ऑटोमोर्फिज्म समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:


== उदाहरण ==
== उदाहरण ==
यदि X [[सेट (गणित)|समुच्चय (गणित)]] है जिसमें कोई अतिरिक्त संरचना नहीं है, तो X से स्वयं के लिए कोई भी आक्षेप एक स्‍वचालन है, और इसलिए इस मामले में X का स्‍वचालन समूह ठीक X का [[सममित समूह]] है। यदि समुच्चय X में अतिरिक्त संरचना है, तब यह मामला हो सकता है कि समुच्चय पर सभी आक्षेप इस संरचना को संरक्षित नहीं करते हैं, इस मामले में ऑटोमोर्फिज्म समूह एक्स पर सममित समूह का एक उपसमूह होगा। इसके कुछ उदाहरणों में निम्नलिखित शामिल हैं:
यदि X [[सेट (गणित)|समुच्चय (गणित)]] है जिसमें कोई अतिरिक्त संरचना नहीं है, तो X से स्वयं के लिए कोई भी आक्षेप स्‍वचालन है, और इसलिए इस मामले में X का स्‍वचालन समूह ठीक X का [[सममित समूह]] है। यदि समुच्चय X में अतिरिक्त संरचना है, तब यह हो सकता है कि समुच्चय पर सभी आक्षेप इस संरचना को संरक्षित नहीं करते हैं, इस मामले में ऑटोमोर्फिज्म समूह एक्स पर सममित समूह का एक उपसमूह होगा। इसके कुछ उदाहरणों में निम्नलिखित शामिल हैं:
*क्षेत्र विस्तार का ऑटोमोर्फिज्म समूह <math>L/K</math> एल के फील्ड ऑटोमोर्फिज्म से युक्त समूह है जो [[फिक्स्ड-पॉइंट सबरिंग]] के। यदि फील्ड एक्सटेंशन [[गाल्वा विस्तार]] है, तो ऑटोमोर्फिज्म ग्रुप को फील्ड एक्सटेंशन का [[गाल्वा समूह]] कहा जाता है।
*क्षेत्र विस्तार का ऑटोमोर्फिज्म समूह <math>L/K</math> एल के फील्ड ऑटोमोर्फिज्म से युक्त समूह है जो [[फिक्स्ड-पॉइंट सबरिंग]] के। यदि फील्ड एक्सटेंशन [[गाल्वा विस्तार]] है, तो ऑटोमोर्फिज्म ग्रुप को फील्ड एक्सटेंशन का [[गाल्वा समूह]] कहा जाता है।
*प्रोजेक्टिव स्पेस का ऑटोमोर्फिज्म ग्रुप|प्रोजेक्टिव एन-स्पेस ओवर ए फील्ड (गणित) k [[प्रक्षेपी रैखिक समूह]] है <math>\operatorname{PGL}_n(k).</math><ref>{{harvnb|Hartshorne|1977|loc=Ch. II, Example 7.1.1.}}</ref>
*प्रोजेक्टिव स्पेस का ऑटोमोर्फिज्म ग्रुप|प्रोजेक्टिव एन-स्पेस ओवर ए फील्ड (गणित) k [[प्रक्षेपी रैखिक समूह]] है <math>\operatorname{PGL}_n(k).</math><ref>{{harvnb|Hartshorne|1977|loc=Ch. II, Example 7.1.1.}}</ref>
* ऑटोमोर्फिज्म समूह <math>G</math> आदेश के एक परिमित [[चक्रीय समूह]] (समूह सिद्धांत) n का समूह समाकृतिकता है <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>, पूर्णांक मॉडुलो एन का गुणक समूह, द्वारा दिए गए समरूपता के साथ <math>\overline{a} \mapsto \sigma_a \in G, \, \sigma_a(x) = x^a</math>.<ref>{{harvnb|Dummit|Foote|2004|loc=§ 2.3. Exercise 26.}}</ref> विशेष रूप से, <math>G</math> [[एबेलियन समूह]] है।
* ऑटोमोर्फिज्म समूह <math>G</math> आदेश के एक परिमित [[चक्रीय समूह]] (समूह सिद्धांत) n का समूह समाकृतिकता है <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>, पूर्णांक मॉडुलो एन का गुणक समूह, द्वारा दिए गए समरूपता के साथ <math>\overline{a} \mapsto \sigma_a \in G, \, \sigma_a(x) = x^a</math>.<ref>{{harvnb|Dummit|Foote|2004|loc=§ 2.3. Exercise 26.}}</ref> विशेष रूप से, <math>G</math> [[एबेलियन समूह]] है।
* एक परिमित-आयामी वास्तविक लाई बीजगणित का ऑटोमोर्फिज्म समूह <math>\mathfrak{g}</math> एक (वास्तविक) [[झूठ समूह]] की संरचना है (वास्तव में, यह एक [[रैखिक बीजगणितीय समूह]] भी है: #स्‍वचालन group functor देखें)। यदि G, लाई बीजगणित वाला एक लाई समूह है <math>\mathfrak{g}</math>, तब G के ऑटोमोर्फिज्म समूह में एक लाइ समूह की संरचना होती है जो कि ऑटोमोर्फिज्म समूह से प्रेरित होती है <math>\mathfrak{g}</math>.<ref>{{Cite journal |jstor = 1990752|title = The Automorphism Group of a Lie Group|journal = Transactions of the American Mathematical Society|volume = 72|issue = 2|pages = 209–216|last1 = Hochschild|first1 = G.|year = 1952}}</ref>{{sfn|Fulton|Harris|1991|loc=Exercise 8.28}}{{efn|First, if ''G'' is simply connected, the automorphism group of ''G'' is that of <math>\mathfrak{g}</math>. Second, every connected Lie group is of the form <math>\widetilde{G}/C</math> where <math>\widetilde{G}</math> is a simply connected Lie group and ''C'' is a central subgroup and the automorphism group of ''G'' is the automorphism group of <math>G</math> that preserves ''C''. Third, by convention, a Lie group is second countable and has at most coutably many connected components; thus, the general case reduces to the connected case.}}
* परिमित-आयामी वास्तविक लाई बीजगणित का ऑटोमोर्फिज्म समूह <math>\mathfrak{g}</math> एक (वास्तविक) [[झूठ समूह]] की संरचना है (वास्तव में, यह एक [[रैखिक बीजगणितीय समूह]] भी है: स्‍वचालन group functor देखें)। यदि G, लाई बीजगणित वाला एक लाई समूह है <math>\mathfrak{g}</math>, तब G के ऑटोमोर्फिज्म समूह में एक लाइ समूह की संरचना होती है जो कि ऑटोमोर्फिज्म समूह से प्रेरित होती है <math>\mathfrak{g}</math>.<ref>{{Cite journal |jstor = 1990752|title = The Automorphism Group of a Lie Group|journal = Transactions of the American Mathematical Society|volume = 72|issue = 2|pages = 209–216|last1 = Hochschild|first1 = G.|year = 1952}}</ref>{{sfn|Fulton|Harris|1991|loc=Exercise 8.28}}{{efn|First, if ''G'' is simply connected, the automorphism group of ''G'' is that of <math>\mathfrak{g}</math>. Second, every connected Lie group is of the form <math>\widetilde{G}/C</math> where <math>\widetilde{G}</math> is a simply connected Lie group and ''C'' is a central subgroup and the automorphism group of ''G'' is the automorphism group of <math>G</math> that preserves ''C''. Third, by convention, a Lie group is second countable and has at most coutably many connected components; thus, the general case reduces to the connected case.}}
यदि G एक समुच्चय X पर एक समूह [[समूह क्रिया]] है, तो क्रिया G से X के ऑटोमोर्फिज्म समूह और इसके विपरीत एक [[समूह समरूपता]] के बराबर होती है। दरअसल, समुच्चय एक्स पर प्रत्येक बाएं जी-एक्शन निर्धारित करता है <math>G \to \operatorname{Aut}(X), \, g \mapsto \sigma_g, \, \sigma_g(x) = g \cdot x</math>, और, इसके विपरीत, प्रत्येक समरूपता <math>\varphi: G \to \operatorname{Aut}(X)</math> द्वारा एक क्रिया को परिभाषित करता है <math>g \cdot x = \varphi(g)x</math>. यह उस स्थिति तक विस्तृत होता है जब समुच्चय X में केवल समुच्चय से अधिक संरचना होती है। उदाहरण के लिए, यदि X एक सदिश स्थान है, तो X पर G की एक समूह क्रिया समूह G का एक [[समूह प्रतिनिधित्व]] है, जो G को X के रैखिक परिवर्तनों (ऑटोमोर्फिज्म) के समूह के रूप में दर्शाता है; ये अभ्यावेदन [[प्रतिनिधित्व सिद्धांत]] के क्षेत्र में अध्ययन का मुख्य उद्देश्य हैं।
 


यहाँ स्‍वचालन समूहों के बारे में कुछ अन्य तथ्य दिए गए हैं:
यहाँ स्‍वचालन समूहों के बारे में कुछ अन्य तथ्य दिए गए हैं:

Revision as of 22:26, 6 February 2023

गणित में, किसी वस्तु X का स्‍वचालन (ऑटोमोर्फिज्म) समूह वह समूह (गणित) है जिसमें आकारिकी के प्रकार्य संयोजन के अंतर्गत X के स्‍वचालन शामिल होते हैं। उदाहरण के लिए, यदि X एक आयाम (सदिश स्थल) है|परिमित-आयामी वेक्टर स्पेस है, तो X का ऑटोमोर्फिज्म समूह X से स्वयं में उलटा रैखिक परिवर्तनों का समूह (द 'एक्स का सामान्य रैखिक समूह) है। यदि इसके स्थान पर X एक समूह है, तो इसका स्वतःस्वरूपण समूह समूह है जिसमें X के सभी समूह स्‍वचालन शामिल हैं।

विशेष रूप से ज्यामितीय संदर्भों में, एक स्‍वचालन समूह को समरूपता समूह भी कहा जाता है। ऑटोमोर्फिज्म समूह के एक उपसमूह को कभी-कभी 'परिवर्तन समूह' कहा जाता है।

श्रेणी सिद्धांत के क्षेत्र में ऑटोमोर्फिज्म समूहों का सामान्य तरीके से अध्ययन किया जाता है।

उदाहरण

यदि X समुच्चय (गणित) है जिसमें कोई अतिरिक्त संरचना नहीं है, तो X से स्वयं के लिए कोई भी आक्षेप स्‍वचालन है, और इसलिए इस मामले में X का स्‍वचालन समूह ठीक X का सममित समूह है। यदि समुच्चय X में अतिरिक्त संरचना है, तब यह हो सकता है कि समुच्चय पर सभी आक्षेप इस संरचना को संरक्षित नहीं करते हैं, इस मामले में ऑटोमोर्फिज्म समूह एक्स पर सममित समूह का एक उपसमूह होगा। इसके कुछ उदाहरणों में निम्नलिखित शामिल हैं:

  • क्षेत्र विस्तार का ऑटोमोर्फिज्म समूह एल के फील्ड ऑटोमोर्फिज्म से युक्त समूह है जो फिक्स्ड-पॉइंट सबरिंग के। यदि फील्ड एक्सटेंशन गाल्वा विस्तार है, तो ऑटोमोर्फिज्म ग्रुप को फील्ड एक्सटेंशन का गाल्वा समूह कहा जाता है।
  • प्रोजेक्टिव स्पेस का ऑटोमोर्फिज्म ग्रुप|प्रोजेक्टिव एन-स्पेस ओवर ए फील्ड (गणित) k प्रक्षेपी रैखिक समूह है [1]
  • ऑटोमोर्फिज्म समूह आदेश के एक परिमित चक्रीय समूह (समूह सिद्धांत) n का समूह समाकृतिकता है , पूर्णांक मॉडुलो एन का गुणक समूह, द्वारा दिए गए समरूपता के साथ .[2] विशेष रूप से, एबेलियन समूह है।
  • परिमित-आयामी वास्तविक लाई बीजगणित का ऑटोमोर्फिज्म समूह एक (वास्तविक) झूठ समूह की संरचना है (वास्तव में, यह एक रैखिक बीजगणितीय समूह भी है: स्‍वचालन group functor देखें)। यदि G, लाई बीजगणित वाला एक लाई समूह है , तब G के ऑटोमोर्फिज्म समूह में एक लाइ समूह की संरचना होती है जो कि ऑटोमोर्फिज्म समूह से प्रेरित होती है .[3][4][lower-alpha 1]


यहाँ स्‍वचालन समूहों के बारे में कुछ अन्य तथ्य दिए गए हैं:

  • होने देना एक ही प्रमुखता के दो परिमित समुच्चय हो और सभी आपत्तियों का समुच्चय . तब , जो एक सममित समूह है (ऊपर देखें), पर कार्य करता है बाएं से यानी, के लिए एक धड़ है (cf. # श्रेणी सिद्धांत में)।
  • चलो पी एक अंगूठी (गणित) आर पर एक सूक्ष्म रूप से जेनरेट मॉड्यूल प्रक्षेपी मॉड्यूल बनें। फिर एक एम्बेडिंग है , आंतरिक ऑटोमोर्फिज्म तक अद्वितीय।[5]


श्रेणी सिद्धांत में

स्वचालिततावाद समूह श्रेणी सिद्धांत में बहुत स्वाभाविक रूप से दिखाई देते हैं।

यदि X किसी श्रेणी में एक वस्तु (श्रेणी सिद्धांत) है, तो X का स्‍वचालन समूह वह समूह है जिसमें X से लेकर स्वयं तक के सभी उलटे आकारिकी शामिल हैं। यह एक्स के एंडोमोर्फिज्म मोनोइड का यूनिट समूह है। (कुछ उदाहरणों के लिए, प्रोप (श्रेणी सिद्धांत) देखें।)

अगर किसी श्रेणी में वस्तुएं हैं, फिर समुच्चय के सभी एक बायाँ है -प्रिंसिपल सजातीय स्थान। व्यावहारिक रूप में, यह कहता है कि आधार बिंदु का एक अलग विकल्प के एक तत्व से स्पष्ट रूप से भिन्न होता है , या कि आधार बिंदु का प्रत्येक विकल्प निश्चित रूप से टॉर्सर के तुच्छीकरण का विकल्प है।

अगर और श्रेणियों में वस्तुएं हैं और , और अगर एक फंक्शनल मैपिंग है को , तब एक समूह समरूपता को प्रेरित करता है , क्योंकि यह इन्वर्टिबल मॉर्फिज्म को इनवर्टेबल मॉर्फिज्म में मैप करता है।

विशेष रूप से, यदि G एक एकल वस्तु * के साथ एक श्रेणी (गणित) के रूप में देखा जाने वाला समूह है या, अधिक सामान्यतः, यदि G एक समूह है, तो प्रत्येक फ़ैक्टर , C एक श्रेणी है, जिसे क्रिया या वस्तु पर G का प्रतिनिधित्व कहा जाता है , या वस्तुएं . उन वस्तुओं को तब कहा जाता है -ऑब्जेक्ट्स (जैसा कि उनके द्वारा अभिनय किया जाता है ); सी एफ एस-ऑब्जेक्ट |-वस्तु। अगर एक मॉड्यूल श्रेणी है, जैसे परिमित-आयामी वेक्टर रिक्त स्थान की श्रेणी -ऑब्जेक्ट्स भी कहलाते हैं -मॉड्यूल।

ऑटोमोर्फिज्म समूह फ़ैक्टर

होने देना क्षेत्र k पर एक परिमित-आयामी सदिश स्थान हो जो कुछ बीजगणितीय संरचना से सुसज्जित है (अर्थात, M, k के ऊपर एक क्षेत्र पर एक परिमित-आयामी बीजगणित है)। यह, उदाहरण के लिए, एक साहचर्य बीजगणित या झूठ बीजगणित हो सकता है।

अब, के-रैखिक मानचित्रों पर विचार करें जो बीजगणितीय संरचना को संरक्षित करते हैं: वे एक सदिश उप-स्थान बनाते हैं का . का इकाई समूह ऑटोमोर्फिज्म समूह है . जब एम पर आधार चुना जाता है, स्क्वायर मैट्रिक्स का स्थान है और कुछ बहुपद का शून्य समुच्चय है, और उलटापन फिर से बहुपदों द्वारा वर्णित किया गया है। इस तरह, k पर एक रैखिक बीजगणितीय समूह है।

अब उपरोक्त चर्चा पर लागू आधार एक्सटेंशन एक मज़ेदार निर्धारित करता है:[6] अर्थात्, k पर प्रत्येक क्रमविनिमेय वलय R के लिए, R-रैखिक मानचित्रों पर विचार करें बीजगणितीय संरचना का संरक्षण: इसे निरूपित करें . फिर मैट्रिक्स रिंग का यूनिट समूह आर ओवर ऑटोमोर्फिज्म ग्रुप है और एक समूह कार्यकर्ता है: श्रेणी_ऑफ़_रिंग्स#श्रेणी_ऑफ़_कम्यूटेटिव_रिंग्स से समूह की श्रेणी के लिए एक फ़ैक्टर। इससे भी बेहतर, यह एक योजना द्वारा दर्शाया गया है (चूंकि ऑटोमोर्फिज्म समूहों को बहुपदों द्वारा परिभाषित किया गया है): इस योजना को 'ऑटोमोर्फिज्म ग्रुप स्कीम' कहा जाता है और इसे निरूपित किया जाता है .

सामान्य तौर पर, हालांकि, एक ऑटोमोर्फिज्म ग्रुप फ़ैक्टर को किसी योजना द्वारा प्रदर्शित नहीं किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. First, if G is simply connected, the automorphism group of G is that of . Second, every connected Lie group is of the form where is a simply connected Lie group and C is a central subgroup and the automorphism group of G is the automorphism group of that preserves C. Third, by convention, a Lie group is second countable and has at most coutably many connected components; thus, the general case reduces to the connected case.


उद्धरण

  1. Hartshorne 1977, Ch. II, Example 7.1.1.
  2. Dummit & Foote 2004, § 2.3. Exercise 26.
  3. Hochschild, G. (1952). "The Automorphism Group of a Lie Group". Transactions of the American Mathematical Society. 72 (2): 209–216. JSTOR 1990752.
  4. Fulton & Harris 1991, Exercise 8.28.
  5. Milnor 1971, Lemma 3.2.
  6. Waterhouse 2012, § 7.6.


संदर्भ


बाहरी संबंध