Gδ समुच्चय: Difference between revisions

From Vigyanwiki
Line 28: Line 28:
* गिने-चुने कई जी G<sub>δ</sub> समुच्चयों का प्रतिच्छेदन एक जी G<sub>δ</sub> समुच्चय होता है।
* गिने-चुने कई जी G<sub>δ</sub> समुच्चयों का प्रतिच्छेदन एक जी G<sub>δ</sub> समुच्चय होता है।
* बहुत से जी G<sub>δ</sub> समुच्चयों का संघ एक जी G<sub>δ</sub> समुच्चय होता है।
* बहुत से जी G<sub>δ</sub> समुच्चयों का संघ एक जी G<sub>δ</sub> समुच्चय होता है।
* जी G<sub>δ</sub> समुच्चय का एक गणनीय संघ (जिसे जी G<sub>δσ</sub> समुच्चय कहा जाएगा) सामान्य रूप से जी G<sub>δ</sub> समुच्चय नहीं है। उदाहरण के लिए, परिमेय संख्याएँ <math>\Q</math> और  <math>\R</math> है।
* जी G<sub>δ</sub> समुच्चय का एक गणनीय संघ (जिसे जी G<sub>δσ</sub> समुच्चय कहा जाएगा) सामान्य रूप से जी G<sub>δ</sub> समुच्चय नहीं है। उदाहरण के लिए, परिमेय संख्याएँ <math>\Q</math> और  <math>\R</math> है।
* एक टोपोलॉजिकल स्थान में प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का [[शून्य सेट|शून्य समुच्चय]] <math>f</math> एक (बंद) जी G<sub>δ</sub> समुच्चय के बाद से <math>f^{-1}(0)</math> खुले समुच्चयों का चौराहा है। <math>\{x \in X : -1/n < f(x) < 1/n\}</math>, <math>(n = 1, 2, \ldots)</math>.
* एक टोपोलॉजिकल स्थान में प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का [[शून्य सेट|शून्य समुच्चय]] <math>f</math> एक (बंद) जी G<sub>δ</sub> समुच्चय के बाद से <math>f^{-1}(0)</math> खुले समुच्चयों का चौराहा है। <math>\{x \in X : -1/n < f(x) < 1/n\}</math>, <math>(n = 1, 2, \ldots)</math>.
* [[पूरी तरह से मेट्रिजेबल|मेट्रिजेबल]] स्थान में प्रत्येक [[बंद सेट|बंद समुच्चय]] एक जी G<sub>δ</sub> समुच्चय है और दो तरह से हर खुला समुच्चय एक Fσ समुच्चय है।<ref>Willard, 15C, p. 105</ref> दरअसल एक बंद समुच्चय <math>F \subseteq X</math> निरंतर कार्य का शून्य समुच्चय है <math>f(x) = d(x, F)</math>, जहाँ <math>d</math> [[एक सेट की दूरी|एक समुच्चय की दूरी]] को इंगित करता है। [[स्यूडोमेट्रिजेबल]] स्थान में भी ऐसा ही होता है।
* [[पूरी तरह से मेट्रिजेबल|मेट्रिजेबल]] स्थान में प्रत्येक [[बंद सेट|बंद समुच्चय]] एक जी G<sub>δ</sub> समुच्चय है और दो तरह से हर खुला समुच्चय एक Fσ समुच्चय है।<ref>Willard, 15C, p. 105</ref> दरअसल एक बंद समुच्चय <math>F \subseteq X</math> निरंतर कार्य का शून्य समुच्चय है <math>f(x) = d(x, F)</math>, जहाँ <math>d</math> [[एक सेट की दूरी|एक समुच्चय की दूरी]] को इंगित करता है। [[स्यूडोमेट्रिजेबल]] स्थान में भी ऐसा ही होता है।
* पहले गणनीय T1 स्थान में प्रत्येक सिंगलटन एक जी G <sub>δ</sub> समुच्चय होता है।<ref>{{Cite web|url=https://math.stackexchange.com/questions/1882733|title=General topology - when are singletons $G_\delta$?}}</ref>
* पहले गणनीय T1 स्थान में प्रत्येक सिंगलटन एक जी G <sub>δ</sub> समुच्चय होता है।<ref>{{Cite web|url=https://math.stackexchange.com/questions/1882733|title=General topology - when are singletons $G_\delta$?}}</ref>
* [[पूरी तरह से मेट्रिजेबल]] स्थान  का एक [[टोपोलॉजिकल सबस्पेस|टोपोलॉजिकल सबस्थान]] <math>X</math> अगर और केवल अगर यह एक G है तो यह खुद पूरी तरह से मेट्रिजेबल है<sub>δ</sub> शुरु होना <math>X</math>.<ref>Willard, theorem 24.12, p. 179</ref><ref>Engelking, theorems 4.3.23 and 4.3.24 on p. 274.  From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.</ref>
* [[पूरी तरह से मेट्रिजेबल]] स्थान  का एक [[टोपोलॉजिकल सबस्पेस|टोपोलॉजिकल]] उप-स्थान <math>X</math> है अगर यह एक जी G<sub>δ</sub> समुच्चय है तो यह स्वयं पूरी तरह से मेट्रिज़ेबल है।<ref>Willard, theorem 24.12, p. 179</ref><ref>Engelking, theorems 4.3.23 and 4.3.24 on p. 274.  From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.</ref>
* पोलिश अंतरिक्ष का एक उप-स्थान <math>X</math> स्वयं पोलिश है यदि और केवल यदि वह G<sub>δ</sub> शुरु होना <math>X</math>. यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल सबस्थान  के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्थान के प्रत्येक सबस्थान  वियोज्य है।
* पोलिश अंतरिक्ष का एक उप-स्थान <math>X</math> स्वयं पोलिश है यदि यह जी G<sub>δ</sub> समुच्चय है। यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल उप-स्थान के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्थान के प्रत्येक उप-स्थान वियोज्य है।
* एक टोपोलॉजिकल स्थान <math>X</math> पोलिश है अगर और केवल अगर यह जी के लिए [[होमियोमॉर्फिक]] है<sub>δ</sub> [[कॉम्पैक्ट जगह]] मेट्रिक स्थान  का सबसमुच्चय।<ref>Fremlin, p. 334</ref><ref>The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.</ref>
* एक टोपोलॉजिकल स्थान <math>X</math> पोलिश है अगर यह [[कॉम्पैक्ट जगह|ठोस]] मेट्रिक स्थान का जी G<sub>δ</sub> उपसमुच्चय के लिए [[होमियोमॉर्फिक]] है।<ref>Fremlin, p. 334</ref><ref>The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.</ref>
 
 
=== वास्तविक मूल्यवान कार्यों का निरंतरता समुच्चय ===
=== वास्तविक मूल्यवान कार्यों का निरंतरता समुच्चय ===



Revision as of 18:08, 8 February 2023

टोपोलॉजी के गणितीय क्षेत्र में, एक जी (Gδ ) समुच्चय एक टोपोलॉजिकल स्थान का सबसमुच्चय है जो खुले समुच्चयों का एक गणनीय प्रतिच्छेदन (समुच्चय थ्योरी) है। नोटेशन की उत्पत्ति जर्मन में G से Gebiet ( जर्मन : क्षेत्र, या पड़ोस) के साथ हुई है, जिसका अर्थ इस मामले में खुला समुच्चय है और δ Durchschnitt ( जर्मन : चौराहा) के लिए है।[1]

ऐतिहासिक रूप से जी (Gδ ) समुच्चय को आंतरिक सीमित समुच्चय भी कहा जाता था[2] लेकिन वह शब्दावली अब उपयोग में नहीं है।

जी (Gδ ) समुच्चय और उनका दोहरा Fσ समुच्चय| F𝜎 समुच्चय, बोरेल पदानुक्रम का दूसरा स्तर हैं।

परिभाषा

एक टोपोलॉजिकल स्थान में एक जी (Gδ ) समुच्चय खुले समुच्चयों का एक गणनीय चौराहा (समुच्चय सिद्धांत) है। जी (Gδ ) समुच्चय बिल्कुल स्तर Π0
2
बोरेल पदानुक्रम के समुच्चय है।

उदाहरण

  • कोई भी खुला समुच्चय तुच्छ रूप से Gδ समुच्चय होता है।
  • अपरिमेय संख्याएँ वास्तविक संख्याओं में Gδ समुच्चय होता है . उन्हें खुले समुच्चय के गणनीय चौराहे के रूप में लिखा जा सकता है (सुपरस्क्रिप्ट पूरक (समुच्चय सिद्धांत) को दर्शाता है) जहां परिमेय संख्या है।
  • परिमेय संख्याओं का समुच्चय Gδ समुच्चय नहीं है अगर खुले समुच्चयों का चौराहा था प्रत्येक घना समुच्चय होगा क्योंकि में घना है . हालांकि ऊपर के निर्माण ने अपरिमेय संख्या को खुले घने उपसमुच्चय के एक गणनीय चौराहे के रूप में दिया। इन दोनों समुच्चयों के प्रतिच्छेदन को लेने से खाली समुच्चय को खुले घने समुच्चयों के गणनीय चौराहे के रूप में मिलता है और बेयर श्रेणी प्रमेय का उल्लंघन करता है।
  • किसी वास्तविक मूल्यवान फ़ंक्शन का निरंतरता एक जी Gδ समुच्चय इसके डोमेन का उपसमुच्चय है (अधिक सामान्य कथन के लिए गुण अनुभाग देखें)।
  • हर जगह अलग-अलग वास्तविक-मूल्यवान फ़ंक्शन के व्युत्पन्न (गणित) का शून्य-समुच्चय एक जी Gδ समुच्चय तय करता है। यह खाली आंतरिक भाग के साथ एक सघन समुच्चय हो सकता है, जैसा कि पोम्पेयू के निर्माण द्वारा दिखाया गया है।
  • कार्यों का समुच्चय के भीतर किसी भी बिंदु पर अलग नहीं किया जा सकता है जिसमे मीट्रिक स्थान का एक सघन जी Gδ समुच्चय होता है।

गुण

मीट्रिक (और टोपोलॉजिकल) रिक्त स्थान में जी Gδ समुच्चय पूर्ण मीट्रिक स्थान के साथ-साथ बेयर श्रेणी प्रमेय की धारणा से संबंधित है। नीचे गुणों की सूची में पूरी तरह से मेट्रिज़ेबल रिक्त स्थान के बारे में परिणाम देखें। समुच्चय और उनके पूरक भी वास्तविक विश्लेषण में महत्वपूर्ण हैं, विशेष रूप से माप सिद्धांत

बुनियादी गुण

  • एक G δ समुच्चय का पूरक एक F σ समुच्चय होता है।
  • गिने-चुने कई जी Gδ समुच्चयों का प्रतिच्छेदन एक जी Gδ समुच्चय होता है।
  • बहुत से जी Gδ समुच्चयों का संघ एक जी Gδ समुच्चय होता है।
  • जी Gδ समुच्चय का एक गणनीय संघ (जिसे जी Gδσ समुच्चय कहा जाएगा) सामान्य रूप से जी Gδ समुच्चय नहीं है। उदाहरण के लिए, परिमेय संख्याएँ और है।
  • एक टोपोलॉजिकल स्थान में प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का शून्य समुच्चय एक (बंद) जी Gδ समुच्चय के बाद से खुले समुच्चयों का चौराहा है। , .
  • मेट्रिजेबल स्थान में प्रत्येक बंद समुच्चय एक जी Gδ समुच्चय है और दो तरह से हर खुला समुच्चय एक Fσ समुच्चय है।[3] दरअसल एक बंद समुच्चय निरंतर कार्य का शून्य समुच्चय है , जहाँ एक समुच्चय की दूरी को इंगित करता है। स्यूडोमेट्रिजेबल स्थान में भी ऐसा ही होता है।
  • पहले गणनीय T1 स्थान में प्रत्येक सिंगलटन एक जी G δ समुच्चय होता है।[4]
  • पूरी तरह से मेट्रिजेबल स्थान का एक टोपोलॉजिकल उप-स्थान है अगर यह एक जी Gδ समुच्चय है तो यह स्वयं पूरी तरह से मेट्रिज़ेबल है।[5][6]
  • पोलिश अंतरिक्ष का एक उप-स्थान स्वयं पोलिश है यदि यह जी Gδ समुच्चय है। यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल उप-स्थान के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्थान के प्रत्येक उप-स्थान वियोज्य है।
  • एक टोपोलॉजिकल स्थान पोलिश है अगर यह ठोस मेट्रिक स्थान का जी Gδ उपसमुच्चय के लिए होमियोमॉर्फिक है।[7][8]

वास्तविक मूल्यवान कार्यों का निरंतरता समुच्चय

उन बिंदुओं का समूह जहां एक फ़ंक्शन होता है टोपोलॉजिकल स्थान से मेट्रिक स्थान तक निरंतर कार्य होता है तय करना। ऐसा इसलिए है क्योंकि एक बिंदु पर निरंतरता द्वारा परिभाषित किया जा सकता है सूत्र, अर्थात् सभी सकारात्मक पूर्णांकों के लिए एक खुला समुच्चय है युक्त ऐसा है कि सबके लिए में . यदि इसका मान तय है, का समुच्चय जिसके लिए इस तरह का एक समान खुला अपने आप में एक खुला समुच्चय है (खुले समुच्चयों का एक संघ होने के नाते), और सार्वभौमिक क्वांटिफायर चालू है इन समुच्चयों के (गणनीय) चौराहे से मेल खाती है। परिणामस्वरूप, जबकि अपरिमेय के लिए एक फ़ंक्शन के निरंतरता बिंदुओं का समुच्चय होना संभव है (पॉपकॉर्न समारोह देखें), एक फ़ंक्शन का निर्माण करना असंभव है जो केवल परिमेय संख्याओं पर निरंतर हो।

वास्तविक रेखा में विलोम भी धारण करता है कि किसी भी जी Gδ सबसमुच्चय के लिए वास्तविक रेखा का एक कार्य है यह बिल्कुल बिंदुओं पर निरंतर है .[9]

जीδ अंतरिक्ष

जी (Gδ ) अंतरिक्ष[10] एक टोपोलॉजिकल स्थान है जिसमें हर बंद समुच्चय एक जी Gδ समुच्चय (Johnson 1970) है। एक सामान्य स्थान जो कि Gδ अंतरिक्ष को बिल्कुल सामान्य स्थान कहा जाता है। उदाहरण के लिए प्रत्येक मेट्रिजेबल स्थान पूरी तरह से सामान्य है।


यह भी देखें

  • एफσ समुच्चय | एफσ समुच्चय, द्वैत (गणित) अवधारणा; ध्यान दें कि G जर्मन है (विकट:Gebiet#जर्मन) और F फ्रेंच है (विकट:fermé#French|fermé)।
  • पी-स्थान | पी-स्थान , कोई भी स्थान जिसमें संपत्ति है कि हर जीδ समुच्चय खुला है

टिप्पणियाँ

  1. Stein, Elias M.; Shakarchi, Rami (2009), Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, p. 23, ISBN 9781400835560.
  2. Young, William; Young, Grace Chisholm (1906), Theory of Sets of Points, Cambridge University Press
  3. Willard, 15C, p. 105
  4. "General topology - when are singletons $G_\delta$?".
  5. Willard, theorem 24.12, p. 179
  6. Engelking, theorems 4.3.23 and 4.3.24 on p. 274. From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.
  7. Fremlin, p. 334
  8. The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.
  9. Saito, Shingo. "Properties of Gδ subsets of " (PDF).
  10. Steen & Seebach, p. 162


संदर्भ