प्रतिबंध (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Function with a smaller domain}} | {{Short description|Function with a smaller domain}} | ||
[[File:Inverse square graph.svg|thumb|कार्यक्रम <math>x^2</math> कार्यक्षेत्र के साथ <math>\mathbb{R}</math> कोई उलटा कार्य नहीं है। यदि हम प्रतिबंधित करते हैं <math>x^2</math> अ-ऋणात्मक [[वास्तविक संख्या]]ओं के लिए, तो इसका व्युत्क्रम फलन होता है, जिसे का [[वर्गमूल]] कहा जाता है <math>x.</math>]]गणित में | [[File:Inverse square graph.svg|thumb|कार्यक्रम <math>x^2</math> कार्यक्षेत्र के साथ <math>\mathbb{R}</math> कोई उलटा कार्य नहीं है। यदि हम प्रतिबंधित करते हैं <math>x^2</math> अ-ऋणात्मक [[वास्तविक संख्या]]ओं के लिए, तो इसका व्युत्क्रम फलन होता है, जिसे का [[वर्गमूल]] कहा जाता है <math>x.</math>]]गणित में फलन का प्रतिबंध (गणित) <math>f</math> नया कार्य है, निरूपित <math>f\vert_A</math> या <math>f {\restriction_A},</math> किसी फलन का छोटा कार्यक्षेत्र चुनकर प्राप्त किया गया <math>A</math> मूल फलन के लिए <math>f.</math> कार्यक्रम <math>f</math> फिर विस्तार कहा जाता है <math>f\vert_A.</math> | ||
Line 10: | Line 10: | ||
द्वारा दिए गए <math>{f|}_A(x) = f(x)</math> के लिए <math>x \in A.</math> अनौपचारिक रूप से, का प्रतिबंध <math>f</math> को <math>A</math> के समान कार्य है <math>f,</math> किन्तु केवल परिभाषित किया गया है <math>A</math>. | द्वारा दिए गए <math>{f|}_A(x) = f(x)</math> के लिए <math>x \in A.</math> अनौपचारिक रूप से, का प्रतिबंध <math>f</math> को <math>A</math> के समान कार्य है <math>f,</math> किन्तु केवल परिभाषित किया गया है <math>A</math>. | ||
यदि | यदि फलन <math>f</math> [[संबंध (गणित)]] के रूप में माना जाता है <math>(x,f(x))</math> कार्तीय उत्पाद पर <math>E \times F,</math> प्रतिबंध <math>f</math> को <math>A</math> किसी फलन के ग्राफ़ द्वारा प्रदर्शित किया जा सकता है {{nowrap|<math>G({f|}_A) = \{ (x,f(x))\in G(f) : x\in A \} = G(f)\cap (A\times F),</math>}} जहां जोड़े <math>(x,f(x))</math> ग्राफ में आदेशित जोड़े का प्रतिनिधित्व करें <math>G.</math> | ||
=== विस्तार === | === विस्तार === | ||
फलन <math>F</math> कहा जाता है। दूसरे फलन का <math>f</math> यदि जब भी <math>x</math> के अधिकार क्षेत्र में है <math>f</math> तब <math>x</math> के क्षेत्र में भी है <math>F</math> और <math>f(x) = F(x).</math> अर्थात यदि <math>\operatorname{domain} f \subseteq \operatorname{domain} F</math> और <math>F\big\vert_{\operatorname{domain} f} = f.</math> फलन का रेखीय विस्तार | क्रमशः, सतत विस्तार, आदि फलन के <math>f</math> का विस्तार है <math>f</math> वह भी रेखीय मानचित्र है क्रमशः, सतत कार्य, आदि। | |||
== उदाहरण == | == उदाहरण == | ||
# [[इंजेक्शन समारोह|अन्तःक्षेपण | # [[इंजेक्शन समारोह|अन्तःक्षेपण फलन]] का प्रतिबंध | अ-अन्तःक्षेपण फलन <math>f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2</math> कार्यक्षेत्र के लिए <math>\mathbb{R}_{+} = [0,\infty)</math> अन्तःक्षेपण है<math>f:\mathbb{R}_+ \to \mathbb{R}, \ x \mapsto x^2.</math> | ||
# [[कारख़ाने का]] | # [[कारख़ाने का]] फलन [[गामा समारोह|गामा फलन]] का सकारात्मक पूर्णांकों तक प्रतिबंध है, जिसमें तर्क द्वारा स्थानांतरित किया गया है <math>{\Gamma|}_{\mathbb{Z}^+}\!(n) = (n-1)!</math> | ||
== प्रतिबंधों के गुण == | == प्रतिबंधों के गुण == | ||
* किसी | * किसी फलन को प्रतिबंधित करना <math>f:X\rightarrow Y</math> इसके पूरे कार्यक्षेत्र के लिए <math>X</math> मूल कार्य को वापस देता है, अर्थात <math>f|_X = f.</math> | ||
* किसी | * किसी फलन को दो बार प्रतिबंधित करना उसे बार प्रतिबंधित करने के समान है, अर्थात यदि <math>A \subseteq B \subseteq \operatorname{dom} f,</math> तब <math>\left(f|_B\right)|_A = f|_A.</math> | ||
* समुच्चय पर [[पहचान समारोह|परिचय | * समुच्चय पर [[पहचान समारोह|परिचय फलन]] का प्रतिबंध <math>X</math> उपसमुच्चय के लिए <math>A</math> का <math>X</math> से केवल समावेशन मानचित्र है <math>A</math> में <math>X.</math><ref>{{cite book|author-link=Paul Halmos|last=Halmos|first=Paul|title=[[Naive Set Theory (book)|Naive Set Theory]]|location=Princeton, NJ|publisher=D. Van Nostrand|year=1960}} Reprinted by Springer-Verlag, New York, 1974. {{isbn|0-387-90092-6}} (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. {{isbn|978-1-61427-131-4}} (Paperback edition).</ref> | ||
* सतत कार्य का प्रतिबंध निरंतर है।<ref>{{cite book|last=Munkres|first=James R.|title=टोपोलॉजी|edition=2nd|location=Upper Saddle River|publisher=Prentice Hall|year=2000|isbn=0-13-181629-2}}</ref><ref>{{cite book|last=Adams|first=Colin Conrad|first2=Robert David|last2=Franzosa|title=Introduction to Topology: Pure and Applied|publisher=Pearson Prentice Hall|year=2008|isbn=978-0-13-184869-6}}</ref> | * सतत कार्य का प्रतिबंध निरंतर है।<ref>{{cite book|last=Munkres|first=James R.|title=टोपोलॉजी|edition=2nd|location=Upper Saddle River|publisher=Prentice Hall|year=2000|isbn=0-13-181629-2}}</ref><ref>{{cite book|last=Adams|first=Colin Conrad|first2=Robert David|last2=Franzosa|title=Introduction to Topology: Pure and Applied|publisher=Pearson Prentice Hall|year=2008|isbn=978-0-13-184869-6}}</ref> | ||
Line 37: | Line 37: | ||
{{main|प्रतिलोम कार्य}} | {{main|प्रतिलोम कार्य}} | ||
किसी फलन का व्युत्क्रम होने के लिए उसे अंतःक्षेपी फलन: से होना चाहिए। यदि कोई | किसी फलन का व्युत्क्रम होने के लिए उसे अंतःक्षेपी फलन: से होना चाहिए। यदि कोई फलन <math>f</math> -से- नहीं है, इसका आंशिक व्युत्क्रम परिभाषित करना संभव हो सकता है <math>f</math> कार्यक्षेत्र को प्रतिबंधित करके। उदाहरण के लिए, फलन | ||
<math display=block>f(x) = x^2</math> | <math display=block>f(x) = x^2</math> | ||
समग्र रूप से परिभाषित <math>\R</math> तब से -से- नहीं है <math>x^2 = (-x)^2</math> किसी के लिए <math>x \in \R.</math> यद्यपि, यदि हम कार्यक्षेत्र तक सीमित हैं तो | समग्र रूप से परिभाषित <math>\R</math> तब से -से- नहीं है <math>x^2 = (-x)^2</math> किसी के लिए <math>x \in \R.</math> यद्यपि, यदि हम कार्यक्षेत्र तक सीमित हैं तो फलन से हो जाता है <math>\R_{\geq 0} = [0, \infty),</math> किस स्थिति में | ||
<math display=block>f^{-1}(y) = \sqrt{y} .</math> | <math display=block>f^{-1}(y) = \sqrt{y} .</math> | ||
यदि हम इसके अतिरिक्त कार्यक्षेत्र तक सीमित हैं <math>(-\infty, 0],</math> तो व्युत्क्रम के वर्गमूल का ऋणात्मक है <math>y.</math>) वैकल्पिक रूप से, यदि हम प्रतिलोम को बहुमूल्यवान फलन होने देते हैं तो प्रांत को प्रतिबंधित करने की कोई आवश्यकता नहीं है। | यदि हम इसके अतिरिक्त कार्यक्षेत्र तक सीमित हैं <math>(-\infty, 0],</math> तो व्युत्क्रम के वर्गमूल का ऋणात्मक है <math>y.</math>) वैकल्पिक रूप से, यदि हम प्रतिलोम को बहुमूल्यवान फलन होने देते हैं तो प्रांत को प्रतिबंधित करने की कोई आवश्यकता नहीं है। | ||
Line 58: | Line 58: | ||
=== पेस्टिंग लेम्मा === | === पेस्टिंग लेम्मा === | ||
{{main|पेस्टिंग लेम्मा}} | {{main|पेस्टिंग लेम्मा}} | ||
पेस्टिंग लेम्मा सांस्थिति में परिणाम है जो किसी | पेस्टिंग लेम्मा सांस्थिति में परिणाम है जो किसी फलन की निरंतरता को उप-समूचय के प्रतिबंधों की निरंतरता से संबंधित करता है। | ||
<math>X,Y</math> सांस्थिति स्थान के दो बंद उपसमुच्चय या दो खुले उपसमुच्चय हों <math>A</math> ऐसा है कि <math>A = X \cup Y,</math> और <math>B</math> सांस्थिति स्थान भी हो। यदि <math>f: A \to B</math> दोनों के लिए प्रतिबंधित होने पर निरंतर है <math>X</math> और <math>Y,</math> तब <math>f</math> निरंतर है। | <math>X,Y</math> सांस्थिति स्थान के दो बंद उपसमुच्चय या दो खुले उपसमुच्चय हों <math>A</math> ऐसा है कि <math>A = X \cup Y,</math> और <math>B</math> सांस्थिति स्थान भी हो। यदि <math>f: A \to B</math> दोनों के लिए प्रतिबंधित होने पर निरंतर है <math>X</math> और <math>Y,</math> तब <math>f</math> निरंतर है। | ||
Line 68: | Line 68: | ||
[[शीफ सिद्धांत]] कार्यों के अलावा वस्तुओं पर प्रतिबंधों को सामान्यीकृत करने का तरीका प्रदान करता है। | [[शीफ सिद्धांत]] कार्यों के अलावा वस्तुओं पर प्रतिबंधों को सामान्यीकृत करने का तरीका प्रदान करता है। | ||
शीफ थ्योरी में, कोई विषय असाइन करता है <math>F(U)</math> प्रत्येक खुले समुच्चय के लिए [[श्रेणी (श्रेणी सिद्धांत)]] में <math>U</math> [[टोपोलॉजिकल स्पेस|सांस्थिति स्थान]] और यह आवश्यक है कि विषय कुछ अवस्था को पूरा करें। सबसे महत्वपूर्ण अवस्था यह है कि स्थिर खुले समुच्चय से जुड़ी वस्तुओं की प्रत्येक जोड़ी के बीच प्रतिबंध आकारिकी है , यदि <math>V\subseteq U,</math> फिर रूपवाद है <math>\operatorname{res}_{V,U} : F(U) \to F(V)</math> निम्नलिखित गुणों को संतुष्ट करना, जो किसी | शीफ थ्योरी में, कोई विषय असाइन करता है <math>F(U)</math> प्रत्येक खुले समुच्चय के लिए [[श्रेणी (श्रेणी सिद्धांत)]] में <math>U</math> [[टोपोलॉजिकल स्पेस|सांस्थिति स्थान]] और यह आवश्यक है कि विषय कुछ अवस्था को पूरा करें। सबसे महत्वपूर्ण अवस्था यह है कि स्थिर खुले समुच्चय से जुड़ी वस्तुओं की प्रत्येक जोड़ी के बीच प्रतिबंध आकारिकी है , यदि <math>V\subseteq U,</math> फिर रूपवाद है <math>\operatorname{res}_{V,U} : F(U) \to F(V)</math> निम्नलिखित गुणों को संतुष्ट करना, जो किसी फलन के प्रतिबंध की नकल करने के लिए संयोजन किए गए हैं | ||
* प्रत्येक खुले समुच्चय के लिए <math>U</math> का <math>X,</math> प्रतिबंध रूपवाद <math>\operatorname{res}_{U,U} : F(U) \to F(U)</math> परिचय रूपवाद चालू है <math>F(U).</math> | * प्रत्येक खुले समुच्चय के लिए <math>U</math> का <math>X,</math> प्रतिबंध रूपवाद <math>\operatorname{res}_{U,U} : F(U) \to F(U)</math> परिचय रूपवाद चालू है <math>F(U).</math> | ||
* यदि हमारे पास तीन खुले समुच्चय हैं <math>W \subseteq V \subseteq U,</math> फिर रचना <math>\operatorname{res}_{W,V} \circ \operatorname{res}_{V,U} = \operatorname{res}_{W,U}.</math> | * यदि हमारे पास तीन खुले समुच्चय हैं <math>W \subseteq V \subseteq U,</math> फिर रचना <math>\operatorname{res}_{W,V} \circ \operatorname{res}_{V,U} = \operatorname{res}_{W,U}.</math> | ||
Line 83: | Line 83: | ||
== विरोधी प्रतिबंध == | == विरोधी प्रतिबंध == | ||
किसी | किसी फलन या बाइनरी संबंध का कार्यक्षेत्र विरोधी प्रतिबंध या कार्यक्षेत्र घटाव <math>R</math> (कार्यक्षेत्र के साथ <math>E</math> और कोकार्यक्षेत्र <math>F</math>) समुच्चय द्वारा <math>A</math> रूप में परिभाषित किया जा सकता है <math>(E \setminus A) \triangleleft R</math> के सभी तत्वों को हटा देता है <math>A</math> कार्यक्षेत्र से <math>E.</math> इसे कभी-कभी निरूपित किया जाता है <math>A</math> ⩤ <math>R.</math><ref>Dunne, S. and Stoddart, Bill ''Unifying Theories of Programming: First International Symposium, UTP 2006, Walworth Castle, County Durham, UK, February 5–7, 2006, Revised Selected ... Computer Science and General Issues)''. Springer (2006)</ref> इसी तरह, किसी फलन या बाइनरी संबंध की श्रेणी विरोधी प्रतिबंध या श्रेणी घटाव। <math>R</math> समुच्चय द्वारा <math>B</math> परिभाषित किया जाता है <math>R \triangleright (F \setminus B)</math> के सभी तत्वों को हटा देता है <math>B</math> कोकार्यक्षेत्र से <math>F.</math> इसे कभी-कभी निरूपित किया जाता है <math>R</math> ⩥ <math>B.</math> | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|Constraints (mathematics)|प्रतिबंध}} | ||
* {{annotated link| | * {{annotated link|विरूपण वापस लेना}} | ||
* {{annotated link| | * {{annotated link|स्थानीय गुण}} | ||
* {{section link| | * {{section link|फलन (गणित)|प्रतिबंध और विस्तार}} | ||
* {{section link| | * {{section link|द्विआधारी संबंध|प्रतिबंध}} | ||
* {{section link| | * {{section link|संबंधपरक बीजगणित|चयन (σ)}} | ||
Revision as of 15:32, 8 February 2023
गणित में फलन का प्रतिबंध (गणित) नया कार्य है, निरूपित या किसी फलन का छोटा कार्यक्षेत्र चुनकर प्राप्त किया गया मूल फलन के लिए कार्यक्रम फिर विस्तार कहा जाता है
औपचारिक परिभाषा
समुच्चय (गणित) से कार्य बनें समुच्चय के लिए यदि समुच्चय का उपसमुच्चय है फिर का प्रतिबंध को कार्य है[1]
यदि फलन संबंध (गणित) के रूप में माना जाता है कार्तीय उत्पाद पर प्रतिबंध को किसी फलन के ग्राफ़ द्वारा प्रदर्शित किया जा सकता है जहां जोड़े ग्राफ में आदेशित जोड़े का प्रतिनिधित्व करें
विस्तार
फलन कहा जाता है। दूसरे फलन का यदि जब भी के अधिकार क्षेत्र में है तब के क्षेत्र में भी है और अर्थात यदि और फलन का रेखीय विस्तार | क्रमशः, सतत विस्तार, आदि फलन के का विस्तार है वह भी रेखीय मानचित्र है क्रमशः, सतत कार्य, आदि।
उदाहरण
- अन्तःक्षेपण फलन का प्रतिबंध | अ-अन्तःक्षेपण फलन कार्यक्षेत्र के लिए अन्तःक्षेपण है
- कारख़ाने का फलन गामा फलन का सकारात्मक पूर्णांकों तक प्रतिबंध है, जिसमें तर्क द्वारा स्थानांतरित किया गया है
प्रतिबंधों के गुण
- किसी फलन को प्रतिबंधित करना इसके पूरे कार्यक्षेत्र के लिए मूल कार्य को वापस देता है, अर्थात
- किसी फलन को दो बार प्रतिबंधित करना उसे बार प्रतिबंधित करने के समान है, अर्थात यदि तब
- समुच्चय पर परिचय फलन का प्रतिबंध उपसमुच्चय के लिए का से केवल समावेशन मानचित्र है में [2]
- सतत कार्य का प्रतिबंध निरंतर है।[3][4]
अनुप्रयोग
उलटा कार्य
किसी फलन का व्युत्क्रम होने के लिए उसे अंतःक्षेपी फलन: से होना चाहिए। यदि कोई फलन -से- नहीं है, इसका आंशिक व्युत्क्रम परिभाषित करना संभव हो सकता है कार्यक्षेत्र को प्रतिबंधित करके। उदाहरण के लिए, फलन
चयन अनुरूप
संबंधपरक बीजगणित में चयन (संबंधपरक बीजगणित) कभी-कभी SQL के चयन के उपयोग के साथ भ्रम से बचने के लिए प्रतिबंध कहा जाता है एकात्मक ऑपरेशन है जिसे लिखा गया है या कहाँ
- और विशेषता नाम हैं,
- समुच्चय में बाइनरी ऑपरेशन है
- मान स्थिरांक है,
- संबंध (डेटाबेस) है।
चयन उन सभी टुपल्स का चयन करता है जिसके लिए के बीच रखता है और यह गुण।
चयन उन सभी टुपल्स का चयन करता है जिसके लिए के बीच रखता है विशेषता और मूल्य इस प्रकार, चयन अनुरूप संपूर्ण डेटाबेस के उप-समूचय तक सीमित रहता है।
पेस्टिंग लेम्मा
पेस्टिंग लेम्मा सांस्थिति में परिणाम है जो किसी फलन की निरंतरता को उप-समूचय के प्रतिबंधों की निरंतरता से संबंधित करता है।
सांस्थिति स्थान के दो बंद उपसमुच्चय या दो खुले उपसमुच्चय हों ऐसा है कि और सांस्थिति स्थान भी हो। यदि दोनों के लिए प्रतिबंधित होने पर निरंतर है और तब निरंतर है।
यह परिणाम टोपोलॉजिकल स्पेस के बंद (या खुले) उप-समूचय पर परिभाषित दो निरंतर कार्यों को लेने और नया बनाने की अनुमति देता है।
शीश
शीफ सिद्धांत कार्यों के अलावा वस्तुओं पर प्रतिबंधों को सामान्यीकृत करने का तरीका प्रदान करता है।
शीफ थ्योरी में, कोई विषय असाइन करता है प्रत्येक खुले समुच्चय के लिए श्रेणी (श्रेणी सिद्धांत) में सांस्थिति स्थान और यह आवश्यक है कि विषय कुछ अवस्था को पूरा करें। सबसे महत्वपूर्ण अवस्था यह है कि स्थिर खुले समुच्चय से जुड़ी वस्तुओं की प्रत्येक जोड़ी के बीच प्रतिबंध आकारिकी है , यदि फिर रूपवाद है निम्नलिखित गुणों को संतुष्ट करना, जो किसी फलन के प्रतिबंध की नकल करने के लिए संयोजन किए गए हैं
- प्रत्येक खुले समुच्चय के लिए का प्रतिबंध रूपवाद परिचय रूपवाद चालू है
- यदि हमारे पास तीन खुले समुच्चय हैं फिर रचना
- यदि खुले समुच्चय का खुला आवरण (सांस्थिति) है और यदि ऐसे हैं <अवधि वर्ग = टेक्सएचटीएमएल> एस |Ui</ उप> = टी | उप> यूi प्रत्येक समुच्चय के लिए आवरण का, तब और
- यदि खुले समुच्चय का खुला आवरण है और यदि प्रत्येक के लिए अनुभाग ऐसा दिया जाता है कि प्रत्येक जोड़ी के लिए आवरण के प्रतिबंध समुच्चय करता है और अधिव्यापन पर सहमत फिर खंड है ऐसा है कि प्रत्येक के लिए
ऐसी सभी वस्तुओं के संग्रह को पुलिया कहते हैं। यदि केवल पहले दो गुण संतुष्ट होते हैं, तो यह प्री-शेफ है।
वाम- और दाएँ-प्रतिबंध
अधिक सामान्यतः, प्रतिबंध (या कार्यक्षेत्र प्रतिबंध या वाम-प्रतिबंध) द्विआधारी संबंध का बीच में और कार्यक्षेत्र वाले संबंध के रूप में परिभाषित किया जा सकता है को कार्यक्षेत्र और ग्राफ इसी तरह, कोई सही-प्रतिबंध या सीमा प्रतिबंध को परिभाषित कर सकता है उपरोक्त, कोई भी प्रतिबंध को परिभाषित कर सकता है-आर्य संबंध, साथ ही उपसमुच्चय को संबंधों के रूप में समझा जाता है, जैसे कि कार्तीय उत्पाद के संबंध द्विआधारी संबंधों के लिए।ये मामले शेफ (गणित) की योजना में उपयुक्त नहीं होते हैं।
विरोधी प्रतिबंध
किसी फलन या बाइनरी संबंध का कार्यक्षेत्र विरोधी प्रतिबंध या कार्यक्षेत्र घटाव (कार्यक्षेत्र के साथ और कोकार्यक्षेत्र ) समुच्चय द्वारा रूप में परिभाषित किया जा सकता है के सभी तत्वों को हटा देता है कार्यक्षेत्र से इसे कभी-कभी निरूपित किया जाता है ⩤ [5] इसी तरह, किसी फलन या बाइनरी संबंध की श्रेणी विरोधी प्रतिबंध या श्रेणी घटाव। समुच्चय द्वारा परिभाषित किया जाता है के सभी तत्वों को हटा देता है कोकार्यक्षेत्र से इसे कभी-कभी निरूपित किया जाता है ⩥
यह भी देखें
- प्रतिबंध
- विरूपण वापस लेना
- स्थानीय गुण
- फलन (गणित) § प्रतिबंध और विस्तार
- द्विआधारी संबंध § प्रतिबंध
- संबंधपरक बीजगणित § चयन (σ)
संदर्भ
- ↑ Stoll, Robert (1974). Sets, Logic and Axiomatic Theories (2nd ed.). San Francisco: W. H. Freeman and Company. pp. [36]. ISBN 0-7167-0457-9.
- ↑ Halmos, Paul (1960). Naive Set Theory. Princeton, NJ: D. Van Nostrand. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. ISBN 978-1-61427-131-4 (Paperback edition).
- ↑ Munkres, James R. (2000). टोपोलॉजी (2nd ed.). Upper Saddle River: Prentice Hall. ISBN 0-13-181629-2.
- ↑ Adams, Colin Conrad; Franzosa, Robert David (2008). Introduction to Topology: Pure and Applied. Pearson Prentice Hall. ISBN 978-0-13-184869-6.
- ↑ Dunne, S. and Stoddart, Bill Unifying Theories of Programming: First International Symposium, UTP 2006, Walworth Castle, County Durham, UK, February 5–7, 2006, Revised Selected ... Computer Science and General Issues). Springer (2006)