रिसाव प्रेरकत्व: Difference between revisions
Line 6: | Line 6: | ||
क्षरण प्रेरकत्व और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। [[आगमनात्मक प्रतिक्रिया|क्षरण प्रतिक्रिया]] के परिणाम में वोल्टेज का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक् (विद्युत शक्ति)]] पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।{{sfn|Irwin|1997|p=362}} | क्षरण प्रेरकत्व और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। [[आगमनात्मक प्रतिक्रिया|क्षरण प्रतिक्रिया]] के परिणाम में वोल्टेज का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक् (विद्युत शक्ति)]] पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।{{sfn|Irwin|1997|p=362}} | ||
क्षरण प्रेरकत्व [[विद्युत मोटर]] सहित किसी भी अपूर्ण-युग्मित चुंबकीय सर्किट उपकरणों पर अनप्रयुक्त होता है।<ref name="Pyrhonen">{{harvnb|Pyrhönen|Jokinen|Hrabovcová|2008|loc=Chapter 4 Flux Leakage}}</ref> | क्षरण प्रेरकत्व [[विद्युत मोटर]] सहित किसी भी अपूर्ण-युग्मित चुंबकीय सर्किट उपकरणों पर अनप्रयुक्त होता है।<ref name="Pyrhonen">{{harvnb|Pyrhönen|Jokinen|Hrabovcová|2008|loc=Chapter 4 Flux Leakage}}</ref> खुले परिचालित परिस्थितियों में आगमनात्मक युग्मन गुणांक 𝑘 | ||
के रूप में व्यक्त प्राथमिक और द्वितीयक रिसाव प्रेरकत्व हैं। | |||
== क्षरण प्रेरकत्व और आगमनात्मक युग्मन कारक == | == क्षरण प्रेरकत्व और आगमनात्मक युग्मन कारक == | ||
[[File:Coupling coefficient2.gif|350px|thumb|right| | [[File:Coupling coefficient2.gif|350px|thumb|right|'''चित्र संख्या''' '''1:''' LPσ और LSσ <sup>खुले परिचालित परिस्थितियों में आगमनात्मक युग्मन गुणांक <math>k</math> के रूप में व्यक्त प्राथमिक और द्वितीयक रिसाव प्रेरकत्व हैं।]]चुंबकीय सर्किट का प्रवाह जो दोनों कुंडलियों को अंतराबंध नहीं करता है, प्राथमिक क्षरण प्रेरकत्व LPσ और द्वितीयक क्षरण प्रेरकत्व LSσ के अनुरूप है। | ||
'''चित्र 1''' को दर्शाते हुए, इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली [[ओपन-सर्किट टेस्ट|ओपन-सर्किट प्रेरकत्व]] और संबंधित युग्मक गुणांक या युग्मक घटक <math>k</math> के संदर्भ में परिभाषित किया गया है। .<ref>The terms inductive coupling factor and inductive leakage factor are in this article as defined in [[International Electrotechnical Commission]] [https://web.archive.org/web/20160619074202/http://www.electropedia.org/iev/iev.nsf/d253fda6386f3a52c1257af700281ce6?OpenForm Electropedia]'s [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV-131-12-41, Inductive coupling factor] and [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 IEV-131-12-42, Inductive leakage factor].</ref><ref name="18-1">{{harvnb|Brenner|Javid|1959|loc=§18-1 Mutual Inductance, pp. 587-591}}</ref><ref>IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV 131-12-41 '''Inductive coupling factor''']</ref> | '''चित्र 1''' को दर्शाते हुए, इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली [[ओपन-सर्किट टेस्ट|ओपन-सर्किट प्रेरकत्व]] और संबंधित युग्मक गुणांक या युग्मक घटक <math>k</math> के संदर्भ में परिभाषित किया गया है। .<ref>The terms inductive coupling factor and inductive leakage factor are in this article as defined in [[International Electrotechnical Commission]] [https://web.archive.org/web/20160619074202/http://www.electropedia.org/iev/iev.nsf/d253fda6386f3a52c1257af700281ce6?OpenForm Electropedia]'s [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV-131-12-41, Inductive coupling factor] and [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 IEV-131-12-42, Inductive leakage factor].</ref><ref name="18-1">{{harvnb|Brenner|Javid|1959|loc=§18-1 Mutual Inductance, pp. 587-591}}</ref><ref>IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV 131-12-41 '''Inductive coupling factor''']</ref> | ||
Line 71: | Line 74: | ||
{{See also|Inductance#Mutual inductance}} | {{See also|Inductance#Mutual inductance}} | ||
एक गैर-आदर्श रैखिक दो-कुंडली ट्रांसफॉर्मर को ट्रांसफॉर्मर के पांच [[प्रतिबाधा (विद्युत)|आसन्नता (विद्युत)]] स्थिरांक को जोड़ने वाले दो पारस्परिक प्रेरकत्व-युग्मित सर्किट परिपथ द्वारा दर्शाया जा सकता है जैसा कि चित्र 2 में दिखाया गया है।<ref name="18-1" /><ref name="18-5">{{harvnb|Brenner|Javid|1959|loc=§18-5 The Linear Transformer, pp. 595-596}}</ref><ref>{{harvnb|Hameyer|2001|p=24}}</ref><ref name="ElecTut">{{harvnb|Singh|2016|loc=Mutual Inductance}}</ref> | एक गैर-आदर्श रैखिक दो-कुंडली ट्रांसफॉर्मर को ट्रांसफॉर्मर के पांच [[प्रतिबाधा (विद्युत)|आसन्नता (विद्युत)]] स्थिरांक को जोड़ने वाले दो पारस्परिक प्रेरकत्व-युग्मित सर्किट परिपथ द्वारा दर्शाया जा सकता है जैसा कि चित्र 2 में दिखाया गया है।<ref name="18-1" /><ref name="18-5">{{harvnb|Brenner|Javid|1959|loc=§18-5 The Linear Transformer, pp. 595-596}}</ref><ref>{{harvnb|Hameyer|2001|p=24}}</ref><ref name="ElecTut">{{harvnb|Singh|2016|loc=Mutual Inductance}}</ref> | ||
[[File:Basic transformer circuits.jpg|250px|thumb|left| | [[File:Basic transformer circuits.jpg|250px|thumb|left|'''चित्र संख्या''' '''2''': गैर-आदर्श ट्रांसफार्मर सर्किट आरेख]]जहाँ | ||
: * एम पारस्परिक प्रेरण है | : * एम पारस्परिक प्रेरण है | ||
Line 113: | Line 116: | ||
जहाँ, | जहाँ, | ||
[[File:TREQCCTHeyland.jpg|550px|thumb|right| | [[File:TREQCCTHeyland.jpg|550px|thumb|right|'''चित्र संख्या 3:''' गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ]]:*एल<sub>एम</sub> चुम्बकीय प्रेरण है, जो चुम्बकीय विरोध एक्स<sub>एम</sub> के अनुरूप है | ||
:*एल<sub>पी</sub><sup>σ</sup> और एल<sub>एस</sub><sup>σ</sup> प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं, जो प्राथमिक और द्वितीयक क्षरण प्रतिक्रिया एक्स<sub>पी</sub><sup>σ</sup> और एक्स<sub>एस</sub><sup>σ.के अनुरूप हैं | :*एल<sub>पी</sub><sup>σ</sup> और एल<sub>एस</sub><sup>σ</sup> प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं, जो प्राथमिक और द्वितीयक क्षरण प्रतिक्रिया एक्स<sub>पी</sub><sup>σ</sup> और एक्स<sub>एस</sub><sup>σ.के अनुरूप हैं | ||
Line 120: | Line 123: | ||
:<math>V_S^\prime=aV_S</math> | :<math>V_S^\prime=aV_S</math> | ||
:<math>I_S^\prime=I_S/a</math>. | :<math>I_S^\prime=I_S/a</math>. | ||
[[File:TREQCCTHeyland-to-k.jpg|550px|thumb|right| | [[File:TREQCCTHeyland-to-k.jpg|550px|thumb|right|'''चित्र संख्या 4:''' युग्मन गुणांक k के संदर्भ में 4 गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ<ref name="Brenner 18-18">{{harvnb|Brenner|Javid|1959|loc=p. 602, "Fig. 18-18 In this equivalent circuit of a (nonideal) transformer the elements are physically realizable and the isolationg property of the transformer has been retained."}}</ref>]]तब से | ||
:<math>k=M/\sqrt{L_PL_S}</math> ------ (समीकरण 2.11) | :<math>k=M/\sqrt{L_PL_S}</math> ------ (समीकरण 2.11) | ||
Line 131: | Line 134: | ||
जो कुंडली क्षरण और चुम्बकीय प्रेरण स्थिरांक के संदर्भ में चित्र 4 में समतुल्य सर्किट की अभिव्यक्ति की अनुमति देता है, जैसा कि निम्नानुसार है,<ref name="Brenner 18-7" /> | जो कुंडली क्षरण और चुम्बकीय प्रेरण स्थिरांक के संदर्भ में चित्र 4 में समतुल्य सर्किट की अभिव्यक्ति की अनुमति देता है, जैसा कि निम्नानुसार है,<ref name="Brenner 18-7" /> | ||
[[File:TREQCCTHeylandConverted.jpg|400px|thumb|right| | [[File:TREQCCTHeylandConverted.jpg|400px|thumb|right|'''चित्र संख्या 5:''' सरलीकृत गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ]]:<math>L_P^\sigma=L_S^{\sigma\prime}=L_P \cdot (1-k)</math> ------ (समीकरण 2.14 <math>\equiv</math> समीकरण 1.1बी) | ||
:<math>L_M=kL_P</math> ------ (समीकरण 2.15 <math>\equiv</math> समीकरण 1.1 सी)। | :<math>L_M=kL_P</math> ------ (समीकरण 2.15 <math>\equiv</math> समीकरण 1.1 सी)। | ||
चित्र 4 में गैर-आदर्श ट्रांसफार्मर को चित्र 5 में सरलीकृत समतुल्य परिपथ के रूप में दिखाया जा सकता है, जिसमें द्वितीयक स्थिरांक को प्राथमिक और आदर्श ट्रांसफार्मर पृथक्रकरण के बिना संदर्भित किया जाता है, जहां, | चित्र 4 में गैर-आदर्श ट्रांसफार्मर को चित्र 5 में सरलीकृत समतुल्य परिपथ के रूप में दिखाया जा सकता है, जिसमें द्वितीयक स्थिरांक को प्राथमिक और आदर्श ट्रांसफार्मर पृथक्रकरण के बिना संदर्भित किया जाता है, जहां, | ||
Line 161: | Line 164: | ||
चित्र 6 में प्रवाह आरेख का संदर्भ देते हुए, निम्नलिखित समीकरण धारण करते हैं:<ref name="Erickson">{{harvnb|Erickson|Maksimovic|loc=Chapter 12 Basic Magnetic Theory, §12.2.3. Leakage inductances }}</ref><ref name="Kim1963-3">{{harvnb|Kim|1963|loc=pp. 3-12, Magnetice Leakage in Transformers; pp. 13-19, Leakage Reactance in Transformers.}}</ref> | चित्र 6 में प्रवाह आरेख का संदर्भ देते हुए, निम्नलिखित समीकरण धारण करते हैं:<ref name="Erickson">{{harvnb|Erickson|Maksimovic|loc=Chapter 12 Basic Magnetic Theory, §12.2.3. Leakage inductances }}</ref><ref name="Kim1963-3">{{harvnb|Kim|1963|loc=pp. 3-12, Magnetice Leakage in Transformers; pp. 13-19, Leakage Reactance in Transformers.}}</ref> | ||
[[File:Main & leakage inductances.jpg|190px|thumb|left| | [[File:Main & leakage inductances.jpg|190px|thumb|left|'''चित्र संख्या 6:''' एक चुंबकीय सर्किट में चुंबकीयकरण और क्षरण प्रवाह]]<ref>{{harvnb|Hameyer|2001|loc=p. 29, Fig. 26}}</ref><ref name="Erickson" /><ref name="Kim1963-4">{{harvnb|Kim|1963|loc=p. 4, Fig. 1, Magnetic field due to current in the inner winding | ||
of a core-type transformer; Fig. 2, Magnetic field due to current in the outer winding of Fig. 1}}</ref> | of a core-type transformer; Fig. 2, Magnetic field due to current in the outer winding of Fig. 1}}</ref> | ||
:σ<sub>P</sub> = Φ<sub>P</sub><sup>σ</sup>/Φ<sub>M</sub> = L<sub>P</sub><sup>σ</sup>/L<sub>M</sub> <sup><sup><ref>{{harvnb|Hameyer|2001|loc=pp. 28, eq. 3-31}}</ref> ------ (समीकरण 3.1 <math>\approx</math> सम। 2.7) | :σ<sub>P</sub> = Φ<sub>P</sub><sup>σ</sup>/Φ<sub>M</sub> = L<sub>P</sub><sup>σ</sup>/L<sub>M</sub> <sup><sup><ref>{{harvnb|Hameyer|2001|loc=pp. 28, eq. 3-31}}</ref> ------ (समीकरण 3.1 <math>\approx</math> सम। 2.7) | ||
Line 205: | Line 208: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
क्षरण प्रेरकत्व एक अवांछनीय गुण हो सकता है, क्योंकि यह वर्धित राशि के साथ वोल्टेज को परिवर्तित करने का कारण बनता है। | क्षरण प्रेरकत्व एक अवांछनीय गुण हो सकता है, क्योंकि यह वर्धित राशि के साथ वोल्टेज को परिवर्तित करने का कारण बनता है। | ||
[[File:Kvglr.jpg|thumb|left|उच्च | [[File:Kvglr.jpg|thumb|left|उच्च क्षरण ट्रांसफार्मर]]अनेक स्थिति में यह उपयोगी होता है। क्षरण प्रेरकत्व में एक ट्रांसफॉर्मर (और लोड) में बिना स्वयं की शक्ति नष्ट किये उपस्थित प्रवाह को सीमित करने का उपयोगी प्रभाव होता है (सामान्य गैर-आदर्श ट्रांसफॉर्मर नुकसान को छोड़कर)। सामान्यतः ट्रांसफॉर्मर क्षरण प्रेरकत्व के एक विशिष्ट मूल्य के लिए रूपित किए जाते हैं जैसे कि इस प्रेरकत्व द्वारा बनाई गई क्षरण प्रतिक्रिया संचालन की वांछित आवृत्ति पर एक विशिष्ट मूल्य है। वस्तुतः इस स्थिति में कार्य करने वाला उपयोगी मापदण्ड क्षरण प्रेरकत्व मान नहीं है अपितु [[शॉर्ट-सर्किट इंडक्शन|शॉर्ट-सर्किट प्रेरकत्व]] मान है। | ||
सामान्यतः 2,500 केवीए तक रेट किए गए वाणिज्यिक और वितरण ट्रांसफार्मर लगभग 3% और 6% के बीच के शॉर्ट-सर्किट प्रतिबाधा के साथ और लगभग 3 और 6 के बीच के एक्स/आर अनुपात (कुंडली प्रतिक्रिया/कुंडली प्रतिरोध अनुपात) के साथ रूपित किए जाते हैं। जो शून्य-लोड और पूर्ण लोड के बीच प्रतिशत द्वितीयक वोल्टेज भिन्नता को परिभाषित करता है। इस प्रकार विशुद्ध रूप से प्रतिरोधक भार के लिए, ऐसे ट्रांसफॉर्मर का पूर्ण-टू-शून्य-लोड वोल्टेज विनियमन लगभग 1% और 2% के बीच होगा। | सामान्यतः 2,500 केवीए तक रेट किए गए वाणिज्यिक और वितरण ट्रांसफार्मर लगभग 3% और 6% के बीच के शॉर्ट-सर्किट प्रतिबाधा के साथ और लगभग 3 और 6 के बीच के एक्स/आर अनुपात (कुंडली प्रतिक्रिया/कुंडली प्रतिरोध अनुपात) के साथ रूपित किए जाते हैं। जो शून्य-लोड और पूर्ण लोड के बीच प्रतिशत द्वितीयक वोल्टेज भिन्नता को परिभाषित करता है। इस प्रकार विशुद्ध रूप से प्रतिरोधक भार के लिए, ऐसे ट्रांसफॉर्मर का पूर्ण-टू-शून्य-लोड वोल्टेज विनियमन लगभग 1% और 2% के बीच होगा। | ||
Line 213: | Line 216: | ||
[[चाप वेल्डिंग|आर्क वेल्डिंग]] समूह में धारा को नियंत्रित करने के लिए परिवर्तनीय क्षरण प्रेरकत्व वाले ट्रांसफॉर्मर का उपयोग किया जाता है। इस स्थिति में,क्षरण प्रेरकत्व [[विद्युत प्रवाह]] प्रवाह को वांछित परिमाण तक सीमित करता है। विद्युत् प्रणाली में अधिकतम स्वीकार्य मूल्य के भीतर सर्किट स्तरभ्रंश धारा को सीमित करने में ट्रांसफार्मर क्षरण प्रतिक्रिया की बड़ी भूमिका होती है।<ref name="Saarbafi-9" /> | [[चाप वेल्डिंग|आर्क वेल्डिंग]] समूह में धारा को नियंत्रित करने के लिए परिवर्तनीय क्षरण प्रेरकत्व वाले ट्रांसफॉर्मर का उपयोग किया जाता है। इस स्थिति में,क्षरण प्रेरकत्व [[विद्युत प्रवाह]] प्रवाह को वांछित परिमाण तक सीमित करता है। विद्युत् प्रणाली में अधिकतम स्वीकार्य मूल्य के भीतर सर्किट स्तरभ्रंश धारा को सीमित करने में ट्रांसफार्मर क्षरण प्रतिक्रिया की बड़ी भूमिका होती है।<ref name="Saarbafi-9" /> | ||
इसके | इसके अतिरिक्त, एचएफ-ट्रांसफार्मर का क्षरण प्रेरकत्व एक श्रृंखला [[प्रारंभ करनेवाला|प्रेरित्र]] को [[गुंजयमान कनवर्टर|अनुनादी परिवर्तित्र]] में प्रतिस्थापित कर सकता है।<ref>{{cite journal|url=https://ieeexplore.ieee.org/document/9265771|title=11kW, 70kHz LLC Converter Design for 98% Efficiency|date=November 2020|pages=1–8|doi=10.1109/COMPEL49091.2020.9265771|s2cid=227278364}}</ref> इसके विपरीत, एक पारंपरिक ट्रांसफार्मर और एक प्रेरित्र को श्रृंखला में जोड़ने से क्षरण ट्रांसफार्मर के समान विद्युत व्यवहार होता है, लेकिन यह अवांछित क्षेत्र के कारण ट्रांसफार्मर कुंडली में आवर्त धारा के नुकसान को कम करने के लिए लाभकारी हो सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
{{colbegin}} | {{colbegin}} | ||
*[[अवरुद्ध | *[[अवरुद्ध परिभ्रमक परीक्षण]] | ||
* | * वृत्त आरेख | ||
* | * पारस्परिक प्रेरकत्व | ||
* | * स्टेनमेट्ज़ समतुल्य परिपथ | ||
* शॉर्ट-सर्किट | * शॉर्ट-सर्किट प्रेरकत्व | ||
* शॉर्ट-सर्किट परीक्षण | * शॉर्ट-सर्किट परीक्षण | ||
*वोल्टेज अधिनियम | * वोल्टेज अधिनियम | ||
{{colend}} | {{colend}} | ||
Revision as of 23:45, 4 February 2023
क्षरण(लीकेज या रिसाव) प्रेरकत्व एक अपूर्ण रूप से युग्मित ट्रांसफार्मर की विद्युत संपत्ति से प्राप्त होता है जिससे प्रत्येक कुंडली संबंधित ओमिक प्रतिरोध स्थिरांक के साथ श्रृंखला में स्व-प्रेरकत्व के रूप में व्यवहार करता है। यह चार कुंडली स्थिरांक ट्रांसफार्मर के पारस्परिक प्रेरकत्व के साथ भी संपर्क करते हैं। कुंडली क्षरण प्रेरकत्व क्षरण प्रवाह के कारण होता है जो प्रत्येक अपूर्ण रूप से युग्मित कुंडली के सभी घुमावों से नहीं जुड़ता है।
क्षरण प्रतिक्रिया सामान्यतः ऊर्जा घटक, वोल्टेज घटाव, प्रतिक्रियाशील विद्युत उपभोग और स्तरभ्रंश धारा विचार के कारण धारा प्रणाली ट्रांसफॉर्मर का सबसे महत्वपूर्ण तत्व है।[1][2]
क्षरण प्रेरकत्व और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। क्षरण प्रतिक्रिया के परिणाम में वोल्टेज का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के हार्मोनिक् (विद्युत शक्ति) पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।[3]
क्षरण प्रेरकत्व विद्युत मोटर सहित किसी भी अपूर्ण-युग्मित चुंबकीय सर्किट उपकरणों पर अनप्रयुक्त होता है।[4] खुले परिचालित परिस्थितियों में आगमनात्मक युग्मन गुणांक 𝑘
के रूप में व्यक्त प्राथमिक और द्वितीयक रिसाव प्रेरकत्व हैं।
क्षरण प्रेरकत्व और आगमनात्मक युग्मन कारक
चुंबकीय सर्किट का प्रवाह जो दोनों कुंडलियों को अंतराबंध नहीं करता है, प्राथमिक क्षरण प्रेरकत्व LPσ और द्वितीयक क्षरण प्रेरकत्व LSσ के अनुरूप है।
चित्र 1 को दर्शाते हुए, इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली ओपन-सर्किट प्रेरकत्व और संबंधित युग्मक गुणांक या युग्मक घटक के संदर्भ में परिभाषित किया गया है। .[5][6][7]
प्राथमिक ओपन-सर्किट स्व-प्रेरकत्व जिसके द्वारा दिया जाता है
- ------ (समीकरण 1.1क)
जहाँ
- ------ (समीकरण 1.1बी)
- ------ (समीकरण 1.1ग)
और
- प्राथमिक स्व-प्रेरकत्व है
- प्राथमिक क्षरण प्रेरकत्व है
- चुंबकीय प्रेरण है
- आगमनात्मक युग्मन गुणांक है
आधारिक ट्रांसफार्मर प्रेरकत्व और युग्मन कारक को मापना
ट्रांसफार्मर स्व-प्रेरकत्व & और पारस्परिक प्रेरण द्वारा दिए गए दो कुंडलियों के धनात्मक और ऋणात्मक सम्बंधित श्रृंखला में हैं,[8]
- धनात्मक संबंध में,
- , और,
युग्मक घटक एक कुंडली में मापे गए उपपादन मान से लिया गया है, जो निम्न के अनुसार दूसरे कुंडली में शॉर्ट-सर्किट के साथ जुड़ा है:[11][12][13]
- प्रति समीकरण 2.7,
- और :::ऐसा है कि
- प्रति समीकरण 2.7,
कैंपबेल ब्रिज सर्किट का उपयोग ट्रांसफॉर्मर स्व-प्रेरकत्व और पारस्परिक प्रेरकत्व को निर्धारित करने के लिए भी किया जा सकता है, जो पुल पक्षों में से एक के लिए एक चर मानक पारस्परिक प्रारंभ करने वाली जोड़ी का उपयोग करता है।[14][15]
इसलिए यह ओपन-सर्किट स्व-प्रेरकत्व और प्रेरकत्व युग्मक घटक द्वारा अनुसरण करता है
- ------ (समीकरण 1.2), और,
- , 0 <के साथ <1 ------ (समीकरण 1.3)
जहाँ
और
- पारस्परिक प्रेरकत्व है
- द्वितीयक स्व-प्रेरकत्व है
- द्वितीयक क्षरण प्रेरकत्व है
- द्वितीयक को संदर्भित चुंबकन प्रेरकत्व है
- आगमनात्मक युग्मन गुणांक है
- [lower-alpha 1] अनुमानित मोड़ अनुपात है
चित्र 1 में ट्रांसफॉर्मर आरेख की विद्युत वैधता विचार किए गए संबंधित कुंडली प्रेरकत्व के लिए ओपन-सर्किट स्थितियों पर सख़्ती से निर्भर करती है। अधिक सामान्यीकृत सर्किट स्थितियां अगले दो खंडों में विकसित की गई हैं।
आगमनात्मक रिसाव कारक और अधिष्ठापन
एक गैर-आदर्श रैखिक दो-कुंडली ट्रांसफॉर्मर को ट्रांसफॉर्मर के पांच आसन्नता (विद्युत) स्थिरांक को जोड़ने वाले दो पारस्परिक प्रेरकत्व-युग्मित सर्किट परिपथ द्वारा दर्शाया जा सकता है जैसा कि चित्र 2 में दिखाया गया है।[6][16][17][18]
जहाँ
- * एम पारस्परिक प्रेरण है
- & प्राथमिक और द्वितीयक कुंडली प्रतिरोध हैं
- * स्थिरांक , , , & ट्रांसफार्मर के अंतिम सिरे पर मापने योग्य हैं
- * युग्मन कारक परिभाषित किया जाता है
- , जहां 0 < <1 ------ (समीकरण 2.1)
घुमावदार अनुपात बदल जाता है व्यवहार में दिया जाता है
- ------ (समीकरण 2.2)।[19]
जहाँ
- एनP & एनS प्राथमिक और द्वितीयक कुंडली हैं
- विP & मेंS और मैंP & मैंS प्राथमिक और द्वितीयक कुंडली वोल्टेज और धाराएं हैं।
गैर-आदर्श ट्रांसफार्मर के पाश समीकरणों को निम्नलिखित वोल्टेज और प्रवाह संयोजन समीकरणों द्वारा व्यक्त किया जा सकता है,[20]
- ------ (समीकरण 2.3)
- ------ (समीकरण 2.4)
- ------ (समीकरण 2.5)
- ------ (समीकरण 2.6),
- जहाँ
- प्रवाह संयोजन है
- समय के संबंध में प्रवाह संयोजन का व्युत्पन्न है।
इन समीकरणों को यह दिखाने के लिए विकसित किया जा सकता है, कि संबंधित कुंडली प्रतिरोधों की उपेक्षा करते हुए एक कुंडली सर्किट के अधिष्ठापन और अन्य कुंडली शॉर्ट-सर्किट और ओपन-सर्किट परीक्षण के साथ अनुपात इस प्रकार है[21]
- ------ (समीकरण 2.7),
- जहाँ,
ट्रांसफॉर्मर प्रेरकत्व को तीन प्रेरकत्व स्थिरांक के रूप में वर्णित किया जा सकता है,[25][26]
- ------ (समीकरण 2.8)
- ------ (समीकरण 2.9)
- ------ (समीकरण 2.10) ,
जहाँ,
:*एलएम चुम्बकीय प्रेरण है, जो चुम्बकीय विरोध एक्सएम के अनुरूप है
- एलपीσ और एलएसσ प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं, जो प्राथमिक और द्वितीयक क्षरण प्रतिक्रिया एक्सपीσ और एक्सएसσ.के अनुरूप हैं
ट्रांसफॉर्मर को चित्र 3 में समतुल्य सर्किट के रूप में अधिक आसानी से व्यक्त किया जा सकता है, जिसमें द्वितीयक स्थिरांक (अर्थात प्राइम सुपरस्क्रिप्ट नोटेशन के साथ) प्राथमिक को संदर्भित किया जाता है,[25][26]:
- .
तब से
- ------ (समीकरण 2.11)
और
- ------ (समीकरण 2.12),
अपने पास
- ------ (समीकरण 2.13),
जो कुंडली क्षरण और चुम्बकीय प्रेरण स्थिरांक के संदर्भ में चित्र 4 में समतुल्य सर्किट की अभिव्यक्ति की अनुमति देता है, जैसा कि निम्नानुसार है,[26]
: ------ (समीकरण 2.14 समीकरण 1.1बी)
- ------ (समीकरण 2.15 समीकरण 1.1 सी)।
चित्र 4 में गैर-आदर्श ट्रांसफार्मर को चित्र 5 में सरलीकृत समतुल्य परिपथ के रूप में दिखाया जा सकता है, जिसमें द्वितीयक स्थिरांक को प्राथमिक और आदर्श ट्रांसफार्मर पृथक्रकरण के बिना संदर्भित किया जाता है, जहां,
- ------ (समीकरण 2.16)
- प्रवाह ΦM द्वारा उत्तेजित धारा को चुम्बकित कर रहा है जो प्राथमिक और द्वितीयक कुंडली दोनों को जोड़ता है
- प्राथमिक धारा है
- ट्रांसफार्मर के प्राथमिक पक्ष को संदर्भित द्वितीयक धारा है।
परिष्कृत आगमनात्मक रिसाव कारक
परिष्कृत आगमनात्मक क्षरण कारक व्युत्पत्ति
(ए) प्रति समीकरण 2.1 और आईइसी आईइवी 131-12-41 आगमनात्मक युग्मन कारक द्वारा दिया गया है
- --------------------- (समीकरण 2.1):
(बी) प्रति समीकरण 2.7 और आईइसी आईइवी 131-12-42 आगमनात्मक क्षरण कारक द्वारा दिया गया है
- ------ (समीकरण 2.7) और (समीकरण 3.7 ए)
(सी) से गुणा देता है
- ----------------- (समीकरण 3.7 बी)
(डी) प्रति समीकरण 2.8 और यह जानकर
- ------------------------------------- (समीकरण 3.7 सी)
(इ) से गुणा देता है
- ------------------ (समीकरण 3.7 डी)
(एफ) प्रति समीकरण 3.5 समीकरण 1.1 बी और समीकरण 2.14 और समीकरण 3.6 समीकरण 1.1 बी और समीकरण 2.14:
- --- (समीकरण 3.7 इ)
इस लेख में सभी समीकरण स्थिर-अवस्था स्थिर-आवृत्ति तरंग स्थितियों को मानते हैं और जिनके मान आयाम रहित, निश्चित, परिमित और सकारात्मक हैं किन्तु 1 से कम हैं।
चित्र 6 में प्रवाह आरेख का संदर्भ देते हुए, निम्नलिखित समीकरण धारण करते हैं:[28][29]
- σP = ΦPσ/ΦM = LPσ/LM [32] ------ (समीकरण 3.1 सम। 2.7)
उसी तरह से,
- σS = ΦSσ'/ΦM = LSσ'/LM[33] ------ (समीकरण 3.2 समीकरण 2.7)
और इसीलिए,
- LP = LM + LPσ = LM + σPLM = (1 + σP)LM[38] ------ (समीकरण 3.5 समीकरण 1.1बी और समीकरण 2.14)
- LS' = LM + LSσ' = LM + σSLM = (1 + σS)LM[39] ------ (समीकरण 3.6 समीकरण 1.1बी और समीकरण 2.14),
जहाँ
- σP & σS क्रमशः, प्राथमिक और द्वितीयक क्षरण कारक हैं
- Φएम और एलएम क्रमशः, पारस्परिक प्रवाह और चुम्बकीय प्रेरण हैं
- Φपीएस और एलपीσ क्रमशः, प्राथमिक क्षरण प्रवाह और प्राथमिक क्षरण प्रेरकत्व हैं
- Φएसσ' और एलएसσ' क्रमशः द्वितीयक क्षरण प्रवाह और द्वितीयक क्षरण प्रेरकत्व मुख्य रूप से दोनों संदर्भित हैं।
क्षरण अनुपात σ इस प्रकार उपरोक्त विशिष्ट कुंडली प्रेरकत्व और आगमनात्मक क्षरण कारक समीकरणों के अंतर्संबंध के संदर्भ में निम्नानुसार परिष्कृत किया जा सकता है:[40]
- ------ (समीकरण 3.7 ए से 3.7 इ).
अनुप्रयोग
क्षरण प्रेरकत्व एक अवांछनीय गुण हो सकता है, क्योंकि यह वर्धित राशि के साथ वोल्टेज को परिवर्तित करने का कारण बनता है।
अनेक स्थिति में यह उपयोगी होता है। क्षरण प्रेरकत्व में एक ट्रांसफॉर्मर (और लोड) में बिना स्वयं की शक्ति नष्ट किये उपस्थित प्रवाह को सीमित करने का उपयोगी प्रभाव होता है (सामान्य गैर-आदर्श ट्रांसफॉर्मर नुकसान को छोड़कर)। सामान्यतः ट्रांसफॉर्मर क्षरण प्रेरकत्व के एक विशिष्ट मूल्य के लिए रूपित किए जाते हैं जैसे कि इस प्रेरकत्व द्वारा बनाई गई क्षरण प्रतिक्रिया संचालन की वांछित आवृत्ति पर एक विशिष्ट मूल्य है। वस्तुतः इस स्थिति में कार्य करने वाला उपयोगी मापदण्ड क्षरण प्रेरकत्व मान नहीं है अपितु शॉर्ट-सर्किट प्रेरकत्व मान है।
सामान्यतः 2,500 केवीए तक रेट किए गए वाणिज्यिक और वितरण ट्रांसफार्मर लगभग 3% और 6% के बीच के शॉर्ट-सर्किट प्रतिबाधा के साथ और लगभग 3 और 6 के बीच के एक्स/आर अनुपात (कुंडली प्रतिक्रिया/कुंडली प्रतिरोध अनुपात) के साथ रूपित किए जाते हैं। जो शून्य-लोड और पूर्ण लोड के बीच प्रतिशत द्वितीयक वोल्टेज भिन्नता को परिभाषित करता है। इस प्रकार विशुद्ध रूप से प्रतिरोधक भार के लिए, ऐसे ट्रांसफॉर्मर का पूर्ण-टू-शून्य-लोड वोल्टेज विनियमन लगभग 1% और 2% के बीच होगा।
उच्च क्षरण प्रतिक्रिया वाले ट्रांसफॉर्मर का उपयोग कुछ नकारात्मक प्रतिरोध अनुप्रयोगों जैसे नियॉन संकेतों के लिए किया जाता है, जहां वोल्टेज प्रवर्धन (ट्रांसफार्मर क्रिया) के साथ-साथ धारा सीमित करने की आवश्यकता होती है। वस्तुतः इस स्थिति में क्षरण प्रतिक्रिया पूर्ण लोड प्रतिबाधा का 100% होता है, इसलिए ट्रांसफॉर्मर को कितना भी छोटा कर दिया जाए, यह क्षतिग्रस्त नहीं होगा। क्षरण प्रेरकत्व के बिना इन गैस निर्वहन लैंप की नकारात्मक प्रतिरोध विशेषता उन्हें अत्यधिक धारा का संचालन और नष्ट करने का कारण बनती है।
आर्क वेल्डिंग समूह में धारा को नियंत्रित करने के लिए परिवर्तनीय क्षरण प्रेरकत्व वाले ट्रांसफॉर्मर का उपयोग किया जाता है। इस स्थिति में,क्षरण प्रेरकत्व विद्युत प्रवाह प्रवाह को वांछित परिमाण तक सीमित करता है। विद्युत् प्रणाली में अधिकतम स्वीकार्य मूल्य के भीतर सर्किट स्तरभ्रंश धारा को सीमित करने में ट्रांसफार्मर क्षरण प्रतिक्रिया की बड़ी भूमिका होती है।[2]
इसके अतिरिक्त, एचएफ-ट्रांसफार्मर का क्षरण प्रेरकत्व एक श्रृंखला प्रेरित्र को अनुनादी परिवर्तित्र में प्रतिस्थापित कर सकता है।[41] इसके विपरीत, एक पारंपरिक ट्रांसफार्मर और एक प्रेरित्र को श्रृंखला में जोड़ने से क्षरण ट्रांसफार्मर के समान विद्युत व्यवहार होता है, लेकिन यह अवांछित क्षेत्र के कारण ट्रांसफार्मर कुंडली में आवर्त धारा के नुकसान को कम करने के लिए लाभकारी हो सकता है।
यह भी देखें
- अवरुद्ध परिभ्रमक परीक्षण
- वृत्त आरेख
- पारस्परिक प्रेरकत्व
- स्टेनमेट्ज़ समतुल्य परिपथ
- शॉर्ट-सर्किट प्रेरकत्व
- शॉर्ट-सर्किट परीक्षण
- वोल्टेज अधिनियम
टिप्पणियाँ
- ↑ Equality is approached when the leakage inductances are small.
संदर्भ
- ↑ Kim 1963, p. 1
- ↑ 2.0 2.1 Saarbafi & Mclean 2014, AESO Transformer Modelling Guide, p. 9 of 304
- ↑ Irwin 1997, p. 362.
- ↑ Pyrhönen, Jokinen & Hrabovcová 2008, Chapter 4 Flux Leakage
- ↑ The terms inductive coupling factor and inductive leakage factor are in this article as defined in International Electrotechnical Commission Electropedia's IEV-131-12-41, Inductive coupling factor and IEV-131-12-42, Inductive leakage factor.
- ↑ 6.0 6.1 Brenner & Javid 1959, §18-1 Mutual Inductance, pp. 587-591
- ↑ IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, IEV 131-12-41 Inductive coupling factor
- ↑ Brenner & Javid 1959, §18-1 Mutual Inductance - Series connection of Mutual Inductance, pp. 591-592
- ↑ Brenner & Javid 1959, pp. 591-592, Fig. 18-6
- ↑ Harris 1952, p. 723, fig. 43
- ↑ Voltech, Measuring Leakage Inductance
- ↑ Rhombus Industries, Testing Inductance
- ↑ This measured short-circuit inductance value is often referred to as the leakage inductance. See for example are, Measuring Leakage Inductance,Testing Inductance. The formal leakage inductance is given by (Eq. 2.14).
- ↑ Harris 1952, p. 723, fig. 42
- ↑ Khurana 2015, p. 254, fig. 7.33
- ↑ Brenner & Javid 1959, §18-5 The Linear Transformer, pp. 595-596
- ↑ Hameyer 2001, p. 24
- ↑ Singh 2016, Mutual Inductance
- ↑ Brenner & Javid 1959, §18-6 The Ideal Transformer, pp. 597-600: Eq. 2.2 holds exactly for an ideal transformer where, at the limit, as self-inductances approach an infinite value ( → ∞ & → ∞ ), the ratio approaches a finite value.
- ↑ Hameyer 2001, p. 24, eq. 3-1 thru eq. 3-4
- ↑ Hameyer 2001, p. 25, eq. 3-13
- ↑ Knowlton 1949, pp. §8–67, p. 802: Knowlton describes The Leakage Factor as "The total flux which passes through the yoke and enters the pole = Φm = Φa + Φe and the ratio Φm/Φa is called the leakage factor and is greater than 1." This factor is evidently different from the inductive leakage factor described in this Leakage inductance article.
- ↑ IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, IEV ref. 131-12-42: "Inductive leakage factor
- ↑ IEC 60050 (Publication date: 1990-10). Section 221-04: Magnetic bodies, IEV ref. 221-04-12: "Magnetic leakage factor - the ratio of the total magnetic flux to the useful magnetic flux of a magnetic circuit." This factor is also different from the inductive leakage factor described in this Leakage inductance article.
- ↑ 25.0 25.1 Hameyer 2001, p. 27
- ↑ 26.0 26.1 26.2 Brenner & Javid 1959, §18-7 Equivalent Circuit for the nonideal transformer, pp. 600-602 & fig. 18-18
- ↑ Brenner & Javid 1959, p. 602, "Fig. 18-18 In this equivalent circuit of a (nonideal) transformer the elements are physically realizable and the isolationg property of the transformer has been retained."
- ↑ 28.0 28.1 Erickson & Maksimovic, Chapter 12 Basic Magnetic Theory, §12.2.3. Leakage inductances
- ↑ Kim 1963, pp. 3-12, Magnetice Leakage in Transformers; pp. 13-19, Leakage Reactance in Transformers.
- ↑ Hameyer 2001, p. 29, Fig. 26
- ↑ Kim 1963, p. 4, Fig. 1, Magnetic field due to current in the inner winding of a core-type transformer; Fig. 2, Magnetic field due to current in the outer winding of Fig. 1
- ↑ Hameyer 2001, pp. 28, eq. 3-31
- ↑ Hameyer 2001, pp. 28, eq. 3-32
- ↑ Hameyer 2001, pp. 29, eq. 3-33
- ↑ Kim 1963, p. 10, eq. 12
- ↑ Hameyer 2001, pp. 29, eq. 3-34
- ↑ Kim 1963, p. 10, eq. 13
- ↑ Hameyer 2001, pp. 29, eq. 3-35
- ↑ Hameyer 2001, pp. 29, eq. 3-36
- ↑ Hameyer 2001, p. 29, eq. 3-37
- ↑ "11kW, 70kHz LLC Converter Design for 98% Efficiency". November 2020: 1–8. doi:10.1109/COMPEL49091.2020.9265771. S2CID 227278364.
{{cite journal}}
: Cite journal requires|journal=
(help)
बाहरी कड़ियाँ
IEC Electropedia links:
ग्रन्थसूची
- Brenner, Egon; Javid, Mansour (1959). "Chapter 18 – Circuits with Magnetic Coupling". Analysis of Electric Circuits. McGraw-Hill. pp. esp. 586–617.
- Didenko, V.; Sirotin, D. (2012). "Accurate Measurement of Resistance and Inductance of Transformer Windings" (PDF). XX IMEKO World Congress – Metrology for Green Growth. Busan, Republic of Korea, September 9−14, 2012.
{{cite conference}}
: CS1 maint: location (link) - Erickson, Robert W.; Maksimovic, Dragan (2001). "Chapter 12: Basic Magnetics Theory (Instructor slides only for book)" (PDF). Fundamentals of Power Electronics (2nd ed.). Boulder: University of Colorado (slides) / Springer (book). pp. 72 slides. ISBN 978-0-7923-7270-7.
- "Electropedia: The World's Online Electrotechnical Vocabulary". IEC 60050 (Publication date: 1990-10). Archived from the original on 2015-04-27.
- Hameyer, Kay (2001). Electrical Machines I: Basics, Design, Function, Operation (PDF). RWTH Aachen University Institute of Electrical Machines. Archived from the original (PDF) on 2013-02-10.
- Harris, Forest K. (1952). Electrical Measurements (5th printing (1962) ed.). New York, London: John Wiley & Sons.
- Heyland, A. (1894). "A Graphical Method for the Prediction of Power Transformers and Polyphase Motors". ETZ. 15: 561–564.
- Heyland, A. (1906). A Graphical Treatment of the Induction Motor. Translated by George Herbert Rowe; Rudolf Emil Hellmund. McGraw-Hill. pp. 48 pages.
- Irwin, J. D. (1997). The Industrial Electronics Handbook. A CRC handbook. Taylor & Francis. ISBN 978-0-8493-8343-4.
- Khurana, Rohit (2015). Electronic Instrumentation and Measurement. Vikas Publishing House. ISBN 9789325990203.
- Kim, Joong Chung (1963). The Determination of Transformer Leakage Reactance by Using an Inpulse Driving Function. University of Oregon.
- Knowlton, A.E., ed. (1949). Standard Handbook for Electrical Engineers (8th ed.). McGraw-Hill. p. 802, § 8–67: The Leakage Factor.
- MIT-Press (1977). "Self- and Mutual Inductances". Magnetic circuits and transformers a first course for power and communication engineers. Cambridge, Mass.: MIT-Press. pp. 433–466. ISBN 978-0-262-31082-6.
- Pyrhönen, J.; Jokinen, T.; Hrabovcová, V. (2008). Design of Rotating Electrical Machines. p. Chapter 4 Flux Leakage.
- "Mutual Inductance" (PDF). Rhombus Industries Inc. 1998. Retrieved 4 August 2018.
- Saarbafi, Karim; Mclean, Pamela (2014). "AESO Transformer Modelling Guide" (PDF). Calgary: AESO - Alberta Electric System Operator (prepared by Teshmont Consultants LP). pp. 304 pages. Retrieved August 6, 2018.
- Singh, Mahendra (2016). "Mutual Inductance". Electronics Tutorials. Retrieved 6 January 2017.
- "Measuring Leakage Inductance" (PDF). Voltech Instruments. 2016. Retrieved 5 August 2018.