड रॉकेट ठोस और तरल या गैसीय प्रणोदक के संयोजन का उपयोग करते हैं।

ठोस रॉकेट मोटर्स के स्थिति में, जब मोटर डाली जाती है तो ईंधन और ऑक्सीडाइज़र संयुक्त होते हैं। प्रणोदक दहन मोटर आवरण के अंदर होता है, जिसमें विकसित दबाव होना चाहिए। ठोस रॉकेटों में सामान्यतः उच्च जोर, कम विशिष्ट आवेग, कम जलने का समय और तरल रॉकेटों की तुलना में अधिक द्रव्यमान होता है, और एक बार जलने के बाद इसे रोका नहीं जा सकता है।

रॉकेट चरणों

अंतरिक्ष में, अधिकतम डेल्टा-सीी जो एक रॉकेट चरण अपने पेलोड पर प्रदान कर सकता है, मुख्य रूप से इसके द्रव्यमान अनुपात और इसके निकास वेग का एक कार्य है। यह संबंध रॉकेट समीकरण द्वारा वर्णित है। निकास वेग प्रयुक्त प्रणोदक और इंजन पर निर्भर है और विशिष्ट आवेग से निकटता से संबंधित है, खपत किए गए प्रणोदक द्रव्यमान की प्रति इकाई रॉकेट वाहन को दी गई कुल ऊर्जा। किसी दिए गए प्रणोदक की पसंद से द्रव्यमान अनुपात भी प्रभावित हो सकता है।

रॉकेट चरण जो वायुमंडल के माध्यम से उड़ते हैं, सामान्यतः पर आवश्यक छोटे और हल्के टैंकेज के कारण कम प्रदर्शन, उच्च आणविक द्रव्यमान, उच्च घनत्व वाले प्रणोदक का उपयोग करते हैं। ऊपरी चरण, जो ज्यादातर या केवल अंतरिक्ष के निर्वात में काम करते हैं, उच्च ऊर्जा, उच्च प्रदर्शन, कम घनत्व वाले तरल हाइड्रोजन ईंधन का उपयोग करते हैं।

ठोस रासायनिक प्रणोदक

ठोस प्रणोदक दो मुख्य प्रकार में आते हैं। कंपोजिट ज्यादातर ठोस ऑक्सीडाइज़र के दानों के मिश्रण से बने होते हैं, जैसे कि अमोनियम नाइट्रेट, अमोनियम डाइनाइट्रामाइड, अमोनियम पर्क्लोरेट, या पॉलिमर बाइंडिंग एजेंट में पोटेशियम नाइट्रेट, ऊर्जावान ईंधन यौगिकों के गुच्छे या पाउडर के साथ (उदाहरण: RDX, HMX, एल्यूमीनियम, बेरिलियम)। प्लास्टिसाइज़र, स्टेबलाइज़र, और/या बर्न रेट संशोधक (आयरन ऑक्साइड, कॉपर ऑक्साइड) भी जोड़े जा सकते हैं।

सिंगल-, डबल-, या ट्रिपल-बेस (प्राथमिक अवयवों की संख्या के आधार पर) एक से तीन प्राथमिक अवयवों के सजातीय मिश्रण हैं। इन प्राथमिक सामग्रियों में ईंधन और ऑक्सीडाइज़र शामिल होना चाहिए और अक्सर बाइंडर और प्लास्टिसाइज़र भी शामिल होते हैं। सभी घटक मैक्रोस्कोपिक रूप से अप्रभेद्य हैं और अक्सर तरल के रूप में मिश्रित होते हैं और एक ही बैच में ठीक हो जाते हैं। सामग्री में अक्सर कई भूमिकाएँ हो सकती हैं। उदाहरण के लिए, RDX एक ईंधन और ऑक्सीकारक दोनों है जबकि नाइट्रोसेल्युलोज एक ईंधन, ऑक्सीकारक और संरचनात्मक बहुलक है।

आगे जटिल वर्गीकरण, ऐसे कई प्रणोदक हैं जिनमें डबल-बेस और समग्र प्रणोदक के तत्व होते हैं, जिनमें अक्सर कुछ मात्रा में ऊर्जावान योजक होते हैं जो बाइंडर में सजातीय रूप से मिश्रित होते हैं। गनपाउडर (पॉलीमेरिक बाइंडर के बिना एक दबाया हुआ सम्मिश्र) के स्थिति में ईंधन लकड़ी का कोयला है, ऑक्सीडाइज़र पोटेशियम नाइट्रेट है, और सल्फर एक प्रतिक्रिया उत्प्रेरक के रूप में कार्य करता है, जबकि पोटेशियम सल्फाइड जैसे विभिन्न प्रकार के प्रतिक्रिया उत्पादों को बनाने के लिए इसका सेवन किया जाता है।

Hexanitrohexaazaisowurtzitane|CL-20 (HNIW) पर आधारित नवीनतम नाइट्रामाइन ठोस प्रणोदक NTO/UDMH संग्रहणीय तरल प्रणोदकों के प्रदर्शन से मेल खा सकते हैं, लेकिन इन्हें थ्रॉटल या फिर से चालू नहीं किया जा सकता है।

लाभ

तरल प्रणोदक रॉकेट की तुलना में ठोस प्रणोदक रॉकेट को स्टोर करना और संभालना बहुत आसान है। उच्च प्रणोदक घनत्व कॉम्पैक्ट आकार के लिए भी बनाता है। सादगी और कम लागत के साथ ये विशेषताएं ठोस प्रणोदक रॉकेटों को सैन्य और अंतरिक्ष अनुप्रयोगों के लिए आदर्श बनाती हैं।

जब भी बड़ी मात्रा में थ्रस्ट की आवश्यकता होती है और लागत एक मुद्दा होता है, तो उनकी सादगी भी ठोस रॉकेट को एक अच्छा विकल्प बनाती है। अंतरिक्ष शटल और कई अन्य कक्षीय लॉन्च वाहन इस कारण से अपने बूस्ट चरणों (ठोस रॉकेट बूस्टर) में ठोस ईंधन वाले रॉकेट का उपयोग करते हैं।

नुकसान

तरल ईंधन रॉकेट की तुलना में ठोस ईंधन रॉकेट में कम विशिष्ट आवेग, प्रणोदक दक्षता का एक उपाय है। नतीजतन, ठोस ऊपरी चरणों का समग्र प्रदर्शन तरल चरणों से कम होता है, हालांकि ठोस द्रव्यमान अनुपात सामान्यतः पर .91 से .93 रेंज में होता है, जो कि अधिकांश तरल प्रणोदक ऊपरी चरणों की तुलना में अच्छा या बेहतर होता है। इन अखंडित ठोस ऊपरी चरणों के साथ संभव उच्च द्रव्यमान अनुपात उच्च प्रणोदक घनत्व और बहुत उच्च शक्ति-से-भार अनुपात फिलामेंट-घाव मोटर आवरण का परिणाम है।[citation needed] ठोस रॉकेटों में एक कमी यह है कि उन्हें वास्तविक समय में थ्रॉटल नहीं किया जा सकता है, हालांकि आंतरिक प्रणोदक ज्यामिति को समायोजित करके एक क्रमादेशित थ्रस्ट शेड्यूल बनाया जा सकता है। रेंज को नियंत्रित करने या स्टेज सेपरेशन को समायोजित करने के साधन के रूप में दहन या रिवर्स थ्रस्ट को बुझाने के लिए सॉलिड रॉकेट्स को निकाल दिया जा सकता है। बड़ी मात्रा में प्रणोदक की ढलाई के लिए पूर्ण मोटर में दरारें और रिक्तियों से बचने के लिए स्थिरता और दोहराव की आवश्यकता होती है। सम्मिश्रण और ढलाई एक निर्वात में कंप्यूटर नियंत्रण के तहत होती है, और प्रणोदक मिश्रण को पतला फैलाया जाता है और यह सुनिश्चित करने के लिए स्कैन किया जाता है कि मोटर में कोई बड़ा गैस बुलबुला न आए।

ठोस ईंधन रॉकेट दरारों और रिक्तियों के प्रति असहिष्णु होते हैं और दोषों की पहचान करने के लिए एक्स-रे स्कैन जैसे पोस्ट-प्रोसेसिंग की आवश्यकता होती है। दहन प्रक्रिया ईंधन के सतह क्षेत्र पर निर्भर है। आवाजें और दरारें जलती हुई सतह क्षेत्र में स्थानीय वृद्धि का प्रतिनिधित्व करती हैं, जिससे स्थानीय तापमान में वृद्धि होती है, जिससे दहन की स्थानीय दर बढ़ जाती है। यह सकारात्मक प्रतिक्रिया पाश आसानी से स्थिति या नोजल की विपत्तिपूर्ण विफलता का कारण बन सकता है।

इतिहास

ठोस रॉकेट प्रणोदक पहली बार 13 वीं शताब्दी के दौरान चीनी सांग राजवंश के तहत विकसित किया गया था। सॉन्ग चाइनीज ने पहली बार 1232 में कैफेंग (1234) की घेराबंदी के दौरान बारूद का इस्तेमाल किया था।[1][2][3][4][5] 1950 और 60 के दशक के दौरान, संयुक्त राज्य अमेरिका में शोधकर्ताओं ने अमोनियम परक्लोरेट समग्र प्रणोदक (APCP) विकसित किया। यह मिश्रण सामान्यतः पर 69-70% बारीक पिसा हुआ अमोनियम पर्क्लोरेट (एक ऑक्सीडाइज़र) होता है, जिसे 16-20% बारीक एल्यूमीनियम पाउडर (एक ईंधन) के साथ मिलाकर 11-14% पॉलीब्यूटाडाइन एक्रिलोनिट्राइल (PBAN) या हाइड्रॉक्सिल-टर्मिनेटेड पॉलीब्यूटाडाइन बेस में एक साथ रखा जाता है। पॉलीब्यूटाडाइन (पॉलीब्यूटाडाइन रबर ईंधन)। मिश्रण एक गाढ़े तरल के रूप में बनता है और फिर सही आकार में डाला जाता है और एक दृढ़ लेकिन लचीले भार वहन करने वाले ठोस में ठीक हो जाता है। ऐतिहासिक रूप से, APCP ठोस प्रणोदकों के कक्षीय प्रक्षेपण प्रणालियों की तुलना अपेक्षाकृत छोटी है। सेना, हालांकि, विभिन्न प्रकार के ठोस प्रणोदकों की एक विस्तृत विविधता का उपयोग करती है, जिनमें से कुछ APCP के प्रदर्शन से अधिक हैं। वर्तमान लॉन्च वाहनों में उपयोग किए जाने वाले विभिन्न ठोस और तरल प्रणोदक संयोजनों के साथ प्राप्त उच्चतम विशिष्ट आवेगों की तुलना ठोस-ईंधन रॉकेट पर लेख में दी गई है।[6] 1970 और 1980 के दशक में, अमेरिका ने पूरी तरह से ठोस-ईंधन वाले ICBM: LGM-30 Minuteman और LG-118A पीसकीपर (MX) पर स्विच किया। 1980 और 1990 के दशक में, USSR/रूस ने भी ठोस-ईंधन वाले ICBMs (RT-23 Molodets|RT-23, RT-2PM, और RT-2UTTH) को तैनात किया, लेकिन दो तरल-ईंधन वाले ICBM (R-36 (मिसाइल) को बरकरार रखा। |आर-36 और यू.आर.-100N)। दोनों पक्षों के सभी ठोस-ईंधन वाले ICBM में तीन प्रारंभिक ठोस चरण थे, और जिनके पास कई स्वतंत्र रूप से लक्षित वारहेड्स थे, उनके पास एक सटीक पैंतरेबाज़ी बस थी जिसका उपयोग पुन: प्रवेश वाहनों के प्रक्षेपवक्र को ठीक करने के लिए किया जाता था।

तरल रासायनिक प्रणोदक

मुख्य प्रकार के तरल प्रणोदक संग्रहणीय प्रणोदक होते हैं, जो क्रायोजेनिक और हाइपरगोलिक प्रणोदक होते हैं।

लाभ

तरल-ईंधन वाले रॉकेटों में ठोस रॉकेटों की तुलना में उच्च विशिष्ट आवेग होते हैं और ये थ्रोटल, शट डाउन और रीस्टार्ट होने में सक्षम होते हैं। तरल-ईंधन वाले रॉकेट के केवल दहन कक्ष को उच्च दहन दबाव और तापमान का सामना करने की आवश्यकता होती है। तरल प्रणोदक के साथ पुनर्योजी रूप से शीतलन किया जा सकता है। टर्बोपंप का उपयोग करने वाले वाहनों पर, प्रणोदक टैंक दहन कक्ष की तुलना में कम दबाव में होते हैं, जिससे टैंक का द्रव्यमान कम हो जाता है। इन कारणों से, अधिकांश कक्षीय प्रक्षेपण यान तरल प्रणोदक का उपयोग करते हैं।

तरल प्रणोदकों का प्राथमिक विशिष्ट आवेग लाभ उच्च-प्रदर्शन ऑक्सीडाइज़र की उपलब्धता के कारण होता है। कई व्यावहारिक तरल ऑक्सीडाइज़र (तरल ऑक्सीजन, डाइनाइट्रोजन टेट्रोक्साइड, और हाइड्रोजन पेरोक्साइड) उपलब्ध हैं, जिनमें उपयुक्त ईंधन के साथ जोड़े जाने पर अधिकांश ठोस रॉकेटों में उपयोग किए जाने वाले अमोनियम परक्लोरेट की तुलना में बेहतर विशिष्ट आवेग होता है।

कुछ गैसें, विशेष रूप से ऑक्सीजन और नाइट्रोजन, ऊपरी वायुमंडल से प्रणोदक द्रव संचायक होने में सक्षम हो सकती हैं, और काफी कम लागत पर प्रणोदक डिपो में उपयोग के लिए पृथ्वी की निचली कक्षा तक स्थानांतरित हो सकती हैं।[7]


नुकसान

तरल प्रणोदकों के साथ मुख्य कठिनाइयाँ ऑक्सीकारकों के साथ भी हैं। भंडारण योग्य ऑक्सीडाइज़र, जैसे नाइट्रिक एसिड और नाइट्रोजन टेट्रोक्साइड, बेहद जहरीले और अत्यधिक प्रतिक्रियाशील होते हैं, जबकि परिभाषा के अनुसार क्रायोजेनिक प्रणोदकों को कम तापमान पर संग्रहित किया जाना चाहिए और उनमें प्रतिक्रियाशीलता/विषाक्तता के मुद्दे भी हो सकते हैं। तरल ऑक्सीजन (LOX) एकमात्र प्रवाहित क्रायोजेनिक ऑक्सीकारक है। अन्य जैसे फ्लॉक्स, एक फ्लोरीन/लोक्स मिश्रण, अस्थिरता, विषाक्तता और विस्फोटकता के कारण कभी भी उड़ाया नहीं गया है।[8] कई अन्य अस्थिर, ऊर्जावान और जहरीले ऑक्सीडाइज़र प्रस्तावित किए गए हैं: तरल ओजोन (O3), क्लोरीन ट्राइफ्लोराइड|ClF3, और क्लोरीन पेंटाफ्लोराइड | ClF5.

तरल-ईंधन वाले रॉकेटों को संभावित परेशानी वाले वाल्व, सील और टर्बोपंप की आवश्यकता होती है, जो लॉन्च वाहन की लागत को बढ़ाते हैं। उच्च प्रदर्शन आवश्यकताओं के कारण टर्बोपंप विशेष रूप से परेशान हैं।

वर्तमान क्रायोजेनिक प्रकार

वर्तमान संग्रहणीय प्रकार

डाइनाइट्रोजन टेट्रोक्साइड (एन2O4) और हाइड्राज़ीन (एन2H4), मोनोमेथिलहाइड्राज़ीन, या असममित डाइमिथाइलहाइड्राज़ीन। सैन्य, कक्षीय और गहरे अंतरिक्ष रॉकेटों में उपयोग किया जाता है क्योंकि दोनों तरल पदार्थ उचित तापमान और दबावों पर लंबी अवधि के लिए भंडारण योग्य होते हैं। एन2O4/UDMH प्रोटॉन रॉकेट, पुराने लॉन्ग मार्च (रॉकेट परिवार) (LM 1-4), PSLV, Fregat, और Briz-M ऊपरी चरणों के लिए मुख्य ईंधन है। यह संयोजन hypergolic है, जो आकर्षक सरल प्रज्वलन दृश्यों के लिए बनाता है। बड़ी असुविधा यह है कि ये प्रणोदक अत्यधिक विषैले होते हैं और इन्हें सावधानीपूर्वक संभालने की आवश्यकता होती है।

  • हाइड्रोजन पेरोक्साइड, हाइड्राज़ीन और नाइट्रस ऑक्साइड जैसे मोनोप्रोपेलेंट्स मुख्य रूप से अंतरिक्ष यान के रवैये के नियंत्रण और अंतरिक्ष यान कक्षीय स्टेशन-रखने के लिए उपयोग किए जाते हैं। द्विनोदक की तुलना में कम विशिष्ट आवेग। सोयुज लॉन्च वाहन के पहले चरण में टर्बोपंप चलाने के लिए हाइड्रोजन पेरोक्साइड का भी उपयोग किया जाता है।[citation needed]


मिश्रण अनुपात

किसी दिए गए प्रणोदक रसायन का सैद्धांतिक निकास वेग है प्रणोदक द्रव्यमान की प्रति इकाई जारी ऊर्जा के समानुपाती (विशिष्ट ऊर्जा)। रासायनिक रॉकेटों में, बिना जला हुआ ईंधन या ऑक्सीडाइज़र रासायनिक संभावित ऊर्जा के नुकसान का प्रतिनिधित्व करता है, जो विशिष्ट ऊर्जा को कम करता है। हालांकि, अधिकांश रॉकेट ईंधन-समृद्ध मिश्रण चलाते हैं, जिसके परिणामस्वरूप सैद्धांतिक निकास वेग कम होता है।[9] हालांकि, ईंधन से भरपूर मिश्रण में कम आणविक भार वाली निकास प्रजातियां भी होती हैं। रॉकेट का नोज़ल प्रणोदक की तापीय ऊर्जा को निर्देशित गतिज ऊर्जा में परिवर्तित करता है। यह रूपांतरण उस समय में होता है जब प्रणोदक दहन कक्ष से इंजन गले के माध्यम से और नोजल से बाहर निकलते हैं, सामान्यतः पर एक मिलीसेकंड के क्रम में। अणु थर्मल ऊर्जा को रोटेशन, कंपन और अनुवाद में संग्रहीत करते हैं, जिनमें से केवल बाद वाले का उपयोग रॉकेट चरण में ऊर्जा जोड़ने के लिए आसानी से किया जा सकता है। कम परमाणुओं वाले अणु (जैसे CO और H2) अधिक परमाणुओं वाले अणुओं की तुलना में कम उपलब्ध कंपन और घूर्णी मोड हैं (जैसे CO2 और वह2ओ). नतीजतन, छोटे अणु ऊष्मा इनपुट की दी गई मात्रा के लिए कम कंपन और घूर्णी ऊर्जा को संग्रहित करते हैं, जिसके परिणामस्वरूप गतिज ऊर्जा में परिवर्तित होने के लिए अधिक अनुवाद ऊर्जा उपलब्ध होती है। नोजल दक्षता में परिणामी सुधार इतना बड़ा है कि वास्तविक रॉकेट इंजन कुछ कम सैद्धांतिक निकास वेगों के साथ समृद्ध मिश्रण चलाकर अपने वास्तविक निकास वेग में सुधार करते हैं।[9]

समुद्र तल के निकट संचालित नलिकाओं के लिए नोजल दक्षता पर निकास आणविक भार का प्रभाव सबसे महत्वपूर्ण है। निर्वात में संचालित होने वाले उच्च विस्तार वाले रॉकेट बहुत कम प्रभाव देखते हैं, और इसलिए कम समृद्ध होते हैं।

LOX/हाइड्रोकार्बन रॉकेट थोड़े समृद्ध (3.4 से 4 के स्तुईचिओमेटरी के बजाय 3 के O/F द्रव्यमान अनुपात) चलाए जाते हैं क्योंकि प्रति यूनिट द्रव्यमान में ऊर्जा रिलीज जल्दी से गिर जाती है क्योंकि मिश्रण अनुपात स्टोइकोमेट्रिक से विचलित हो जाता है। लोक्स / एलएच2 रॉकेट बहुत समृद्ध चलाए जाते हैं (स्टोइकियोमेट्रिक 8 के बजाय 4 का ओ/एफ द्रव्यमान अनुपात) क्योंकि हाइड्रोजन इतना हल्का है कि प्रणोदक के प्रति इकाई द्रव्यमान में ऊर्जा अतिरिक्त हाइड्रोजन के साथ बहुत धीरे-धीरे गिरती है। वास्तव में, एलओएक्स/एलएच2 रॉकेट आम तौर पर सीमित होते हैं कि वे अंतर्निहित रसायन विज्ञान के बजाय अतिरिक्त हाइड्रोजन टैंकेज के द्रव्यमान के प्रदर्शन दंड से कितने समृद्ध होते हैं।[9]

समृद्ध होने का एक अन्य कारण यह है कि ऑफ-स्टोइकियोमेट्रिक मिश्रण स्टोइकियोमेट्रिक मिश्रणों की तुलना में अधिक ठंडा होता है, जिससे इंजन को ठंडा करना आसान हो जाता है। क्योंकि ईंधन से भरपूर दहन उत्पाद ऑक्सीडाइज़र युक्त दहन उत्पादों की तुलना में रासायनिक रूप से कम प्रतिक्रियाशील (संक्षारक) होते हैं, रॉकेट इंजनों का एक बड़ा हिस्सा ईंधन से भरपूर चलाने के लिए डिज़ाइन किया गया है। कम से कम एक अपवाद उपस्थित है: रूसी RD-180 प्रीबर्नर, जो LOX और RP-1 को 2.72 के अनुपात में जलाता है।

इसके अतिरिक्त, प्रक्षेपण के दौरान मिश्रण अनुपात गतिशील हो सकते हैं। इसका उपयोग उन डिज़ाइनों के साथ किया जा सकता है जो संपूर्ण सिस्टम प्रदर्शन को अधिकतम करने के लिए एक उड़ान के दौरान ऑक्सीडाइज़र को ईंधन अनुपात (समग्र थ्रस्ट के साथ) में समायोजित करते हैं। उदाहरण के लिए, लिफ्ट-ऑफ थ्रस्ट के दौरान विशिष्ट आवेग की तुलना में अधिक मूल्यवान होता है, और ओ/एफ अनुपात का सावधानीपूर्वक समायोजन उच्च थ्रस्ट स्तरों की अनुमति दे सकता है। एक बार जब रॉकेट लॉन्चपैड से दूर हो जाता है, तो उच्च दक्षता के लिए इंजन O/F अनुपात को ट्यून किया जा सकता है।

प्रणोदक घनत्व

हालांकि तरल हाइड्रोजन एक उच्च I देता हैsp, इसका कम घनत्व एक नुकसान है: मिट्टी के तेल जैसे घने ईंधन की तुलना में हाइड्रोजन प्रति किलोग्राम लगभग 7 गुना अधिक मात्रा में होता है। ईंधन टैंकेज, नलसाजी, और पंप तदनुसार बड़ा होना चाहिए। इससे वाहन का शुष्क द्रव्यमान बढ़ जाता है, प्रदर्शन कम हो जाता है। तरल हाइड्रोजन का उत्पादन और भंडारण करना भी अपेक्षाकृत महंगा है, और वाहन के डिजाइन, निर्माण और संचालन में कठिनाइयों का कारण बनता है। हालाँकि, तरल हाइड्रोजन ऊपरी चरण के उपयोग के लिए बहुत उपयुक्त है जहाँ Isp प्रीमियम पर है और थ्रस्ट टू वेट अनुपात कम प्रासंगिक हैं।

कम I के कारण घने प्रणोदक लॉन्च वाहनों का टेकऑफ़ द्रव्यमान अधिक होता हैsp, लेकिन इंजन घटकों की कम मात्रा के कारण अधिक आसानी से उच्च टेकऑफ़ थ्रस्ट विकसित कर सकते हैं। इसका मतलब यह है कि सघन-ईंधन वाले बूस्टर चरणों वाले वाहन पहले कक्षा में पहुँचते हैं, गुरुत्वाकर्षण के कारण होने वाले नुकसान को कम करते हैं और प्रभावी डेल्टा-वी आवश्यकता को कम करते हैं।

प्रस्तावित त्रिप्रोपेलेंट रॉकेट कम ऊंचाई पर मुख्य रूप से सघन ईंधन का उपयोग करता है और उच्च ऊंचाई पर हाइड्रोजन में बदल जाता है। 1960 के अध्ययन में इस तकनीक का उपयोग करके एकल-चरण-से-कक्षा वाहनों का प्रस्ताव किया गया था।[10] स्पेस शटल ने पहले 120 सेकंड के दौरान अधिकांश जोर के लिए घने ठोस रॉकेट बूस्टर का उपयोग करके इसका अनुमान लगाया। मुख्य इंजनों ने ईंधन से भरपूर हाइड्रोजन और ऑक्सीजन के मिश्रण को जलाया, जो पूरे लॉन्च के दौरान लगातार काम करता रहा लेकिन एसआरबी बर्नआउट के बाद अधिक ऊंचाई पर जोर देता रहा।

अन्य रासायनिक प्रणोदक

संकर प्रणोदक

हाइब्रिड प्रणोदक: एक ठोस ईंधन के साथ उपयोग किया जाने वाला एक आकर्षक ऑक्सीडाइज़र, जो तरल पदार्थ (उच्च आईएसपी) और ठोस (सरलता) दोनों के अधिकांश गुणों को बरकरार रखता है।

एक संकर-प्रणोदक रॉकेट में सामान्यतः पर एक ठोस ईंधन और एक तरल या NEMA ऑक्सीडाइज़र होता है।[clarification needed] द्रव ऑक्सीडाइज़र तरल-ईंधन वाले रॉकेट की तरह ही मोटर को थ्रॉटल और रीस्टार्ट करना संभव बनाता है। हाइब्रिड रॉकेट ठोस रॉकेट की तुलना में पर्यावरण की दृष्टि से अधिक सुरक्षित भी हो सकते हैं क्योंकि कुछ उच्च-प्रदर्शन ठोस-चरण ऑक्सीडाइज़र में क्लोरीन (विशेष रूप से अमोनियम परक्लोरेट के साथ कंपोजिट) ​​होता है, बनाम अधिक सौम्य तरल ऑक्सीजन या नाइट्रस ऑक्साइड अक्सर हाइब्रिड में उपयोग किया जाता है। यह केवल विशिष्ट संकर प्रणालियों के लिए सही है। ऐसे संकर हैं जिन्होंने क्लोरीन या फ्लोरीन यौगिकों को ऑक्सीडाइज़र और खतरनाक सामग्री जैसे बेरिलियम यौगिकों को ठोस ईंधन अनाज में मिलाया है। क्योंकि केवल एक घटक एक द्रव है, तरल रॉकेट की तुलना में संकर सरल हो सकते हैं, जो तरल पदार्थ को दहन कक्ष में ले जाने के लिए उपयोग किए जाने वाले प्रेरक बल पर निर्भर करता है। कम तरल पदार्थ सामान्यतः पर कम और छोटे पाइपिंग सिस्टम, वाल्व और पंप (यदि उपयोग किए जाते हैं) का मतलब है।

हाइब्रिड मोटर्स में दो बड़ी कमियां हैं। ठोस रॉकेट मोटर्स के साथ साझा किया गया पहला, यह है कि ईंधन अनाज के चारों ओर आवरण को पूर्ण दहन दबाव और अक्सर अत्यधिक तापमान का सामना करने के लिए बनाया जाना चाहिए। हालांकि, आधुनिक समग्र संरचनाएं इस समस्या को अच्छी तरह से संभालती हैं, और जब नाइट्रस ऑक्साइड और एक ठोस रबड़ प्रणोदक (एचटीपीबी) के साथ प्रयोग किया जाता है, वैसे भी अपेक्षाकृत कम प्रतिशत ईंधन की आवश्यकता होती है, इसलिए दहन कक्ष विशेष रूप से बड़ा नहीं होता है।[citation needed] दहन प्रक्रिया के दौरान प्रणोदक मिश्रण के साथ संकर के साथ प्राथमिक शेष कठिनाई है। ठोस प्रणोदक में, ऑक्सीडाइज़र और ईंधन को कारखाने में सावधानीपूर्वक नियंत्रित स्थितियों में मिलाया जाता है। तरल प्रणोदक आम तौर पर दहन कक्ष के शीर्ष पर इंजेक्टर द्वारा मिश्रित होते हैं, जो ईंधन और ऑक्सीडाइज़र की कई छोटी तेज गति वाली धाराओं को एक दूसरे में निर्देशित करता है। तरल-ईंधन वाले रॉकेट इंजेक्टर डिजाइन का काफी विस्तार से अध्ययन किया गया है और अभी भी विश्वसनीय प्रदर्शन भविष्यवाणी का विरोध करता है। हाइब्रिड मोटर में, मिश्रण ईंधन के पिघलने या वाष्पित होने वाली सतह पर होता है। मिश्रण एक अच्छी तरह से नियंत्रित प्रक्रिया नहीं है और आम तौर पर काफी प्रणोदक बिना जला हुआ छोड़ दिया जाता है,[11] जो मोटर की दक्षता को सीमित करता है। ईंधन की दहन दर काफी हद तक ऑक्सीडाइज़र फ्लक्स और उजागर ईंधन सतह क्षेत्र द्वारा निर्धारित की जाती है। यह दहन दर सामान्यतः पर उच्च शक्ति संचालन जैसे बूस्ट चरणों के लिए पर्याप्त नहीं होती है जब तक कि सतह क्षेत्र या ऑक्सीडाइज़र प्रवाह उच्च न हो। बहुत अधिक ऑक्सीडाइज़र प्रवाह से बाढ़ आ सकती है और ज्वाला की हानि हो सकती है जो स्थानीय रूप से दहन को बुझा देती है। सतह क्षेत्र को बढ़ाया जा सकता है, सामान्यतः पर लंबे अनाज या कई बंदरगाहों से, लेकिन यह दहन कक्ष का आकार बढ़ा सकता है, अनाज की ताकत कम कर सकता है और / या वॉल्यूमेट्रिक लोडिंग कम कर सकता है। इसके अतिरिक्त, जैसे-जैसे जलना जारी रहता है, अनाज के केंद्र ('बंदरगाह') के नीचे का छेद चौड़ा हो जाता है और मिश्रण अनुपात अधिक ऑक्सीकारक युक्त हो जाता है।

ठोस और तरल मोटरों की तुलना में संकर मोटरों का बहुत कम विकास हुआ है। सैन्य उपयोग के लिए, संचालन में आसानी और रखरखाव ने ठोस रॉकेटों के उपयोग को प्रेरित किया है। कक्षीय कार्य के लिए, तरल ईंधन संकर की तुलना में अधिक कुशल होते हैं और अधिकांश विकास वहीं केंद्रित होते हैं। गैर-सैन्य उपकक्षीय कार्य के लिए हाल ही में हाइब्रिड मोटर विकास में वृद्धि हुई है:

  • कई विश्वविद्यालयों ने हाल ही में हाइब्रिड रॉकेट के साथ प्रयोग किया है। ब्रिघम यंग यूनिवर्सिटी, यूटा विश्वविद्यालय और यूटा स्टेट यूनिवर्सिटी ने 1995 में यूनिटी IV नामक एक छात्र-डिज़ाइन किए गए रॉकेट को लॉन्च किया, जिसने गैसीय ऑक्सीजन के ऑक्सीडाइज़र के साथ ठोस ईंधन हाइड्रॉक्सी-टर्मिनेटेड पॉलीब्यूटाडाइन (HTPB) को जला दिया और 2003 में एक बड़ा संस्करण लॉन्च किया जो एचटीपीबी को नाइट्रस ऑक्साइड से जलाया। स्टैनफोर्ड विश्वविद्यालय नाइट्रस-ऑक्साइड/पैराफिन मोम हाइब्रिड मोटर्स पर शोध करती है। यूसीएलए ने एचटीपीबी का उपयोग करते हुए 2009 से एक स्नातक छात्र समूह के माध्यम से हाइब्रिड रॉकेट लॉन्च किए हैं।[12]
  • रोचेस्टर इंस्टीट्यूट ऑफ टेक्नोलॉजी अंतरिक्ष में और कई निकट-पृथ्वी वस्तुओं के लिए छोटे पेलोड लॉन्च करने के लिए एक एचटीपीबी हाइब्रिड रॉकेट का निर्माण कर रहा था। इसका पहला प्रक्षेपण 2007 की गर्मियों में हुआ था।
  • स्केल्ड कम्पोजिट स्पेसशिपवन, पहला निजी चालक दल वाला अंतरिक्ष यान, नाइट्रस ऑक्साइड के साथ एचटीपीबी जलाने वाले एक हाइब्रिड रॉकेट द्वारा संचालित था: रॉकेटमोटरवन। हाइब्रिड रॉकेट इंजन का निर्माण स्पेसडेव द्वारा किया गया था। SpaceDev आंशिक रूप से अपने मोटर्स को नासा के स्टेनिस स्पेस सेंटर के E1 टेस्ट स्टैंड पर AMROC (अमेरिकन रॉकेट कंपनी) मोटर्स के परीक्षण से एकत्रित प्रायोगिक डेटा पर आधारित करता है।

गैसीय प्रणोदक

ऑक्सीजन | GOX (गैसीय ऑक्सीजन) का उपयोग बुरान कार्यक्रम की कक्षीय पैंतरेबाज़ी प्रणाली के लिए ऑक्सीडाइज़र के रूप में किया गया था।

निष्क्रिय प्रणोदक

कुछ रॉकेट डिज़ाइन बाहरी ऊर्जा स्रोतों से अपने प्रणोदकों को ऊर्जा प्रदान करते हैं। उदाहरण के लिए, पानी के रॉकेट रॉकेट से पानी प्रतिक्रिया द्रव्यमान को मजबूर करने के लिए एक संपीड़ित गैस, सामान्यतः पर हवा का उपयोग करते हैं।

आयन थ्रस्टर

आयन थ्रस्टर्स एक तटस्थ गैस को आयनित करते हैं और विद्युत और/या चुंबकीय क्षेत्रों द्वारा आयनों (या प्लाज्मा) को गति देकर जोर पैदा करते हैं।

थर्मल रॉकेट

थर्मल रॉकेट कम आणविक भार के अक्रिय प्रणोदक का उपयोग करते हैं जो उच्च तापमान पर ताप तंत्र के साथ रासायनिक रूप से संगत होते हैं। सौर तापीय रॉकेट और परमाणु तापीय रॉकेट सामान्यतः पर लगभग 600-900 सेकंड के विशिष्ट आवेग के लिए तरल हाइड्रोजन का उपयोग करने का प्रस्ताव करते हैं, या कुछ मामलों में पानी जो लगभग 190 सेकंड के विशिष्ट आवेग के लिए भाप के रूप में समाप्त हो जाता है। [[सोलर थर्मल रॉकेट]] प्रणोदक में ऊर्जा जोड़ने के लिए परमाणु विखंडन की गर्मी का उपयोग करते हैं। कुछ डिजाइन परमाणु ईंधन और काम कर रहे द्रव को अलग करते हैं, रेडियोधर्मी संदूषण की संभावना को कम करते हैं, लेकिन वास्तविक दुनिया के परीक्षण कार्यक्रमों के दौरान परमाणु ईंधन की कमी एक सतत समस्या थी। परमाणु रिएक्टर का उपयोग करने के बजाय सौर तापीय रॉकेट प्रणोदक को गर्म करने के लिए केंद्रित सूर्य के प्रकाश का उपयोग करते हैं।

संपीड़ित गैस

कम प्रदर्शन वाले अनुप्रयोगों के लिए, जैसे अंतरिक्ष यान रवैया नियंत्रण जेट, संपीड़ित गैसों जैसे नाइट्रोजन को नियोजित किया गया है।[13] ऊर्जा अक्रिय गैस के दबाव में संग्रहित होती है। हालांकि, सभी व्यावहारिक गैसों के कम घनत्व और इसे शामिल करने के लिए आवश्यक दबाव पोत के उच्च द्रव्यमान के कारण, संपीड़ित गैसों का वर्तमान उपयोग बहुत कम होता है।

परमाणु प्लाज्मा

प्रोजेक्ट ओरियन (परमाणु प्रणोदन) और अन्य परमाणु पल्स प्रणोदन प्रस्तावों में, प्रणोदक परमाणु विस्फोटकों की एक श्रृंखला से प्लाज्मा मलबे होगा।[14]


यह भी देखें

संदर्भ

  1. McGowen, Tom (2008). Space Race: The Mission, the Men, the Moon. Enslow Pub Inc. p. 7. ISBN 978-0766029101.
  2. Games, Alex (2007). Balderdash & Piffle. BBC Books. pp. 199. ISBN 978-0563493365.
  3. Gref, Lynn G. (2010). The Rise and Fall of American Technology. Algora. p. 95. ISBN 978-0875867533.
  4. Greatrix, David R. (2012). Powered Flight: The Engineering of Aerospace Propulsion. Springer. pp. 1. ISBN 978-1447124849.
  5. Mahaffey, James (2017). Atomic Adventures: Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey Through The Wild World of Nuclear Science. Pegasus Books. ISBN 978-1681774213.
  6. M. D. Black, The Evolution of ROCKET TECHNOLOGY, 3rd Ed., 2012, payloadz.com ebook/History pp. 109-112 and pp. 114-119
  7. Jones, C., Masse, D., Glass, C., Wilhite, A., and Walker, M. (2010), "PHARO: Propellant harvesting of atmospheric resources in orbit," IEEE Aerospace Conference.
  8. "Toxic Propellant Hazards" on YouTube
  9. 9.0 9.1 9.2 Rocket Propulsion, Robert A. Braeunig, Rocket and Space Technology, 2012.
  10. "Robert Salkeld'S". Pmview.com. Retrieved 2014-01-18.
  11. Ignition! An Informal History of Liquid Rocket Propellants, John D. Clark (Rutgers University Press, 1972), Chapter 12
  12. "Rocket Project at UCLA".
  13. Steyn, Willem H; Hashida, Yoshi (1999). "An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability". Small Satellite Conference. USU Small Satellite Conference Surrey Space Centre. Retrieved 18 October 2016.
  14. G.R. Schmidt; J.A. Bunornetti; P.J. Morton. Nuclear Pulse Propulsion – Orion and Beyond (PDF). 36th AIAA / ASME / SAE / ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, 16–19 July 2000. AlAA 2000-3856.


बाहरी कड़ियाँ