संयुक्त समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 100: Line 100:
इसके अतिरिक्त, [[परिमित सामयिक स्थान|परिमित सामयिक स्थानों]] के लिए जुड़ाव और पथ-जुड़ाव समान हैं।
इसके अतिरिक्त, [[परिमित सामयिक स्थान|परिमित सामयिक स्थानों]] के लिए जुड़ाव और पथ-जुड़ाव समान हैं।


== चाप जुड़ाव == <!-- Connected_space#Arc_connectedness redirects to this subsection -->
== चाप जुड़ाव == <!-- स्थान जुड़ाव चाप _जुड़ाव इस उपखंड पर रीडायरेक्ट करता है -->
एक स्थान <math>X</math> आर्क-कनेक्टेड या आर्कवाइज कनेक्टेड कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से अलग]]-अलग बिंदुओं को एक पाथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम आर्क-कनेक्टेड सबसेट है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।
एक स्थान <math>X</math> चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से भिन्न ]]-भिन्न बिंदुओं को एक पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम चाप-जुड़ाव उपसमुच्य है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।


प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, आर्क से भी जुड़ा हुआ है; अधिक आम तौर पर यह एक कमजोर हौसडॉर्फ स्पेस के लिए सही है<math>\Delta</math>-हॉसडॉर्फ अंतरिक्ष, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।
प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह एक कमजोर हौसडॉर्फ स्थान के लिए सही है<math>\Delta</math>-हॉसडॉर्फ स्थान, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।


पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन आर्क से जुड़े रिक्त स्थान के लिए नहीं हैं:
पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:


* आर्क-कनेक्टेड स्पेस की निरंतर छवि आर्क-कनेक्टेड नहीं हो सकती है: उदाहरण के लिए, आर्क-कनेक्टेड स्पेस से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से अलग-अलग बिंदुओं के साथ एक कोशेंट मैप बहुत छोटा होने के कारण आर्क-कनेक्ट नहीं किया जा सकता है। कार्डिनैलिटी।
* चाप -जुड़ाव स्थान की निरंतर छवि चाप -जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ एक लब्धि नक्शा बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* आर्क-कनेक्टेड प्रोडक्ट स्पेस आर्क-कनेक्टेड स्पेस का प्रोडक्ट नहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* चाप -जुड़ाव स्थान का उत्पादनहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> एक चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> एक चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
*यदि चाप से जुड़े उपसमुच्चय में एक गैर-खाली चौराहा है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।
*यदि चाप से जुड़े उपसमुच्चय में एक गैर-खाली चौराहा है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।


== स्थानीय जुड़ाव ==<!-- This section is linked from [[Covering space]] -->
== स्थानीय जुड़ाव ==<!-- उसका खंड [[ढका हुआ स्थान]] --> से जुड़ा हुआ है


{{main|स्थानीय रूप से जुड़ा हुआ स्थान
{{main|स्थानीय रूप से जुड़ा हुआ स्थान
}}
}}
एक टोपोलॉजिकल स्पेस को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> अगर हर पड़ोस <math>x</math> एक जुड़ा हुआ खुला पड़ोस शामिल है। यह स्थानीय रूप से जुड़ा हुआ है अगर इसमें जुड़े हुए सेटों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि एक स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है अगर और केवल अगर हर खुले सेट के हर घटक <math>X</math> खुला है।
एक टोपोलॉजिकल स्थान को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> प्रत्येक पड़ोस <math>x</math> एक जुड़ा हुआ खुला पड़ोस सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि एक स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक <math>X</math> खुला है।


इसी प्रकार एक टोपोलॉजिकल स्पेस को कहा जाता है{{visible anchor|locally path-connected}}अगर इसमें पथ से जुड़े सेट का आधार है।
इसी प्रकार एक टोपोलॉजिकल स्थान को कहा जाता है{{visible anchor|स्थानीय रूप से पथ से जुड़ा हुआ
स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उपसमुच्चय जुड़ा हुआ है अगर और केवल अगर यह पथ से जुड़ा हुआ है।
}}यदि इसमें पथ से जुड़े समुच्य का आधार है।
यह पहले के बयान को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक आम तौर पर, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उपसमुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है।
[[File:Topologists (warsaw) sine curve.png|thumb|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़ा हुआ मतलब जुड़ा नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो अलग-अलग सेट अंतरालों का मिलन है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.
यह पहले के वर्णन को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
[[फाइल: टोपोलॉजिस्ट (वारसॉ) ज्या वक्र .png|thumb|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का मिलन है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.


एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की साइन वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \left\{ \left(x, \sin\left(\tfrac{1}{x}\right)\right) : x \in (0, 1] \right\}</math>में शामिल करके [[यूक्लिडियन टोपोलॉजी]] [[प्रेरित टोपोलॉजी]] के साथ <math>\R^2</math>.
एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \left\{ \left(x, \sin\left(\tfrac{1}{x}\right)\right) : x \in (0, 1] \right\}</math>में शामिल करके [[यूक्लिडियन टोपोलॉजी]] [[प्रेरित टोपोलॉजी]] के साथ <math>\R^2</math>.


== सेट संचालन ==
== सेट संचालन ==
[[File:Union et intersection d'ensembles.svg|thumb|जुड़े हुए सेटों के संघों और चौराहों के उदाहरण]]जुड़े हुए सेटों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।
[[फ़ाइल: संघ और चौराहा डी पहनावा.svg|thumb|जुड़े हुए उपसमुच्यों के संघों और चौराहों के उदाहरण]]जुड़े हुए उपसमुच्यों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।


जुड़े हुए सेटों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.
जुड़े हुए उपसमुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.


प्रत्येक दीर्घवृत्त एक जुड़ा हुआ सेट है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो अलग-अलग खुले सेटों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.
प्रत्येक दीर्घवृत्त एक जुड़ा हुआ उपसमुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न  खुले उपसमुच्यों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.


इसका मतलब यह है कि, अगर संघ <math>X</math> डिस्कनेक्ट किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ अलग-अलग हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई मामलों में, जुड़े हुए सेटों का एक संघ {{em|is}} अनिवार्य रूप से जुड़ा हुआ है। विशेष रूप से:
इसका अर्थ यह है कि, अगर संघ <math>X</math> डिस्कनेक्ट किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उपसमुच्यों का एक संघ {{em|है}} विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।


# यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो जाहिर है कि उन्हें अलग-अलग यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए सेटों का मिलन जुड़ा हुआ है।
यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।
# यदि सेट के प्रत्येक जोड़े का चौराहा खाली नहीं है (<math>\forall i,j: X_i \cap X_j \neq \emptyset</math>) तो फिर उन्हें अलग-अलग यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।
# यदि उपसमुच्य के प्रत्येक जोड़े का चौराहा खाली नहीं है (<math>\forall i,j: X_i \cap X_j \neq \emptyset</math>) तो फिर उन्हें भिन्न -भिन्न यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।
# यदि सेट को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यानी पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
# यदि सेट जोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो अगर <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |last=Brandsma |title=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|work=[[Stack Exchange]] |date=February 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
# यदि समुच्यजोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो अगर <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |last=Brandsma |title=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|work=[[Stack Exchange]] |date=February 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
कनेक्टेड सेट का सेट अंतर जरूरी नहीं है। हालांकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले सेटों के मिलन के रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यानी <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).
समुच्य का जुड़ाव का समुच्य अंतर जरूरी नहीं है। चूंकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले समुच्यों के मिलन के रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).


{{math proof|title=Proof<ref>{{cite web |author=Marek |title=How to prove this result about connectedness? |date=February 13, 2013 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/302094 }}</ref>|proof=
{{math proof|title=Proof<ref>{{cite web |author=Marek |title=How to prove this result about connectedness? |date=February 13, 2013 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/302094 }}</ref>|proof=

Revision as of 23:31, 17 December 2022

R²के जुड़े और डिस्कनेक्ट किए गए उपस्थान
ऊपर से नीचे: लाल स्थान A, गुलाबी स्थान B, पीला स्थान
C और नारंगी स्थान D सभी हैं कनेक्टेड स्पेस,जबकि ग्रीन स्पेस E (उपसमुच्चय से बना है E1, E2, E3, and E4) है डिस्कनेक्ट किया गया. आगे, A and B भी हैं सिम्पली कनेक्टेड (जीनस
0), जबकिC तथाD नहीं हैं: C जीनस है 1 तथाD जीनस 4 है।

टोपोलॉजी और गणित की संबंधित शाखाओं में, जुड़ा हुआ स्थान एक संस्थानिक स्थान है जिसे दो या दो से अधिक असंयुक्त गैर-रिक्त खुले उपसमुच्चय के संघ के रूप में के रूप में प्रदर्शित नहीं किया जा सकता है। जुड़ाव एक प्रमुख टोपोलॉजिकल गुणों में से एक है जिसका उपयोग संस्थानिक स्थान को भिन्न करने के लिए किया जाता है।

संस्थानिक स्थान का एक उपसमुच्चय एक जुड़ा हुआ समूह है, यदि इसे के उप स्थान टोपोलॉजी के रूप में देखा जाए तो यह एक जुड़ा हुआ स्थान है|

कुछ संबंधित लेकिन मजबूत स्थितियाँ पथ जुड़ाव हैं, सरल रूप से जुड़ा हुआ स्थान और -जुड़ा हैं। एक अन्य संबंधित धारणा स्थानीय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का अनुसरण करती है।

औपचारिक परिभाषा

एक संस्थानिक स्थान को डिसकनेक्टेड कहा जाता है यदि दो भिन्न -भिन्न गैर-खाली खुले समूहों का मिलन है। अन्यथा, को जुड़ा कहा जाता है। एक संस्थानिक स्थान के एक उप स्थान को जुड़ा कहा जाता है यदि उप स्थान टोपोलॉजी के अंतर्गत जुड़ा हुआ है। कुछ लेखक खाली समूह (इसकी अनूठी टोपोलॉजी के साथ) को एक जुड़ा हुआ स्थान के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।

एक संस्थानिक स्थान के लिए निम्नलिखित प्रतिबंध समतुल्य हैं:

  1. जुड़ा हुआ है, इसे दो भिन्न -भिन्न गैर-खाली खुले समूहों में विभाजित नहीं किया जा सकता है।
  2. के एकमात्र उपसमुच्चय खुले और बंद (क्लोपेन समूह) दोनों प्रकार के होते हैं खाली समूह हैं।
  3. खाली सीमा (टोपोलॉजी) के साथ के एकमात्र उपसमुच्चय और खाली समूह हैं।
  4. को दो गैर-खाली भिन्न समूहों के संघ के रूप में नहीं लिखा जा सकता है (समूह जिसके लिए प्रत्येक दूसरे के बंद होने से भिन्न है)।
  5. से तक सभी निरंतर कार्य स्थिर हैं, जहां प्रदर्शन शैली असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है| ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण दो भिन्न -भिन्न समूहों में के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें | [1]

जुड़े हुए घटक

संस्थानिक स्थान में कुछ बिंदु दिए गए हैं, जुड़े हुए उपसमुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में सम्मलित है| में एक बिंदु का जुड़ा हुआ घटक के सभी जुड़े उपसमूहों का संघ है जिसमें सम्मलित है|अद्वितीय सबसे बड़ा (के संबंध में ) का जुड़ा उपसमुच्चयों उसमें सम्मिलित है | एक गैर-खाली संस्थानिक स्थान के अधिकतम तत्व जुड़ा हुआ उपसमुच्चय (समावेशी द्वारा आदेशित ) के स्थान को जुड़े हुए घटक कहा जाता है। किसी भी संस्थानिक स्थान के घटक का एक विभाजन बनाते हैं | वे भिन्न हैं, अरिक्त हैं और उनका मिलन संपूर्ण स्थान है। प्रत्येक घटक मूल स्थान का एक बंद उपसमुच्चय है। यह इस प्रकार है कि, इस स्थिति में जहां उनकी संख्या परिमित है, प्रत्येक घटक भी खुला उपसमुच्चय है। चूंकि, यदि उनकी संख्या अनंत है, तो यह स्थिति नहीं हो सकती है; उदाहरण के लिए, परिमेय संख्याओं के समुच्चय से जुड़े घटक एक-बिंदु समुच्चय (सिंगलटन ) हैं, जो खुले नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ विभिन्न घटकों में हैं। एक अपरिमेय संख्या लीजिए और फिर समुच्चय करें तथा फिर का वियोग है तथा . इस प्रकार प्रत्येक घटक एक-बिंदु समुच्चय है।

मान लें कि का संस्थानिक स्थान से जुड़ा हुआ है। (जिसे का अर्ध-घटक कहा जाता है) क्लोपेन समुच्चय का प्रतिच्छेदन है फिर जहां समानता रखती है फिर जहां समानता रखती है कॉम्पैक्ट हौसडॉर्फ या स्थानीय रूप से जुड़ा हुआ है। [2]


डिस्कनेक्ट किए गए रिक्त स्थान

एक स्थान जिसमें सभी घटक एक-बिंदु उपसमुच्चय होते हैं, को पूरी तरह से डिस्कनेक्ट हो जाते हैं। इस संपत्ति से संबंधित, एक स्थान को पूरी तरह से भिन्न किया जाता है यदि, किसी भी दो भिन्न -भिन्न तत्वों के लिए तथा का , वहाँ खुले समुच्चय सम्मलित हैं | जिसमें तथा युक्त ऐसा है कि का संघ है तथा . स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न स्थान से डिस्कनेक्ट हो गया है, लेकिन बातचीत पकड़ में नहीं आती है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें , और शून्य को छोड़कर हर बिंदु पर उन्हें पहचानें। परिणामी स्थान, भागफल टोपोलॉजी के साथ, पूरी तरह से डिस्कनेक्ट हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, कोई यह देखता है कि स्थान पूर्ण रूप से भिन्न नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ स्थान भी नहीं है, और पूर्ण रूप से भिन्न होने की स्थिति हॉसडॉर्फ होने की स्थिति से अधिक शक्तिशाली है।

उदाहरण

  • मानक उप-स्थान टोपोलॉजी यूक्लिडियन अंतरिक्ष में बंद अंतराल जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे तथा संघ के रूप में लिखा जा सकता है के चुने हुए टोपोलॉजी में दूसरा समुच्चय खुला नहीं है|
  • तथा का संघ डिस्कनेक्ट किया गया है; ये दोनों अंतराल मानक संस्थानिक स्थान में खुले हैं
  • डिस्कनेक्ट किया गया है।
  • का एक उत्तल उपसमुच्चय जुड़ा हुआ है; यह वास्तव में बस जुड़ा हुआ है।
  • एक यूक्लिडियन स्थान मूल को छोड़कर, जुड़ा हुआ है, लेकिन सिर्फ जुड़ा नहीं है। मूल के बिना त्रि-आयामी यूक्लिडियन स्थान जुड़ा हुआ है, और यहां तक ​​​​कि बस जुड़ा हुआ है। इसके विपरीत, मूल के बिना एक आयामी यूक्लिडियन स्थान जुड़ा नहीं है।
  • एक सीधी रेखा के साथ यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
  • सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं का स्थान जुड़ा हुआ है।
  • निचली सीमा टोपोलॉजी डिस्कनेक्ट हो गई है।[3]
  • यदि से एक भी बिंदु हटा दिया जाए , तो शेष काट दिया जाता है चूंकि, यदि , जहां शेष जुड़ा हुआ है। यदि , फिर गिनती बिंदुओं को हटाने के बाद भी बस जुड़ा रहता है।
  • कोई टोपोलॉजिकल वेक्टर स्थान, उदा। कोई भी हिल्बर्ट अंतरिक्ष या बनच स्थान, जुड़े हुए क्षेत्र (जैसे या ), बस जुड़ा हुआ है।
  • कम से कम दो तत्वों के साथ प्रत्येक असतत सामयिक स्थान डिस्कनेक्ट हो गया है, वास्तव में ऐसा जगह पूरी तरह डिस्कनेक्ट हो गई है। सबसे सरल उदाहरण असतत दो-बिंदु स्थान है।[4]
  • दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, असतत मूल्यांकन अंगूठी के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की स्थान का एक उदाहरण है।
  • कैंटर समुच्चय पूरी तरह से डिस्कनेक्ट हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु होते हैं, और इसमें अधिक रूप से कई घटक होते हैं।
  • यदि कोई स्थान एक जुड़े हुए स्थान के लिए होमोटॉपी है, फिर स्वयं जुड़ा हुआ है।
  • टोपोलॉजिस्ट की ज्या वक्र एक समुच्चय का उदाहरण है जो जुड़ा हुआ है लेकिन न तो पथ से जुड़ा है और न ही स्थानीय रूप से जुड़ा हुआ है।
  • सामान्य रैखिक समूह (अर्थात् समूह -द्वारा- वास्तविक, व्युत्क्रमणीय मैट्रिसेस) में दो जुड़े घटक होते हैं: एक सकारात्मक निर्धारक के मैट्रिसेस के साथ और दूसरा नकारात्मक निर्धारक के साथ। विशेष रूप से, यह जुड़ा नहीं है। इसके विपरीत, जुड़ा हुआ है। अधिक सामान्यतः, एक जटिल हिल्बर्ट स्थान पर उल्टा घिरे ऑपरेटरों का समुच्चय जुड़ा हुआ है।
  • विनिमेय स्थानीय छल्लों और अभिन्न डोमेन के स्पेक्ट्रा जुड़े हुए हैं। अधिक सामान्यतः, निम्नलिखित समकक्ष हैं[5]
    1. क्रमविनिमेय वलय का स्पेक्ट्रम जुड़ा हुआ है
    2. पर प्रत्येक सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल की निरंतर श्रेणी होती है।
    3. कोई आदर्श नहीं है (अर्थात, गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।

एक स्थान का उदाहरण जो जुड़ा नहीं है, एक समतल है जिसमें से एक अनंत रेखा हटा दी गई है। डिस्कनेक्ट किए गए रिक्त स्थान के अन्य उदाहरण (अर्थात, रिक्त स्थान जो जुड़े नहीं हैं) में समतल को एक वलय के साथ हटा दिया गया है, साथ-साथ दो भिन्न-भिन्न बंद डिस्क (गणित) का संघ सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-स्थान टोपोलॉजी को धारण करते हैं।

पथ जुड़ाव

R² का यह उपस्थान पथ से जुड़ा हुआ है, क्योंकि अंतरिक्ष में किन्हीं दो बिंदुओं के बीच एक पथ खींचा जा सकता है।

पथ से जुड़ा स्थान

जुड़ाव की एक शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। एक (टोपोलॉजी) पथ स्थान में बिंदु से तक का पथ एक निरंतर फलन है| इकाई अंतराल से से प्रति साथ तथा . का पथ-घटक तुल्यता संबंध के अंतर्गत का एक तुल्यता वर्ग है जो को के समतुल्य बनाता है यदि प्रति . स्थान   को पथ जुड़ाव कहा जाता है अगर कुल एक पथ घटक है यदि कोई दो बिंदुओं में सम्मलित होने वाला मार्ग है| फिर से, कई लेखक खाली स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, खाली स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; खाली समुच्चय पर एक अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।

प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम हमेशा सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा और टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|

वास्तविक रेखा के उपसमुच्चय जुड़े हुए हैं यदि केवल वे पथ से जुड़े हुए हैं; ये उपसमुच्चय के अंतराल (गणित) हैं . साथ ही, या के उपसमुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं। इसके अतिरिक्त, परिमित सामयिक स्थानों के लिए जुड़ाव और पथ-जुड़ाव समान हैं।

चाप जुड़ाव

एक स्थान चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं को एक पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक टोपोलॉजिकल एम्बेडिंग है . का चाप-घटक का अधिकतम चाप-जुड़ाव उपसमुच्य है ; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।

प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह एक कमजोर हौसडॉर्फ स्थान के लिए सही है-हॉसडॉर्फ स्थान, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।

पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:

  • चाप -जुड़ाव स्थान की निरंतर छवि चाप -जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ एक लब्धि नक्शा बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।
  • चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, दो अतिव्यापी चाप-घटक हैं।
  • चाप -जुड़ाव स्थान का उत्पादनहीं हो सकता है। उदाहरण के लिए, चाप से जुड़ा है, लेकिन नहीं है।
  • किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, एक चाप-घटक है, लेकिन दो चाप-घटक हैं।
  • यदि चाप से जुड़े उपसमुच्चय में एक गैर-खाली चौराहा है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।

== स्थानीय जुड़ाव == से जुड़ा हुआ है

एक टोपोलॉजिकल स्थान को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है प्रत्येक पड़ोस एक जुड़ा हुआ खुला पड़ोस सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का आधार (टोपोलॉजी) है। यह दिखाया जा सकता है कि एक स्थान स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक खुला है।

इसी प्रकार एक टोपोलॉजिकल स्थान को कहा जाता हैस्थानीय रूप से पथ से जुड़ा हुआ यदि इसमें पथ से जुड़े समुच्य का आधार है। स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उपसमुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है। यह पहले के वर्णन को सामान्यीकृत करता है तथा , जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी टोपोलॉजिकल मैनिफोल्ड स्थानीय रूप से पथ से जुड़ा होता है। thumb|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं हैस्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का मिलन है , जैसे कि .

एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है में शामिल करके यूक्लिडियन टोपोलॉजी प्रेरित टोपोलॉजी के साथ .

सेट संचालन

thumb|जुड़े हुए उपसमुच्यों के संघों और चौराहों के उदाहरणजुड़े हुए उपसमुच्यों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।

जुड़े हुए उपसमुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है .

प्रत्येक दीर्घवृत्त एक जुड़ा हुआ उपसमुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उपसमुच्यों में विभाजित किया जा सकता है तथा .

इसका अर्थ यह है कि, अगर संघ डिस्कनेक्ट किया गया है, तो संग्रह दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उपसमुच्यों का एक संघ है विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।

यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।

  1. यदि उपसमुच्य के प्रत्येक जोड़े का चौराहा खाली नहीं है () तो फिर उन्हें भिन्न -भिन्न यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।

यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और , फिर से उनका संघ जुड़ा होना चाहिए।

  1. यदि समुच्यजोड़ीदार-असंबद्ध हैं और भागफल स्थान (टोपोलॉजी) जुड़ा हुआ है, तो X जुड़ा होना चाहिए। नहीं तो अगर का वियोग है X फिर भागफल स्थान का पृथक्करण है (चूंकि असंयुक्त हैं और भागफल स्थान में खुले हैं)।[6]

समुच्य का जुड़ाव का समुच्य अंतर जरूरी नहीं है। चूंकि, यदि और उनका अंतर डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले समुच्यों के मिलन के रूप में लिखा जा सकता है तथा ), फिर संघ ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि सभी के लिए जुड़ा हुआ है ).

Proof[7]

By contradiction, suppose is not connected. So it can be written as the union of two disjoint open sets, e.g. . Because is connected, it must be entirely contained in one of these components, say , and thus is contained in . Now we know that:

The two sets in the last union are disjoint and open in , so there is a separation of , contradicting the fact that is connected.

दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है

प्रमेय

  • संबद्धता का मुख्य प्रमेय: होने देना तथा टोपोलॉजिकल स्पेस बनें और दें एक सतत कार्य हो। यदि है (पथ-) छवि से जुड़ा हुआ है (पथ-) जुड़ा हुआ है। इस परिणाम को मध्यवर्ती मूल्य प्रमेय का सामान्यीकरण माना जा सकता है।
  • हर पथ से जुड़ा स्थान जुड़ा हुआ है।
  • हर स्थानीय पथ से जुड़ा स्थान स्थानीय रूप से जुड़ा हुआ है।
  • स्थानीय रूप से पाथ-कनेक्टेड स्पेस पाथ-कनेक्टेड है अगर और केवल अगर यह जुड़ा हुआ है।
  • जुड़े हुए सबसेट का क्लोजर (टोपोलॉजी) जुड़ा हुआ है। इसके अलावा, जुड़े हुए सबसेट और उसके बंद होने के बीच कोई भी सबसेट जुड़ा हुआ है।
  • जुड़े हुए घटक हमेशा बंद सेट होते हैं (लेकिन सामान्य तौर पर खुले नहीं होते हैं)
  • स्थानीय रूप से जुड़े हुए स्थान के जुड़े घटक भी खुले हैं।
  • एक स्थान के जुड़े घटक पथ से जुड़े घटकों के असंयुक्त संघ हैं (जो सामान्य रूप से न तो खुले हैं और न ही बंद हैं)।
  • कनेक्टेड (स्थानीय रूप से जुड़ा हुआ, पथ-जुड़ा हुआ, स्थानीय रूप से पथ-जुड़ा हुआ) स्थान का प्रत्येक भाग स्थान (टोपोलॉजी) जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से जुड़ा हुआ है, पथ-जुड़ा हुआ है, स्थानीय रूप से जुड़ा हुआ है)।
  • कनेक्टेड (प्रतिक्रिया पथ से जुड़े) रिक्त स्थान के एक परिवार का प्रत्येक उत्पाद टोपोलॉजी जुड़ा हुआ है (उत्तर पथ से जुड़ा हुआ है)।
  • स्थानीय रूप से जुड़े (प्रतिक्रिया स्थानीय रूप से पथ से जुड़े) स्थान का प्रत्येक खुला उपसमुच्चय स्थानीय रूप से जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से पथ से जुड़ा हुआ है)।
  • प्रत्येक विविध स्थानीय रूप से पाथ-कनेक्टेड है।
  • चाप-वार जुड़ा हुआ स्थान पथ से जुड़ा हुआ है, लेकिन पथ-वार जुड़ा हुआ स्थान चाप-वार जुड़ा नहीं हो सकता है
  • चाप-वार जुड़े सेट की निरंतर छवि चाप-वार जुड़ी हुई है।

रेखांकन

ग्राफ़ (असतत गणित) में पथ से जुड़े उपसमुच्चय होते हैं, अर्थात् वे उपसमुच्चय जिनके लिए बिंदुओं के प्रत्येक युग्म में उनके साथ जुड़ने वाले किनारों का मार्ग होता है। लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। चक्र ग्राफ | 5-चक्र ग्राफ (और कोई भी -साइकिल के साथ विषम) ऐसा ही एक उदाहरण है।

नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं (Muscat & Buhagiar 2006). टोपोलॉजिकल स्पेस और ग्राफ़ कनेक्टिव स्पेस के विशेष मामले हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।

हालांकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में वर्टिकल का इलाज करके, प्रत्येक ग्राफ को कैनोनिक रूप से एक टोपोलॉजिकल स्पेस में बनाया जा सकता है (टोपोलॉजिकल ग्राफ थ्योरी # ग्राफ़ को टोपोलॉजिकल स्पेस के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) अगर और केवल अगर यह एक टोपोलॉजिकल स्पेस के रूप में जुड़ा हुआ है।

जुड़ाव के मजबूत रूप

टोपोलॉजिकल स्पेस के लिए जुड़ाव के मजबूत रूप हैं, उदाहरण के लिए:

  • यदि टोपोलॉजिकल स्पेस में दो अलग-अलग गैर-खाली खुले सेट मौजूद नहीं हैं , जुड़ा होना चाहिए, और इस प्रकार हाइपरकनेक्टेड स्पेस भी जुड़े हुए हैं।
  • चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल कनेक्टिविटी की परिभाषा से हटा दिया जाता है, तो एक साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
  • फिर भी कनेक्टिविटी के मजबूत संस्करणों में एक अनुबंधित स्थान की धारणा शामिल है। हर सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।

सामान्य तौर पर, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान मौजूद हैं जो पथ से जुड़े नहीं हैं। कंघी की जगह ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट का साइन कर्व है।

यह भी देखें

संदर्भ

  1. Wilder, R.L. (1978). ""कनेक्टेड" की सामयिक अवधारणा का विकास". American Mathematical Monthly. 85 (9): 720–726. doi:10.2307/2321676. JSTOR 2321676.
  2. "सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक".
  3. Stephen Willard (1970). सामान्य टोपोलॉजी. Dover. p. 191. ISBN 0-486-43479-6.
  4. George F. Simmons (1968). टोपोलॉजी और आधुनिक विश्लेषण का परिचय. McGraw Hill Book Company. p. 144. ISBN 0-89874-551-9.
  5. Charles Weibel, The K-book: An introduction to algebraic K-theory
  6. Brandsma, Henno (February 13, 2013). "इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?". Stack Exchange.
  7. Marek (February 13, 2013). "How to prove this result about connectedness?". Stack Exchange.


अग्रिम पठन