युक्तिकरण (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Removal of square roots from denominators}} | {{Short description|Removal of square roots from denominators}} | ||
प्रारंभिक बीजगणित में, मूल युक्तिकरण | प्रारंभिक बीजगणित में, मूल युक्तिकरण प्रक्रिया है जिसके द्वारा अंश (गणित) बीजगणितीय भिन्न के हर में nवें मूल को समाप्त कर दिया जाता है। | ||
यदि किसी मूलांक में हर | यदि किसी मूलांक में हर [[एकपद|एकपदी]] है, मान लीजिए <math>a{\sqrt[n]{x}}^k</math> के साथ {{math|''k'' < ''n''}} युक्तिकरण में अंश और भाजक को <math>\sqrt[n]{x}^{n - k}</math> से गुणा करना शामिल है और <math>{\sqrt[n]{x}}^n</math> को {{mvar|x}} से प्रतिस्थापित करना (इसकी अनुमति है, जैसा कि, परिभाषा के अनुसार, {{mvar|x}} का {{mvar|n}}वां मूल संख्या है जिसकी {{mvar|n}}वी घात के रूप में {{mvar|x}} है) शामिल हैं। यदि {{math|''k'' ≥ ''n''}}, कोई {{math|1=''k'' = ''qn'' + ''r''}} कों {{math|0 ≤ ''r'' < ''n''}} ([[यूक्लिडियन विभाजन]]), और <math>{\sqrt[n]{x}}^k = x^q\sqrt[n]x^r</math> के साथ लिखता है, फिर ऊपर के <math>\sqrt[n]{x}^{n - r}</math> रूप में गुणा करके आगे बढ़ता है | ||
यदि भाजक किसी वर्गमूल में रैखिक फलन है, मान लीजिए <math>a+b\sqrt{x},</math> युक्तिकरण में अंश और भाजक को <math>a-b\sqrt{x}</math> से गुणा करना, और हर में उत्पाद का विस्तार करना शामिल है। | यदि भाजक किसी वर्गमूल में रैखिक फलन है, मान लीजिए <math>a+b\sqrt{x},</math> युक्तिकरण में अंश और भाजक को <math>a-b\sqrt{x}</math> से गुणा करना, और हर में उत्पाद का विस्तार करना शामिल है। | ||
इस तकनीक को किसी भी बीजगणितीय भाजक के लिए बढ़ाया जा सकता है, हर के सभी [[बीजगणितीय संयुग्म|बीजगणितीय संयुग्मों]] द्वारा अंश और भाजक को गुणा करके, और नए भाजक को पुराने भाजक के क्षेत्र मानदंड में विस्तारित किया जा सकता है। हालांकि, विशेष मामलों को छोड़कर, परिणामी अंशों में विशाल अंश और भाजक हो सकते हैं, और इसलिए, तकनीक का उपयोग | इस तकनीक को किसी भी बीजगणितीय भाजक के लिए बढ़ाया जा सकता है, हर के सभी [[बीजगणितीय संयुग्म|बीजगणितीय संयुग्मों]] द्वारा अंश और भाजक को गुणा करके, और नए भाजक को पुराने भाजक के क्षेत्र मानदंड में विस्तारित किया जा सकता है। हालांकि, विशेष मामलों को छोड़कर, परिणामी अंशों में विशाल अंश और भाजक हो सकते हैं, और इसलिए, तकनीक का उपयोग सामान्यतः केवल उपरोक्त प्राथमिक मामलों में किया जाता है। | ||
== एक एकपदी वर्गमूल और घनमूल का युक्तिकरण == | == एक एकपदी वर्गमूल और घनमूल का युक्तिकरण == | ||
Line 46: | Line 46: | ||
:<math>\frac{ \sqrt{2}-\sqrt{3} }{\sqrt{2}-\sqrt{3}} = 1.</math> | :<math>\frac{ \sqrt{2}-\sqrt{3} }{\sqrt{2}-\sqrt{3}} = 1.</math> | ||
यह तकनीक सामान्यतः अधिक काम करती है। इसे एक बार में | यह तकनीक सामान्यतः अधिक काम करती है। इसे एक बार में वर्गमूल निकालने के लिए, यानी युक्तिसंगत बनाने के लिए आसानी से अनुकूलित किया जा सकता है | ||
:<math>x +\sqrt{y}\,</math> | :<math>x +\sqrt{y}\,</math> | ||
Line 72: | Line 72: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
युक्तिकरण को सभी [[बीजगणितीय संख्या]]ओं और [[बीजगणितीय कार्य|बीजगणितीय कार्यों]] (मानक रूपों के | युक्तिकरण को सभी [[बीजगणितीय संख्या]]ओं और [[बीजगणितीय कार्य|बीजगणितीय कार्यों]] (मानक रूपों के आवेदन के रूप में) तक बढ़ाया जा सकता है। उदाहरण के लिए, [[घनमूल]] को शामिल करने वाले दो रैखिक कारकों का उपयोग किया जाना चाहिए या समकक्ष रूप से एक द्विघात कारक होना चाहिए। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 17:07, 8 February 2023
प्रारंभिक बीजगणित में, मूल युक्तिकरण प्रक्रिया है जिसके द्वारा अंश (गणित) बीजगणितीय भिन्न के हर में nवें मूल को समाप्त कर दिया जाता है।
यदि किसी मूलांक में हर एकपदी है, मान लीजिए के साथ k < n युक्तिकरण में अंश और भाजक को से गुणा करना शामिल है और को x से प्रतिस्थापित करना (इसकी अनुमति है, जैसा कि, परिभाषा के अनुसार, x का nवां मूल संख्या है जिसकी nवी घात के रूप में x है) शामिल हैं। यदि k ≥ n, कोई k = qn + r कों 0 ≤ r < n (यूक्लिडियन विभाजन), और के साथ लिखता है, फिर ऊपर के रूप में गुणा करके आगे बढ़ता है
यदि भाजक किसी वर्गमूल में रैखिक फलन है, मान लीजिए युक्तिकरण में अंश और भाजक को से गुणा करना, और हर में उत्पाद का विस्तार करना शामिल है।
इस तकनीक को किसी भी बीजगणितीय भाजक के लिए बढ़ाया जा सकता है, हर के सभी बीजगणितीय संयुग्मों द्वारा अंश और भाजक को गुणा करके, और नए भाजक को पुराने भाजक के क्षेत्र मानदंड में विस्तारित किया जा सकता है। हालांकि, विशेष मामलों को छोड़कर, परिणामी अंशों में विशाल अंश और भाजक हो सकते हैं, और इसलिए, तकनीक का उपयोग सामान्यतः केवल उपरोक्त प्राथमिक मामलों में किया जाता है।
एक एकपदी वर्गमूल और घनमूल का युक्तिकरण
मौलिक तकनीक के लिए, अंश और भाजक को एक ही कारक से गुणा किया जाना चाहिए।
उदाहरण 1:
इस तरह की अभिव्यक्ति (गणित) को युक्तिसंगत बनाने के लिए, कारक को शामिल करें:
वर्गमूल हर से लुप्त हो जाता है, क्योंकि वर्गमूल की परिभाषा से:
जो युक्तिकरण का परिणाम है।
उदाहरण 2:
इस रेडिकल को युक्तिसंगत बनाने के लिए, कारक को शामिल करें:
घनमूल हर से लुप्त हो जाता है, क्योंकि यह घन है; इसलिए
जो युक्तिकरण का परिणाम है।
अधिक वर्गमूल से निपटना
एक भाजक के लिए है:
संयुग्म (बीजगणित) द्वारा गुणा करके युक्तिकरण प्राप्त किया जा सकता है:
और दो वर्गों की पहचान के अंतर को लागू करने से -1 प्राप्त होगा। यह परिणाम प्राप्त करने के लिए, पूरे अंश को गुणा किया जाना चाहिए
यह तकनीक सामान्यतः अधिक काम करती है। इसे एक बार में वर्गमूल निकालने के लिए, यानी युक्तिसंगत बनाने के लिए आसानी से अनुकूलित किया जा सकता है
गुणा करके
उदाहरण:
अंश युक्त भागफल से गुणा किया जाना चाहिए .
अब, हम हर में वर्गमूल निकालने के लिए आगे बढ़ सकते हैं:
उदाहरण 2:
यह प्रक्रिया जटिल संख्याओं के साथ भी काम करती है
अंश युक्त भागफल से गुणा किया जाना चाहिए .
सामान्यीकरण
युक्तिकरण को सभी बीजगणितीय संख्याओं और बीजगणितीय कार्यों (मानक रूपों के आवेदन के रूप में) तक बढ़ाया जा सकता है। उदाहरण के लिए, घनमूल को शामिल करने वाले दो रैखिक कारकों का उपयोग किया जाना चाहिए या समकक्ष रूप से एक द्विघात कारक होना चाहिए।
संदर्भ
This material is carried in classic algebra texts. For example:
- George Chrystal, Introduction to Algebra: For the Use of Secondary Schools and Technical Colleges is a nineteenth-century text, first edition 1889, in print (ISBN 1402159072); a trinomial example with square roots is on p. 256, while a general theory of rationalising factors for surds is on pp. 189–199.