मल्टीप्रोटोकॉल लेबल स्विचिंग: Difference between revisions
No edit summary |
(→ऑपरेशन) |
||
Line 38: | Line 38: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ एमपीएलएस लेबल | ||
! 00 || 01 || 02 || 03 || 04 || 05 || 06 || 07 | ! 00 || 01 || 02 || 03 || 04 || 05 || 06 || 07 | ||
! 08 || 09 || 10 || 11 || 12 || 13 || 14 || 15 | ! 08 || 09 || 10 || 11 || 12 || 13 || 14 || 15 | ||
Line 45: | Line 45: | ||
|- style="text-align:center;" | |- style="text-align:center;" | ||
| colspan="20"| Label | | colspan="20"| Label | ||
| colspan="3"| | | colspan="3"| टीसी: ट्रैफिक क्लास (क्यूओएस और ईसीएन) | ||
| colspan="1"| S: | | colspan="1"| S: बॉटम-ऑफ-स्टैक | ||
| colspan="8"| | | colspan="8"| टीटीएल: टाइम-टू-लाइव | ||
|} | |} | ||
ये एमपीएलएस-लेबल वाले पैकेट आईपी मार्ग टेबल में लुकअप के बजाय लेबल के आधार पर स्विच किए जाते हैं। जब एमपीएलएस की कल्पना की गई थी, [[लेबल स्विचिंग]] मार्ग [[रूटिंग तालिका|तालिका]] लुकअप की तुलना में तेज़ थी क्योंकि स्विचिंग सीधे [[स्विच किया हुआ कपड़ा|स्विच किए हुए निर्माण]] के भीतर हो सकती थी और सीपीयू और सॉफ्टवेयर की भागीदारी से बचा जा सकता था। | ये एमपीएलएस-लेबल वाले पैकेट आईपी मार्ग टेबल में लुकअप के बजाय लेबल के आधार पर स्विच किए जाते हैं। जब एमपीएलएस की कल्पना की गई थी, [[लेबल स्विचिंग]] मार्ग [[रूटिंग तालिका|तालिका]] लुकअप की तुलना में तेज़ थी क्योंकि स्विचिंग सीधे [[स्विच किया हुआ कपड़ा|स्विच किए हुए निर्माण]] के भीतर हो सकती थी और सीपीयू और सॉफ्टवेयर की भागीदारी से बचा जा सकता था। | ||
Line 114: | Line 114: | ||
हब एंड स्पोक बहुबिन्दु एलएसपी भी आईइटीएफ द्वारा पेश किया गया है, जो [[HSMP LSP|एच एस एम पि, एल एस पि]] के रूप में छोटा है। [[HSMP LSP|एच एस एम पि, एल एस पि]] मुख्य रूप से बहुस्त्र्पीय, समय समकालीन बनाने कि क्रिया और अन्य उद्देश्यों के लिए उपयोग किया जाता है। | हब एंड स्पोक बहुबिन्दु एलएसपी भी आईइटीएफ द्वारा पेश किया गया है, जो [[HSMP LSP|एच एस एम पि, एल एस पि]] के रूप में छोटा है। [[HSMP LSP|एच एस एम पि, एल एस पि]] मुख्य रूप से बहुस्त्र्पीय, समय समकालीन बनाने कि क्रिया और अन्य उद्देश्यों के लिए उपयोग किया जाता है। | ||
[[Category:All articles with vague or ambiguous time]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:CS1 maint]] | |||
[[Category:Created On 28/01/2023]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Missing redirects]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
== इंटरनेट प्रोटोकॉल से संबंध == | == इंटरनेट प्रोटोकॉल से संबंध == |
Revision as of 16:11, 3 February 2023
मल्टीप्रोटोकॉल लेबल स्विचिंग (एमपीएलएस) दूरसंचार नेटवर्क में एक मार्ग तकनीक है जो नेटवर्क पतों के अलावा लेबल के आधार पर एक नोड (नेटवर्किंग) से अगले नोड (नेटवर्किंग) तक आंकड़े निर्देशित करती है।[1] जबकि नेटवर्क पते संचार समापन बिंदु की पहचान करते हैं, लेबल समापन बिंदु के बीच स्थापित मार्गों की पहचान करते हैं। एमपीएलएस विभिन्न नेटवर्क प्रोटोकॉल के पैकेट को जोड़ सकता है, इसलिए इसका नाम मल्टीप्रोटोकॉल घटक है। एमपीएलएस डिजिटल संकेत 1/ई वाहक, अतुल्यकालिक अंतरण विधा, ढ़ाचा प्रसारित करना और डिजिटल खरीदारों की पंक्ति सहित पहचान तकनीकों की एक श्रृंखला का समर्थन करता है।
भूमिका और कामकाज
एक एमपीएलएस नेटवर्क में, लेबल आंकड़े पैकेट को सौंपे जाते हैं। पैकेट को आगे बढ़ाने का निर्णय बिना स्वयं पैकेट की जांच किए, पूरी तरह से इस लेबल की सामग्री के आधार पर लिया जाता है। यह किसी भी प्रोटोकॉल का उपयोग करके किसी भी प्रकार के परिवहन माध्यम में शुरू से अंत तक परिपथ बनाने की अनुमति देता है। प्राथमिक लाभ एक विशेष ओएसआई मॉडल सूचना श्रंखला तल (परत 2) तकनीक पर निर्भरता को समाप्त करना है, और विभिन्न प्रकार के यातायात को संतुष्ट करने के लिए विभिन्न प्रकार के परत-2 नेटवर्क की आवश्यकता को समाप्त करना है। मल्टीप्रोटोकॉल लेबल स्विचिंग पैकेट-स्विच्ड नेटवर्क के परिवार से संबंधित है।
एमपीएलएस एक परत पर काम करता है जिसे सामान्यत: ओएसआई परत 2 (आंकड़े लिंक परत) और परत 3 (नेटवर्क परत) की पारंपरिक परिभाषाओं के बीच झूठ माना जाता है, और इस प्रकार इसे सामान्यत: परत 2.5 प्रोटोकॉल के रूप में संदर्भित किया जाता है। इसे दूरसंचार परिपथ ग्रहाक और पैकेट-स्विचिंग ग्रहाक दोनों के लिए एक एकीकृत आंकड़े वाहक सेवा प्रदान करने के लिए डिज़ाइन किया गया था जो आंकड़ारेख सेवा मॉडल प्रदान करते हैं। इसका उपयोग IP पैकेट (सूचना प्रौद्योगिकी), साथ ही मूल अतुल्यकालिक स्थानांतरण मोड (ATM), फ़्रेम रिले, तुल्यकालिक प्रकाशिक नेटवर्किंग (सॉनेट) या ईथरनेट सहित कई अलग-अलग प्रकार के यातायात को ले जाने के लिए किया जा सकता है।
फ़्रेम रिले और एटीएम जैसे अनिवार्य रूप से समान लक्ष्यों के साथ पहले कई अलग-अलग तकनीकों को तैनात किया गया था। फ़्रेम रिले और एटीएम नेटवर्क के माध्यम से फ़्रेम (नेटवर्किंग) या सेल को स्थानांतरित करने के लिए लेबल का उपयोग करते हैं। फ्रेम रिले फ्रेम और एटीएम सेल का हेडर उस वर्चूअल परिपथ को संदर्भित करता है जिस पर फ्रेम या सेल रहता है। फ़्रेम रिले, एटीएम और एमपीएलएस के बीच समानता यह है कि पूरे नेटवर्क में प्रत्येक उछाल पर, हेडर में लेबल मान बदल जाता है। यह आई मार्ग से अलग है।[2] एमपीएलएस प्रौद्योगिकियां एटीएम की ताकत और कमजोरियों को ध्यान में रखकर विकसित हुई हैं। एमपीएलएस को चर लंबाई वाले फ्रेम के लिए संपर्क उत्सुक सेवा प्रदान करते हुए एटीएम की तुलना में भूमि से कम ऊपर रखने के लिए डिज़ाइन किया गया है, और इसने बाजार में एटीएम के अधिक उपयोग को बदल दिया है।[3] एमपीएलएस एटीएम के सेल-स्विचिंग और संकेतिक प्रोटोकॉल सामान के साथ वितरण करता है। एमपीएलएस मानता है कि आधुनिक नेटवर्क के मूल में छोटे एटीएम सेल की जरूरत नहीं है, क्योंकि आधुनिक प्रकाशिक नेटवर्क काफी तेज हैं कि पूर्ण-लंबाई वाले 1500 बाइट पैकेट भी महत्वपूर्ण वास्तविक समय की कतार में देरी नहीं करते हैं।[lower-alpha 1] उसी समय, एमपीएलएस टेलीट्रैफिक इंजीनियरिंग (टीई) और बैंड से बहार नियंत्रण को संरक्षित करने का प्रयास करता है जिसने फ्रेम रिले और एटीएम को बड़े पैमाने पर नेटवर्क तैनात करने के लिए आकर्षक बना दिया।
इतिहास
- 1994: टोशीबा_दूरसंचार_प्रणाली_श्रेणी ने आइईटीएफ बीओएफ को सेल स्विच राउटर (सीएसआर) के विचार प्रस्तुत किए
- 1996: इप्सिलॉन, सिस्को और आईबीएम ने लेबल बदलने की योजना की घोषणा की
- 1997: आइईटीएफ एमपीएलएस कार्य कर रहे ग्रुप का गठन
- 1999: पहला एमपीएलएस वीपीएन (एल3वीपीएन) और टीई परिनियोजन
- 2000: एमपीएलएस यातायात इंजीनियरिंग
- 2001: टिप्पणियों के लिए पहला एमपीएलएस अनुरोध (आरएफसी) प्रकाशित[4]
- 2002: एटीओएम (एल2वीपीएन)
- 2004: जीएमपीएलएस; बड़े पैमाने पर एल3वीपीएन
- 2006: बड़े पैमाने पर टीई हर्ष
- 2007: बड़े पैमाने पर एल2वीपीएन
- 2009: लेबल स्विचिंग बहुस्त्र्पीय
- 2011: एमपीएलएस-टीपी
1996 में उन्नत नेटवर्क के एक समूह ने एक प्रवाह प्रबंधन प्रोटोकॉल का प्रस्ताव रखा।[5] उनकी आईपी बदलाव तकनीक, जिसे केवल एटीएम पर काम करने के लिए परिभाषित किया गया था, बाजार अधिकार हासिल नहीं कर पाई। सिस्को सिस्टम्स ने संबंधित प्रस्ताव पेश किया, जो एटीएम ट्रांसमिशन तक सीमित नहीं है, जिसे उपनाम बदलाव कहा जाता है[6] इसके उपनाम वितरण प्रोटोकॉल (टीडीपी) के साथ।[7] यह सिस्को के अधिकार वाला प्रस्ताव था, और इसका नाम बदलकर लेबल बदलाव कर दिया गया था। इसे खुले मानकीकरण के लिए इंटरनेट इंजीनियरिंग टास्क फोर्स (IETF) को सौंप दिया गया था। आईईटीएफ कार्य में अन्य विक्रेताओं के प्रस्ताव शामिल हैं, और एक आम सहमति प्रोटोकॉल का विकास है जो कई विक्रेताओं के काम से संयुक्त विशेषताओं वाला हैं।[when?]
जिसमे एक मूल प्रेरणा सरल हाई-स्पीड स्विच के निर्माण की अनुमति देना था क्योंकि एक महत्वपूर्ण समय के लिए आईपी पैकेट को पूरी तरह से हार्डवेयर में आगे करना असंभव था। बहुत बड़े पैमाने पर एकीकरण में प्रगति ने आईपी पैकेटों के हार्डवेयर अग्रेषण को संभव और सामान्य बना दिया है। एमपीएलएस के वर्तमान लाभ मुख्य रूप से कई सेवा मॉडल का समर्थन करने और यातायात प्रबंधन करने की क्षमता के आस-पास घूमते हैं। एमपीएलएस एक मजबूत वसूली ढांचा कार्य भी प्रदान करता है[8] जो तुल्यकालिक प्रकाशिक नेटवर्किंग (सॉनेट/SDH) के साधारण सुरक्षा रिंग से आगे जाता है।
ऑपरेशन
एमपीएलएस एक या अधिक लेबल वाले एमपीएलएस हेडर के साथ पैकेट को मिलाकर कार्य करता है। इसे लेबल स्टैक (आंकड़े संरचना) कहा जाता है।
लेबल स्टैक में प्रत्येक प्रवेश में चार फ़ील्ड होते हैं:
- एक 20-बिट लेबल मान। 1 के मान वाला एक लेबल राउटर अलर्ट लेबल का प्रतिनिधित्व करता है।
- क्यूओएस (सेवा की गुणवत्ता) प्राथमिकता और ईसीएन (स्पष्ट भीड़ अधिसूचना) के लिए 3-बिट ट्रैफिक क्लास फील्ड। 2009 से पहले इस फील्ड को EXP कहा जाता था।[9]
- स्टैक झंडे का 1-बिट निचला भाग। यदि यह सेट है, तो यह दर्शाता है कि वर्तमान लेबल स्टैक में अंतिम है।
- एक 8-बिट टीटीएल (जीने का समय) क्षेत्र।
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label | टीसी: ट्रैफिक क्लास (क्यूओएस और ईसीएन) | S: बॉटम-ऑफ-स्टैक | टीटीएल: टाइम-टू-लाइव |
ये एमपीएलएस-लेबल वाले पैकेट आईपी मार्ग टेबल में लुकअप के बजाय लेबल के आधार पर स्विच किए जाते हैं। जब एमपीएलएस की कल्पना की गई थी, लेबल स्विचिंग मार्ग तालिका लुकअप की तुलना में तेज़ थी क्योंकि स्विचिंग सीधे स्विच किए हुए निर्माण के भीतर हो सकती थी और सीपीयू और सॉफ्टवेयर की भागीदारी से बचा जा सकता था।
ऐसे लेबल की उपस्थिति को स्विच को संकेत करना होगा। ईथरनेट फ्रेम के मामले में यह क्रमशः यूनिकास्ट और बहुस्तरीय संपर्क के लिए इथर प्रकार मान 0x8847 और 0x8848 के उपयोग के माध्यम से किया जाता है।[10]
लेबल स्विच राउटर
एक एमपीएलएस राउटर जो केवल लेबल के आधार पर मार्ग करता है उसे लेबल स्विच राउटर (एलएसआर) या ट्रांजिट राउटर कहा जाता है। यह एक प्रकार का राउटर है जो एमपीएलएस नेटवर्क के बीच में स्थित होता है। यह पैकेटों को मार्ग दिखाने के लिए उपयोग किए जाने वाले लेबल को बदलने के लिए ज़िम्मेदार है।
जब कोई एलएसआर एक पैकेट प्राप्त करता है, तो यह पैकेट हेडर में शामिल लेबल का उपयोग लेबल बदलाव मार्ग(एलएसपी) पर अगली उछाल और तालिका देखो से पैकेट के लिए संबंधित लेबल को निर्धारित करने के लिए एक सारणी के रूप में करता है। पुराने लेबल को हेडर से हटा दिया जाता है और पैकेट को आगे बढ़ने से पहले नए लेबल के साथ बदल दिया जाता है।
लेबल एज राउटर
एक लेबल एज राउटर (एलईआर) जिसे (एज एलएसआर) भी कहा जाता है एक राउटर है जो एमपीएलएस नेटवर्क के किनारे पर संचालित होता है और नेटवर्क के लिए प्रवेश और निकास बिंदु के रूप में कार्य करता है। एलईआर आने वाले पैकेट पर एक एमपीएलएस लेबल दबाते हैं[lower-alpha 2] और इसे बहार जाने वाले पैकेट से बहार करें। वैकल्पिक रूप से, अंतिम हॉप पॉपिंग के तहत यह कार्य इसके बजाय एलएसआर द्वारा सीधे एलईआर से जुड़ा हो सकता है।
एमपीएलएस ज्ञानक्षेत्र में एक आईपी आंकड़े ग्राम को आगे करते समय, एक एलईआर चिपकाए जाने वाले उचित लेबल को निर्धारित करने के लिए मार्ग जानकारी का उपयोग करता है, तदनुसार पैकेट को लेबल करता है, और फिर लेबल किए गए पैकेट को एमपीएलएस ज्ञानक्षेत्र में आगे करता है। इसी तरह, एक लेबल पैकेट प्राप्त करने पर जो एमपीएलएस ज्ञानक्षेत्र से बाहर निकलने के लिए नियत है, एलईआर लेबल को बंद कर देता है और परिणामी आईपी पैकेट को सामान्य आईपी अग्रेषण नियमों का उपयोग करके आगे बढ़ाता है।
प्रदाता राउटर
एमपीएलएस पर आधारित आभासी निजी संजाल (वीपीएन) के विशिष्ट संदर्भ में, एलईआर जो वीपीएन में प्रवेश राउटर या निकास राउटर के रूप में कार्य करते हैं, उन्हें सामान्यत: प्रदाता एज राउटर (पीई) राउटर कहा जाता है। डिवाइस जो केवल ट्रांज़िट राउटर के रूप में कार्य करते हैं, उन्हें प्रदाता राउटर (पी राउटर) कहा जाता है।[11] (पीई) राउटर की तुलना में पी राउटर का कार्य काफी आसान है।
लेबल वितरण प्रोटोकॉल
लेबल वितरण प्रोटोकॉल (एलडीपी) या संसाधन आरक्षण प्रोटोकॉल (RSVP) का उपयोग करके एलईआर और एलएसआर के बीच लेबल वितरित किए जा सकते हैं।[12] एक एमपीएलएस नेटवर्क में एलएसआर नियमित रूप से नेटवर्क की पूरी तस्वीर बनाने के लिए मानकीकृत प्रक्रियाओं का उपयोग करके एक दूसरे के साथ लेबल और पहुँचयोग्य जानकारी का आदान-प्रदान करते हैं ताकि वे पैकेट को आगे बढ़ाने के लिए उस जानकारी का उपयोग कर सकें।
लेबल-स्विच किए गए मार्ग
लेबल-स्विच्ड पाथ (LSPs) नेटवर्क प्रचालक द्वारा विभिन्न उद्देश्यों के लिए स्थापित किए जाते हैं, जैसे कि नेटवर्क-आधारित IP आभासी निजी नेटवर्क बनाना या नेटवर्क के माध्यम से निर्देशानुसार मार्गों के साथ यातायात को मार्ग करना। कई मामलों में, एलएसपी एटीएम या फ़्रेम रिले नेटवर्क में स्थायी आभासी परिपथ (पीवीसी) से अलग नहीं हैं, सिवाय इसके कि वे किसी विशेष परत-2 तकनीक पर निर्भर नहीं हैं।
रूटिंग
जब एक बिना लेबल वाला पैकेट प्रवेश राउटर में प्रवेश करता है और उसे एमपीएलएस सुरंग प्रोटोकॉल पर भेजने की आवश्यकता होती है, तो राउटर पहले पैकेट के लिए आगे समकक्ष वर्ग (एफईसी) निर्धारित करता है और फिर पैकेट के नव निर्मित एमपीएलएस हेडर में एक या अधिक लेबल सम्मिलित करता है। इस सुरंग के लिए पैकेट को अगले हॉप राउटर पर भेज दिया जाता है।
एमपीएलएस हैडर को ओएसआइ मॉडल के नेटवर्क परत हेडर और लिंक परत हेडर के बीच जोड़ा जाता है।[13]
जब एक एमपीएलएस राउटर द्वारा एक लेबल वाला पैकेट प्राप्त होता है, तो सबसे ऊपर के लेबल की जांच की जाती है। लेबल की सामग्री के आधार पर पैकेट के लेबल हिस्से पर अदला-बदली, दबाना (इंपोज) या पॉप (डिस्पोज) ऑपरेशन किया जाता है। राउटर में पहले से निर्मित खोज सारणी हो सकती हैं जो उन्हें बताती हैं कि आने वाले पैकेट के सबसे ऊपरी लेबल के आधार पर किस तरह का ऑपरेशन करना है ताकि वे पैकेट की प्रक्रिया बहुत जल्दी कर सकें।
- अदला-बदली ऑपरेशन में लेबल को एक नए लेबल से स्वैप किया जाता है, और पैकेट को नए लेबल से जुड़े मार्ग के साथ आगे किया जाता है।
- दाब ऑपरेशन में एक नया लेबल मौजूदा लेबल के ऊपर धकेल दिया जाता है, प्रभावी रूप से एमपीएलएस की एक और परत में पैकेट को सक्रिय करता है। यह एमपीएलएस पैकेटों के शृंखला मे बँधे हुए मार्ग की अनुमति देता है। विशेष रूप से, इसका उपयोग एमपीएलएस वीपीएन द्वारा किया जाता है।
- पॉप ऑपरेशन में पैकेट से लेबल हटा दिया जाता है, जो नीचे एक आंतरिक लेबल प्रकट कर सकता है। इस प्रक्रिया को पतन कहा जाता है। यदि पॉप्ड लेबल लेबल हिस्से पर अंतिम था, तो पैकेट एमपीएलएस सुरंग छोड़ देता है। यह निकास राउटर द्वारा किया जा सकता है, लेकिन नीचे पेनल्टीमेट हॉप पॉपिंग (PHP) देखें।
इन कार्यों के दौरान, एमपीएलएस लेबल स्टैक के नीचे पैकेट की सामग्री की जांच नहीं की जाती है। दरअसल, ट्रांज़िट राउटर को सामान्यत: केवल स्टैक पर सबसे ऊपरी लेबल की जांच करने की आवश्यकता होती है। पैकेट को आगे लेबल की सामग्री के आधार पर किया जाता है, जो प्रोटोकॉल-स्वतंत्र पैकेट को आगे की अनुमति देता है जिससे प्रोटोकॉल निर्भर मार्ग तालिका को देखने की आवश्यकता नहीं होती है और प्रत्येक उछाल पर महंगे आईपी सबसे लंबे उपसर्ग मिलान से बचा जाता है।
निकास राउटर पर, जब आखिरी लेबल बहार हो जाता है, तो केवल विस्फोटक शक्ति रह जाती है। यह एक आईपी पैकेट या कई अन्य प्रकार के विस्फोटक शक्ति पैकेट हो सकते हैं। इसलिए, निकास राउटर के पास पैकेट के विस्फोटक शक्ति के लिए मार्ग जानकारी होनी चाहिए क्योंकि इसे लेबल खोज सारणी की सहायता के बिना इसे आगे करना चाहिए। एमपीएलएस ट्रांजिट राउटर की ऐसी कोई आवश्यकता नहीं है।
सामान्यत: (डिफ़ॉल्ट रूप से स्टैक में केवल एक लेबल के साथ, एमपीएलएस विनिर्देश के अनुसार), अंतिम लेबल पेनल्टीमेट हॉप (निकास रूटर से पहले उछाल) पर बंद हो जाता है। इसे पेनल्टीमेट हॉप पॉपिंग (PHP) कहा जाता है। यह उन मामलों में दिलचस्प हो सकता है जहां निकास राउटर के पास एमपीएलएस सुरंग छोड़ने वाले कई पैकेट हैं, और इस तरह इस पर सीपीयू अधिक समय खर्च करता है। PHP का उपयोग करके, इस निकस राउटर से सीधे जुड़े ट्रांज़िट राउटर अंतिम लेबल को स्वयं पॉप करके इसे प्रभावी रूप से उतार देते हैं। लेबल वितरण प्रोटोकॉल में, इस PHP लेबल पॉप क्रिया को लेबल मान 3 «अंतर्निहित-शून्य» के रूप में विज्ञापित किया जाता है (जो किसी लेबल में कभी नहीं पाया जाता है, क्योंकि इसका अर्थ है कि लेबल को पॉप किया जाना है)।
यह अनुकूलन अब उतना उपयोगी नहीं है (जैसे एमपीएलएस के लिए प्रारंभिक परिमेय राउटर के लिए आसान संचालन)। कई एमपीएलएस सेवाएं (सर्विस की शुरु से अन्त तक गुणवत्ता सहित[14] प्रबंधन, और 6PE[15]) अंतिम एमपीएलएस राउटर पर हमेशा एक लेबल व्यवस्था के साथ अंतिम और अंतिम एमपीएलएस राउटर के बीच भी एक लेबल रखने का मतलब है: «अल्टीमेट हॉप पॉपिंग» (यूएचपी)।[16][17] कुछ विशिष्ट लेबल मान उल्लेखनीय रूप से आरक्षित किए गए हैं[18][19] इस प्रयोग के लिए:
- 0: IPv4 के लिए «स्पष्ट-अशक्त»
- 2: IPv6 के लिए «स्पष्ट-अशक्त»
लेबल-बदलाव मार्ग
एक लेबल-बदलाव मार्ग , MPLS नेटवर्क के माध्यम से एक मार्ग है, जिसे नेटवर्क प्रबंधन प्रणाली द्वारा या लेबल वितरण प्रोटोकॉल, RSVP-TE, BGP (या अब बहिष्कृत CR-LDP) जैसे संकेतिक प्रोटोकॉल द्वारा स्थापित किया गया है। अग्रेषण समकक्ष वर्ग में मानदंड के आधार पर मार्ग स्थापित किया गया है।
मार्ग एक लेबल एज राउटर (एलईआर) से शुरू होता है, जो उचित एफईसी के आधार पर निर्णय लेता है कि किस लेबल को पैकेट से पहले जोड़ा जाए। यह तब पैकेट को रास्ते में अगले राउटर के साथ आगे करता है, जो पैकेट के बाहरी लेबल को दूसरे लेबल के लिए अदल-बदल करता है, और इसे अगले राउटर के लिए आगे करता है। मार्ग में अंतिम राउटर पैकेट से लेबल हटा देता है और पैकेट को उसकी अगली परत के हेडर के आधार पर आगे बढ़ाता है, उदाहरण के लिए IPv4। उच्च नेटवर्क परतों के लिए अपारदर्शी होने के कारण LSP के माध्यम से पैकेट आगे करने के कारण, LSP को कभी-कभी MPLS सुरंग भी कहा जाता है।
राउटर जो पहले एमपीएलएस हेडर को एक पैकेट में मिलाता है, एक प्रवेश रूटर कहलाता है। एलएसपी में अंतिम राउटर, जो पैकेट से लेबल को पॉप करता है, एक निकास राउटर कहलाता है। बीच के राउटर, जिन्हें केवल अदाला-बदली लेबल की आवश्यकता होती है, ट्रांज़िट राउटर या लेबल स्विच राउटर (एलएसआर) कहलाते हैं।
ध्यान दें कि एलएसपी दिशाहीन हैं; वे एक पैकेट को एमपीएलएस नेटवर्क के माध्यम से एक समापन बिंदु से दूसरे में स्विच करने के लिए सक्षम करते हैं। चूंकि दो दिशा संचार सामान्यत: वांछित है, उपरोक्त गतिशील संकेतिक प्रोटोकॉल इसकी भरपाई के लिए दूसरी दिशा में एलएसपी स्थापित कर सकते हैं।
जब सुरक्षा पर विचार किया जाता है, तो एलएसपी को प्राथमिक (कामकाजी), द्वितीयक (बैकअप) और तृतीयक (अंतिम उपाय के एलएसपी) के रूप में वर्गीकृत किया जा सकता है। जैसा कि ऊपर बताया गया है, LSP सामान्यत: P2P (प्वाइंट टू पॉइंट) होते हैं। LSPs की एक नई अवधारणा, जिसे P2MP (प्वाइंट टू मल्टी-पॉइंट) के रूप में जाना जाता है, हाल ही में पेश की गई थी।[when?] ये मुख्य रूप से बहुप्रसारण उद्देश्यों के लिए उपयोग किए जाते हैं।
मार्गों को स्थापित करना और हटाना
एमपीएलएस मार्गों के प्रबंधन के लिए दो मानकीकृत प्रोटोकॉल हैं: लेबल वितरण (डिस्ट्रीब्यूशन) प्रोटोकॉल (एलडीपी) और आरएसवीपी-टीई, यातायात इंजीनियरिंग के लिए संसाधन आरक्षण प्रोटोकॉल (आरएसवीपी) का विस्तार।[20][21] इसके अलावा, सीमा गेटवे प्रोटोकॉल (बीजीपी) के एक्सटेंशन मौजूद हैं जिनका उपयोग एमपीएलएस पथ को प्रबंधित करने के लिए किया जा सकता है।[11][22][23]
एमपीएलएस हेडर एमपीएलएस मार्ग के अंदर किए गए आंकड़े के प्रकार की पहचान नहीं करता है। यदि कोई एक ही दो राउटर के बीच दो अलग-अलग प्रकार के यातायात ले जाना चाहता है, प्रत्येक प्रकार के लिए अन्तर्भाग राउटर द्वारा अलग-अलग उपचार के साथ, प्रत्येक प्रकार के यातायात के लिए एक अलग एमपीएलएस मार्ग स्थापित करना होगा।
बहुप्रसारण संबोधन
बहुस्त्र्पीय, अधिकांश भाग के लिए, एमपीएलएस डिजाइन में बाद का विचार था। इसे पॉइंट-टू-मल्टीपॉइंट RSVP-TE द्वारा पेश किया गया था।[24] यह एमपीएलएस पर ब्रॉडबैंड वीडियो के परिवहन के लिए सेवा प्रदायक आवश्यकताओं से प्रेरित था। की स्थापना के बाद से RFC 4875 एमपीएलएस बहुस्त्र्पीय की रुचि और तैनाती में जबरदस्त उछाल आया है और इससे आईईटीएफ और जलयात्रा उत्पादों दोनों में कई नए विकास हुए हैं।
हब एंड स्पोक बहुबिन्दु एलएसपी भी आईइटीएफ द्वारा पेश किया गया है, जो एच एस एम पि, एल एस पि के रूप में छोटा है। एच एस एम पि, एल एस पि मुख्य रूप से बहुस्त्र्पीय, समय समकालीन बनाने कि क्रिया और अन्य उद्देश्यों के लिए उपयोग किया जाता है।
इंटरनेट प्रोटोकॉल से संबंध
एमपीएलएस इंटरनेट प्रोटोकॉल (आईपी) और इसके मार्ग प्रोटोकॉल, सामान्यत: आंतरिक गेटवे प्रोटोकॉल (आईजीपी) के साथ मिलकर काम करता है। एमपीएलएस एलएसपी यातायात इंजीनियरिंग के समर्थन के साथ गतिशील, पारदर्शी आभासी नेटवर्क प्रदान करते हैं, अतिव्यपी पते दूरी के साथ परत-3 (आईपी) वीपीएन को ट्रांसपोर्ट करने की क्षमता, और स्यूडोवायर अनुसरण किनारे से किनारे (पीडब्ल्यूई3) का उपयोग करके परत-2 छद्म तार के लिए समर्थन[25] जो विभिन्न प्रकार के परिवहन विस्फोटक शक्ति (आईपीवी4, इपवश, एटीएम, फ्रेम रिले, आदि) को ले जाने में सक्षम हैं। एमपीएलएस सक्षम उपकरणों को एलएसआर कहा जाता है। एक एलएसआर जानता पथ स्पष्ट हॉप-बाय-हॉप विन्यास या गतिशील रूप से सीएसपीएफ का उपयोग करके परिभाषित किया जा सकता है| बाधित सबसे छोटा रास्ता पहले (सीएसपीएफ) एल्गोरिदम द्वारा मार्ग किया जाता है, या एक ढीले मार्ग के रूप में बनाया जाता है जो किसी विशेष आईपी पते से बचाता है या जो है आंशिक रूप से स्पष्ट और आंशिक रूप से गतिशील।
एक शुद्ध आईपी नेटवर्क में, किसी गंतव्य के लिए सबसे छोटा रास्ता तब भी चुना जाता है जब रास्ता भीड़भाड़ वाला हो। इस बीच, एमपीएलएस यातायात इंजीनियरिंग सीएसपीएफ मार्ग के साथ एक आईपी नेटवर्क में, पार किए गए संपर्क के आरएसवीपी बैंडविड्थ जैसी बाधाओं पर भी विचार किया जा सकता है, जैसे कि उपलब्ध बैंडविड्थ के साथ सबसे छोटा रास्ता चुना जाएगा। एमपीएलएस यातायात इंजीनियरिंग पहले सबसे छोटा रास्ता खोलो (ओएसपीएफ) या आईएस-आईएस (आईएस-आईएस) और आरएसवीपी के लिए टीई विस्तार के उपयोग पर निर्भर करता है। RSVP बैंडविड्थ की बाधा के अलावा, उपयोगकर्ता कुछ विशेषताओं वाले संपर्क पर संपर्क विशेषताओं और सुरंगों के मार्ग (या मार्ग नहीं) के लिए विशेष आवश्यकताओं को निर्देशानुसार करके अपनी स्वयं की बाधाओं को भी परिभाषित कर सकते हैं।[26]
एंड-यूजर्स के लिए एमपीएलएस का उपयोग सीधे दिखाई नहीं देता है, लेकिन ट्रेसरूट करते समय माना जा सकता है, केवल नोड्स जो पूर्ण आईपी मार्ग करते हैं, मार्ग में उछाल के रूप में दिखाए जाते हैं, इस प्रकार एमपीएलएस नोड्स बीच में उपयोग नहीं किए जाते हैं, इसलिए जब आप देखते हैं कि एक पैकेट दो बहुत दूर के नोड्स के बीच उछाल करता है और उस प्रदाता के नेटवर्क (या स्वायत्त प्रणाली (इंटरनेट)इंटरनेट)) में शायद ही कोई अन्य उछाल देखा जाता है, यह बहुत संभावना है कि नेटवर्क एमपीएलएस का उपयोग करता है।
एमपीएलएस स्थानीय सुरक्षा
नेटवर्क तत्व की विफलता की स्थिति में जब पुनर्प्राप्ति तंत्र आईपी परत पर नियोजित होते हैं, तो वापसी में कई सेकंड लग सकते हैं जो वीओआईपी जैसे प्रत्यछ समय अनुप्रयोगों के लिए अस्वीकार्य हो सकते हैं।[27][28][29] इसके विपरीत, एमपीएलएस स्थानीय सुरक्षा वास्तविक समय के अनुप्रयोगों की आवश्यकताओं को पूरा करती है, जिसमें पुनर्प्राप्ति समय कम से कम मार्ग ब्रिजिंग नेटवर्क या 50 एमएस से कम के सॉनेट रिंग के बराबर होता है।[27][29][30]
तुलना
एमपीएलएस मौजूदा एटीएम नेटवर्क या फ्रेम रिले आधार्भूत संरचना का उपयोग कर सकता है, क्योंकि इसके लेबल वाले प्रवाह को एटीएम या फ्रेम रिले आभासी परिपथ पहचानकर्ता में और इसके विपरीत मैप किया जा सकता है।
फ्रेम रिले
फ़्रेम रिले का उद्देश्य मौजूदा भौतिक संसाधनों का अधिक कुशल उपयोग करना है, जो टेलीफोन कंपनी (टेलकोस) द्वारा अपने ग्राहकों को आंकड़े सेवाओं के अपर्याप्त नियम की अनुमति देता है, क्योंकि ग्राहक 100 प्रतिशत समय आंकड़े सेवा का उपयोग करने की संभावना नहीं रखते थे। नतीजतन, टेलीकॉम द्वारा क्षमता की अधिक सदस्यता (अत्यधिक बैंडविड्थ अतिबुकिंग), जबकि प्रदाता के लिए वित्तीय रूप से लाभप्रद, समग्र प्रदर्शन को सीधे प्रभावित कर सकता है।
टेल्कोस ने हमेशा समर्पित लाइनों के लिए एक सस्ते विकल्प की तलाश में व्यवसायों को फ़्रेम रिले बेचा; विभिन्न भौगोलिक क्षेत्रों में इसका उपयोग काफी हद तक सरकारी और दूरसंचार कंपनियों की नीतियों पर निर्भर करता है।
कई ग्राहक आईपी या ईथरनेट पर फ्रेम रिले से एमपीएलएस में विस्थापित हो गए, जिससे कई मामलों में लागत कम हो गई और उनके व्यापक क्षेत्र नेटवर्क की प्रबंधन क्षमता और प्रदर्शन में सुधार हुआ।[31]
अतुल्यकालिक स्थानांतरण मोड
जबकि अंतर्निहित प्रोटोकॉल और प्रौद्योगिकियां भिन्न हैं, एमपीएलएस और एसिंक्रोनस स्थानांतरण मोड दोनों कंप्यूटर नेटवर्क में आंकड़े परिवहन के लिए एक संपर्क उत्सुक सेवा प्रदान करते हैं। दोनों तकनीकों में, संपर्क को समापन बिंदु के बीच संकेत किया जाता है, मार्ग में प्रत्येक नोड पर संपर्क स्थिति को बनाए रखा जाता है, और संपर्क में आंकड़े ले जाने के लिए कैप्सूलीकरण तकनीकों का उपयोग किया जाता है। संकेतिक प्रोटोकॉल (एमपीएलएस और पीएनएनआई के लिए आरएसवीपी/एलडीपी: एटीएम के लिए निजी नेटवर्क-से-नेटवर्क इंटरफेस) में अंतर को छोड़कर अभी भी प्रौद्योगिकियों के व्यवहार में महत्वपूर्ण अंतर हैं।
सबसे महत्वपूर्ण अंतर परिवहन और कैप्सूलीकरण विधियों में है। एमपीएलएस परिवर्तनीय लंबाई के पैकेट के साथ कार्य करने में सक्षम है, जबकि एटीएम निश्चित-लंबाई (53 बाइट्स) कोशिकाओं को ट्रांसपोर्ट करता है। पैकेट को एक अनुकूलन परत का उपयोग करके एक एटीएम नेटवर्क पर खंडित, परिवहन और पुन: इकट्ठा किया जाना चाहिए, जो आंकड़े स्ट्रीम में महत्वपूर्ण जटिलता और भूमि के ऊपर जोड़ता है। दूसरी ओर, एमपीएलएस, बस प्रत्येक पैकेट के शीर्ष पर एक लेबल जोड़ता है और इसे नेटवर्क पर प्रसारित करता है।
संपर्क की प्रकृति में भी अंतर मौजूद हैं। एक एमपीएलएस संपर्क (एलएसपी) दिशाहीन है— आंकड़े को दो अंतिम बिंदु के बीच केवल एक दिशा में प्रवाहित करने की अनुमति देता है। समापन बिंदु के बीच दो-तरफ़ा संचार स्थापित करने के लिए एलएसपी की एक जोड़ी स्थापित करने की आवश्यकता होती है। क्योंकि कनेक्टिविटी के लिए 2 एलएसपी की आवश्यकता होती है, आगे की दिशा में बहने वाला आंकड़े विपरीत दिशा में बहने वाले आंकड़े से भिन्न पथ का उपयोग कर सकता है। एटीएम बिंदु से बिंदु संपर्क (आभासी परिपथ), दूसरी ओर, दो-तरफ़ा संचार हैं, आंकड़े को एक ही पथ पर दोनों दिशाओं में प्रवाहित करने की अनुमति देता है (एसवीसी और पीवीसी एटीएम संपर्क दोनों दो दिशा वाले हैं। ITU-T I की जाँच करें। 150 3.1.3.1).
एटीएम और एमपीएलएस दोनों ही संपर्क के अंदर संपर्क की सुरंग का समर्थन करते हैं। एमपीएलएस इसे पूरा करने के लिए लेबल स्टैकिंग का उपयोग करता है जबकि एटीएम आभासी मार्ग का उपयोग करता है। एमपीएलएस सुरंगों के भीतर सुरंग बनाने के लिए कई लेबल लगा सकता है। एटीएम आभासी मार्ग् सूचक (वीपीआई) और आभासी परिपथ इंडिकेटर (वीसीआई) दोनों को सेल हेडर में एक साथ ले जाया जाता है, एटीएम को सुरंग के सिंगल लेवल तक सीमित कर दिया जाता है।
एटीएम की तुलना में एमपीएलएस का सबसे बड़ा लाभ यह है कि इसे शुरू से ही आईपी के पूरक के रूप में डिजाइन किया गया था। आधुनिक राउटर एमपीएलएस और आईपीदोनों को मूल रूप से एक सामान्य अंतराफलक में समर्थन करने में सक्षम हैं, जिससे नेटवर्क प्रसारको को नेटवर्क योजना और डिज़ाइन और संचालन में बहुत लचीलापन मिलता है। आईपी के साथ एटीएम की असंगतताओं के लिए जटिल अनुकूलन की आवश्यकता होती है, जिससे यह आज के मुख्य रूप से आईपी नेटवर्क के लिए तुलनात्मक रूप से कम उपयुक्त हो जाता है।
परिनियोजन
एमपीएलएस वर्तमान में (मार्च 2012 तक) आईपी-केवल नेटवर्क में उपयोग में है और आईईटीएफ द्वारा मानकीकृत है RFC 3031. यह बहुत बड़ी तैनाती के लिए दो सुविधाओं के रूप में जोड़ने के लिए तैनात किया गया है।
व्यवहार में, एमपीएलएस मुख्य रूप से इंटरनेट प्रोटोकॉल प्रोटोकॉल आंकड़े यूनिट (पीडीयू) और आभासी निजी लैन (लोकल एरिया नेटवर्क) सेवा (वीपीएलएस) ईथरनेट यातायात को आगे करने के लिए उपयोग किया जाता है। एमपीएलएस के प्रमुख अनुप्रयोग दूरसंचार यातायात इंजीनियरिंग और एमपीएलएस वीपीएन हैं।
विकास
एमपीएलएस को मूल रूप से आईपी नेटवर्क में उच्च-प्रदर्शन यातायात अग्रेषण और यातायात इंजीनियरिंग (दूरसंचार) की अनुमति देने के लिए प्रस्तावित किया गया है। हालांकि यह सामान्यीकृत मल्टी-प्रोटोकॉल लेबल बदलाव (जीएमपीएलएस) में विकसित हुआ है ताकि गैर-देशी आईपी नेटवर्क, जैसे सोनेट|सोनेट/एसडीएच नेटवर्क और तरंग दैर्ध्य बदलाव प्रकाशिक नेटवर्क में भी लेबल बदलाव मार्ग के निर्माण की अनुमति दी जा सके।
प्रतियोगी प्रोटोकॉल
उपयुक्त मार्ग प्रोटोकॉल का उपयोग करके एमपीएलएस आईपीवी4 और आईपीवी6 पर्यावरण दोनों में मौजूद हो सकता है। एमपीएलएस विकास का प्रमुख लक्ष्य मार्ग गति में वृद्धि करना था।[32] यह लक्ष्य अब सार्थक नहीं है[33] नई बदलाव विधियों के उपयोग के कारण (एमपीएलएस) लेबल वाले पैकेटों के रूप में तेजी से सादे आईपीवी 4 को आगे करने में सक्षम, जैसे अनुप्रयोग-विशिष्ट एकीकृत परिपथ, सामग्री-याद योग्य पता टर्नरी सीएएम और सामग्री- याद योग्य पता-आधारित बदलाव।[34] अब, इसलिए, मुख्य आवेदन[35] एमपीएलएस का उद्देश्य आईपीवी4 नेटवर्क पर सीमित यातायात इंजीनियरिंग और परत 3/ परत 2 "सर्विस प्रोवाइडर टाइप" वीपीएन को लागू करना है।[36]
यह भी देखें
- सामान्यीकृत मल्टी-प्रोटोकॉल लेबल बदलाव
- लेबल सूचना आधार
- एमपीएलएस वीपीएन
- प्रति-उछाल् व्यवहार
- आभासी निजी लैन सेवा
टिप्पणियाँ
- ↑ The desire to minimize network latency e.g., to support voice traffic was the motivation for the small-cell nature of ATM.
- ↑ In some applications, the packet presented to the LER already may have a label, so that the new LER pushes a second label onto the packet.
संदर्भ
- ↑ "What is Multiprotocol Label Switching (MPLS)?".
- ↑ Ghein, Luc De (2007). MPLS Fundamentals. ISBN 978-1587051975.
- ↑ Goldman, James E.; Rawles, Phillip T. (12 January 2004). Applied Data Communications (A Business-Oriented Approach). ISBN 0471346403.
- ↑ E. Rosen; A. Viswanathan; R. Callon (January 2001), RFC3031: Multiprotocol Label Switching Architecture, IETF
- ↑ P. Newman; et al. (May 1996). "Ipsilon Flow Management Protocol Specification for IPv4". RFC 1953. IETF.
- ↑ Rekhter, Y.; Davie, B.; Rosen, E.; Swallow, G.; Farinacci, D.; Katz, D. (1997). "Tag switching architecture overview". Proceedings of the IEEE. 85 (12): 1973–1983. doi:10.1109/5.650179.
- ↑ "IETF - Tag Distribution Protocol (draft-doolan-tdp-spec-00)". IETF. September 1996.
- ↑ V. Sharma; F. Hellstrand (February 2003), RFC 3469: Framework for Multi-Protocol Label Switching (MPLS)-based Recovery, IETF
- ↑ L. Andersson; R. Asati (February 2009), Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field, IETF
- ↑ Ivan Pepelnjak; Jim Guichard (2002), MPLS and VPN Architectures, Volume 1, Cisco Press, p. 27, ISBN 1587050811
- ↑ 11.0 11.1 E. Rosen; Y. Rekhter (February 2006), RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs), IETF
- ↑ B. Thomas; E. Gray (January 2001), RFC 3037: LDP Applicability, IETF
- ↑ Savecall telecommunication consulting company Germany Savecall - MPLS
- ↑ Doyle, Jeff. "Understanding MPLS Explicit and Implicit Null Labels". Network World (in English). Retrieved 2018-03-13.
- ↑ "6PE FAQ: Why Does 6PE Use Two MPLS Labels in the Data Plane?". Cisco (in English). Retrieved 2018-03-13.
- ↑ Gregg., Schudel (2008). Router security strategies : securing IP network traffic planes. Smith, David J. (Computer engineer). Indianapolis, Ind.: Cisco Press. ISBN 978-1587053368. OCLC 297576680.
- ↑ "Configuring Ultimate-Hop Popping for LSPs - Technical Documentation - Support - Juniper Networks". www.juniper.net. Retrieved 2018-03-13.
- ↑ Dino, Farinacci; Guy, Fedorkow; Alex, Conta; Yakov, Rekhter; C., Rosen, Eric; Tony, Li. "MPLS Label Stack Encoding". tools.ietf.org (in English). Retrieved 2018-03-13.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ <erosen@cisco.com>, Eric C. Rosen. "Removing a Restriction on the use of MPLS Explicit NULL". tools.ietf.org (in English). Retrieved 2018-03-13.
- ↑ L. Andersson; I. Minei; B. Thomas (October 2007), RFC 5036: LDP Specification, IETF
- ↑ D. Awduche; L. Berger; D. Gan; T. Li; V. Srinivasan; G. Swallow (December 2001), RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, IETF
- ↑ Y. Rekhter; E. Rosen (May 2001), RFC 3107: Carrying Label Information in BGP-4, IETF
- ↑ Y. Rekhter; R. Aggarwal (January 2007), RFC 4781: Graceful Restart Mechanism for BGP with MPLS, IETF
- ↑ R. Aggarwal; D. Papadimitriou; S. Yasukawa (May 2007), RFC 4875: Extensions to Resource Reservation Protocol-Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs), IETF
- ↑ S. Bryant; P. Pate (March 2005), RFC 3985: Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture, IETF
- ↑ Ghein, Luc De (2007). MPLS Fundamentals. pp. 249–326. ISBN 978-1587051975.
- ↑ 27.0 27.1 Aslam; et al. (2005-02-02), NPP: A Facility Based Computation Framework for Restoration Routing Using Aggregate Link Usage Information, QoS-IP 2005 : quality of service in multiservice IP network, retrieved 2006-10-27.
- ↑ Raza; et al. (2005), "Online routing of bandwidth guaranteed paths with local restoration using optimized aggregate usage information", IEEE International Conference on Communications, 2005. ICC 2005. 2005, IEEE-ICC 2005, vol. 1, pp. 201–207, doi:10.1109/ICC.2005.1494347, ISBN 0-7803-8938-7, S2CID 5659648.
- ↑ 29.0 29.1 Li Li; et al. (2005), "Routing bandwidth guaranteed paths with local restoration in label switched networks", IEEE Journal on Selected Areas in Communications, IEEE Journal on Selected Areas in Communications, 23 (2): 437–449, doi:10.1109/JSAC.2004.839424.
- ↑ Kodialam; et al. (2001), "Dynamic Routing of Locally Restorable Bandwidth Guaranteed Tunnels using Aggregated Link Usage Information", Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), IEEE Infocom. pp. 376–385. 2001, vol. 1, pp. 376–385, doi:10.1109/INFCOM.2001.916720, ISBN 0-7803-7016-3, S2CID 13870642.
- ↑ Tran Cong Hung, Le Quoc Cuong, Tran Thi Thuy Mai (10 Feb 2019). "A Study on Any Transport over MPLS (AToM)" (PDF). International Conference on Advanced Communications Technology. Retrieved 5 February 2020.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ "Is MPLS faster?". www.802101.com (in English). 2017-08-04. Retrieved 2017-08-05.
- ↑ Alwayn, Vivek. (2002). Advanced MPLS design and implementation. Indianapolis, Ind.: Cisco Press. ISBN 158705020X. OCLC 656875465.
- ↑ Salah M. S. Buraiky (December 2018). "An Informal Guide to the Engines of Packet Forwarding". Juniper Forums.
- ↑ Richard A Steenbergen (June 13–16, 2010). "MPLS for Dummies" (PDF). NANOG.
- ↑ Joseph M. Soricelli with John L. Hammond, Galina Diker Pildush, Thomas E. Van Meter, Todd M. Warble (June 2003). Juniper JNCIA Study Guide (PDF). ISBN 0-7821-4071-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
आगे की पढाई
- "Deploying IP and MPLS QoS for Multiservice Networks: Theory and Practice" by John Evans, Clarence Filsfils (Morgan Kaufmann, 2007, ISBN 0-12-370549-5)
- Rick Gallaher's MPLS Training Guide (ISBN 1932266003)
बाहरी कड़ियाँ
- MPLS Working Group, IETF.
- MPLS IP Specifications, Broadband Forum.
- A brief history of MPLS, RIPE