Gδ समुच्चय: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Countable intersection of open sets}} {{DISPLAYTITLE:G<sub>δ</sub> set}} टोपोलॉजी के गणितीय क्षेत्र म...")
 
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Countable intersection of open sets}}
{{Short description|Countable intersection of open sets}}
{{DISPLAYTITLE:G<sub>δ</sub> set}}
{{DISPLAYTITLE:G<sub>δ</sub> set}}
[[टोपोलॉजी]] के गणितीय क्षेत्र में, एक G<sub>δ</sub> सेट एक [[टोपोलॉजिकल स्पेस]] का [[सबसेट]] है जो खुले सेटों का एक [[गणनीय]] इंटरसेक्शन (सेट थ्योरी) है। नोटेशन [[जर्मन भाषा]] में ''विकट: गेबिएट#जर्मन'' (''जर्मन'': क्षेत्र, या पड़ोस) के लिए ''जी'' के साथ उत्पन्न हुआ है, जिसका अर्थ इस मामले में [[खुला सेट]] है और {{delta}} विकट के लिए: मित्तलर#जर्मन (जर्मन: चौराहा)<ref name="ramtihs">{{citation|title=Real Analysis: Measure Theory, Integration, and Hilbert Spaces|first1=Elias M.|last1=Stein|first2=Rami|last2=Shakarchi|publisher=[[Princeton University Press]]|year=2009|isbn=9781400835560|page=23|url=https://books.google.com/books?id=2Sg3Vug65AsC&pg=PA23}}.</ref>
[[टोपोलॉजी]] के गणितीय क्षेत्र में, एक G<sub>δ</sub> समुच्चय [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] का [[सबसेट|उपसमुच्चय]] है जो खुले समुच्चयों का एक [[गणनीय]] प्रतिच्छेदन (समुच्चय थ्योरी) है। नोटेशन की उत्पत्ति जर्मन में ''G'' से ''Gebiet'' ( ''जर्मन'' : क्षेत्र, या पड़ोस) के साथ हुई है, जिसका अर्थ इस मामले में खुला समुच्चय है और δ ''Durchschnitt'' ( ''जर्मन'' : प्रतिच्छेदन) के लिए है।<ref name="ramtihs">{{citation|title=Real Analysis: Measure Theory, Integration, and Hilbert Spaces|first1=Elias M.|last1=Stein|first2=Rami|last2=Shakarchi|publisher=[[Princeton University Press]]|year=2009|isbn=9781400835560|page=23|url=https://books.google.com/books?id=2Sg3Vug65AsC&pg=PA23}}.</ref>
ऐतिहासिक रूप से जी<sub>δ</sub> सेट को इनर लिमिटिंग सेट भी कहा जाता था,<ref>{{citation|url=https://archive.org/stream/theoryofsetsofpo00youniala#page/n3/mode/2up|title=Theory of Sets of Points|last1=Young|first1=William|last2=Young|first2=Grace Chisholm|publisher=Cambridge University Press|year=1906|author-link=William Henry Young|author-link2=Grace Chisholm Young}}</ref> लेकिन वह शब्दावली अब उपयोग में नहीं है।
 
जी<sub>δ</sub> समुच्चय, और उनका दोहरा, Fσ समुच्चय|F<sub>{{sigma}}</sub> सेट, [[बोरेल पदानुक्रम]] का दूसरा स्तर हैं।
ऐतिहासिक रूप से G<sub>δ</sub> समुच्चय को आंतरिक सीमित समुच्चय भी कहा जाता था<ref>{{citation|url=https://archive.org/stream/theoryofsetsofpo00youniala#page/n3/mode/2up|title=Theory of Sets of Points|last1=Young|first1=William|last2=Young|first2=Grace Chisholm|publisher=Cambridge University Press|year=1906|author-link=William Henry Young|author-link2=Grace Chisholm Young}}</ref> लेकिन वह शब्दावली अब उपयोग में नहीं है।
 
G<sub>δ</sub> समुच्चय और उनका दोहरा Fσ समुच्चय, [[बोरेल पदानुक्रम]] का दूसरा स्तर हैं।


== परिभाषा ==
== परिभाषा ==


एक टोपोलॉजिकल स्पेस में एक G<sub>δ</sub> सेट खुले सेटों का एक गणनीय चौराहा (सेट सिद्धांत) है। जी<sub>δ</sub> सेट बिल्कुल स्तर Π हैं{{su|p=0|b=2}} बोरेल पदानुक्रम के सेट।
एक टोपोलॉजिकल स्थान  में एक G<sub>δ</sub> समुच्चय खुले समुच्चयों का एक गणनीय प्रतिच्छेदन(समुच्चय सिद्धांत) है। G<sub>δ</sub> समुच्चय बिल्कुल स्तर Π{{su|p=0|b=2}} बोरेल पदानुक्रम के समुच्चय है।


== उदाहरण ==
== उदाहरण ==


* कोई भी खुला सेट तुच्छ रूप से G है<sub>δ</sub> तय करना।
* कोई भी खुला समुच्चय तुच्छ रूप से G<sub>δ</sub> समुच्चय होता है।
* अपरिमेय संख्याएँ G हैं<sub>δ</sub> वास्तविक संख्या में सेट करें <math>\R</math>. उन्हें खुले सेट के गणनीय चौराहे के रूप में लिखा जा सकता है <math>\{ q \}^{c}</math> (सुपरस्क्रिप्ट [[पूरक (सेट सिद्धांत)]] को दर्शाता है) जहां <math>q</math> परिमेय संख्या है।
* अपरिमेय संख्याएँ वास्तविक संख्याओं में Gδ समुच्चय होता है। <math>\R</math> उन्हें खुले समुच्चय के गणनीय प्रतिच्छेदन के रूप में लिखा जा सकता है <math>\{ q \}^{c}</math>(सुपरस्क्रिप्ट [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] को दर्शाता है) जहां <math>q</math> परिमेय संख्या है।
* परिमेय संख्याओं का समुच्चय <math>\Q</math> है {{em|not}} एक जी<sub>δ</sub> शुरु होना <math>\R</math>. अगर <math>\Q</math> खुले सेटों का चौराहा था <math>A_n</math> प्रत्येक <math>A_n</math> [[घना सेट]] होगा <math>\R</math> क्योंकि <math>\Q</math> में घना है <math>\R</math>. हालांकि, ऊपर के निर्माण ने अपरिमेय संख्या को खुले घने उपसमुच्चय के एक गणनीय चौराहे के रूप में दिया। इन दोनों सेटों के प्रतिच्छेदन को लेने से [[खाली सेट]] को खुले घने सेटों के गणनीय चौराहे के रूप में मिलता है <math>\R</math>, बेयर श्रेणी प्रमेय का उल्लंघन।
* परिमेय संख्याओं का समुच्चय <math>\Q</math> G<sub>δ</sub> समुच्चय नहीं है। <math>\R</math> अगर <math>\Q</math> खुले समुच्चयों का प्रतिच्छेदनथा <math>A_n</math> प्रत्येक <math>A_n</math> [[घना सेट|घना समुच्चय]] होगा <math>\R</math> क्योंकि <math>\Q</math> में घना है <math>\R</math>. हालांकि ऊपर के निर्माण ने अपरिमेय संख्या को खुले घने उपसमुच्चय के एक गणनीय प्रतिच्छेदन के रूप में दिया। इन दोनों समुच्चयों के प्रतिच्छेदन को लेने से [[खाली सेट|खाली समुच्चय]] को खुले घने समुच्चयों के गणनीय प्रतिच्छेदन के रूप में मिलता है और <math>\R</math> बेयर श्रेणी प्रमेय का उल्लंघन करता है।
* निरंतरता सेट # किसी भी वास्तविक मूल्यवान फ़ंक्शन के फ़ंक्शन का निरंतरता सेट एक जी है<sub>δ</sub> इसके डोमेन का सबसेट (अधिक सामान्य कथन के लिए गुण अनुभाग देखें)।
* किसी वास्तविक मूल्यवान कार्य  का निरंतरता एक G<sub>δ</sub> समुच्चय इसके डोमेन का उपसमुच्चय है (अधिक सामान्य कथन के लिए गुण अनुभाग देखें)।
* हर जगह अलग-अलग वास्तविक-मूल्यवान फ़ंक्शन के डेरिवेटिव (गणित) का शून्य-सेट <math>\R</math> एक जी है<sub>δ</sub> तय करना; यह खाली इंटीरियर के साथ एक सघन सेट हो सकता है, जैसा कि पोम्पेई व्युत्पन्न#पोम्पेई के निर्माण|पोम्पेयू के निर्माण द्वारा दिखाया गया है।
* हर जगह अलग-अलग वास्तविक-मूल्यवान कार्य  के व्युत्पन्न (गणित) का शून्य-समुच्चय <math>\R</math> एक G<sub>δ</sub> समुच्चय तय करता है। यह खाली आंतरिक भाग के साथ एक सघन समुच्चय हो सकता है, जैसा कि पोम्पेयू के निर्माण द्वारा दिखाया गया है।
* कार्यों का सेट में <math>C([0,1])</math> भीतर किसी भी बिंदु पर भिन्न नहीं {{closed-closed|0, 1}} एक घना जी शामिल है<sub>δ</sub> मीट्रिक स्थान का सबसेट <math>C([0,1])</math>. (देखना {{section link|Weierstrass function|Density of nowhere-differentiable functions}}.)
* कार्यों का समुच्चय  <math>C([0,1])</math> के भीतर किसी भी बिंदु पर अलग नहीं किया जा सकता है जिसमे मीट्रिक स्थान का एक सघन G<sub>δ</sub> समुच्चय होता <math>C([0,1])</math> है।


== गुण ==
== गुण ==


जी की धारणा<sub>δ</sub> [[मीट्रिक स्थान]] (और टोपोलॉजिकल स्पेस) स्पेस में सेट मेट्रिक स्पेस के [[पूर्ण मीट्रिक स्थान]] के साथ-साथ बेयर श्रेणी प्रमेय की धारणा से संबंधित है। नीचे गुणों की सूची में पूरी तरह से मेट्रिज़ेबल रिक्त स्थान के बारे में परिणाम देखें। <math>\mathrm {G_\delta}</math> सेट और उनके पूरक भी [[वास्तविक विश्लेषण]] में महत्वपूर्ण हैं, विशेष रूप से [[माप सिद्धांत]]
[[मीट्रिक स्थान|मीट्रिक]] (और टोपोलॉजिकल) रिक्त स्थान में G<sub>δ</sub>  समुच्चय [[पूर्ण मीट्रिक स्थान]] के साथ-साथ बेयर श्रेणी प्रमेय की धारणा से संबंधित है। नीचे गुणों की सूची में पूरी तरह से मेट्रिज़ेबल रिक्त स्थान के बारे में परिणाम देखें। <math>\mathrm {G_\delta}</math> समुच्चय और उनके पूरक भी [[वास्तविक विश्लेषण]] में महत्वपूर्ण हैं और विशेष रूप से [[माप सिद्धांत]] है।


=== बुनियादी गुण ===
=== बुनियादी गुण ===
* जी का पूरक (सेट सिद्धांत)।<sub>δ</sub> समुच्चय एक Fσ समुच्चय है|F<sub>σ</sub>सेट और इसके विपरीत।
* एक G <sub>δ</sub> समुच्चय का पूरक एक F σ समुच्चय होता है।
* गिने-चुने कई जी का प्रतिच्छेदन<sub>δ</sub> सेट एक जी है<sub>δ</sub> तय करना।
* गिने-चुने कई G<sub>δ</sub> समुच्चयों का प्रतिच्छेदन एक G<sub>δ</sub> समुच्चय होता है।
* का संघ {{em|finitely}} कई जी<sub>δ</sub> सेट एक जी है<sub>δ</sub> तय करना।
* बहुत से G<sub>δ</sub> समुच्चयों का संघ एक G<sub>δ</sub> समुच्चय होता है।
* जी का एक गणनीय संघ<sub>δ</sub> सेट (जिसे जी कहा जाएगा<sub>δσ</sub> सेट) जी नहीं है<sub>δ</sub> सामान्य रूप से सेट करें। उदाहरण के लिए, परिमेय संख्याएँ <math>\Q</math> जी मत बनाओ<sub>δ</sub> शुरु होना <math>\R</math>.
* G<sub>δ</sub> समुच्चय का एक गणनीय संघ (जिसे G<sub>δσ</sub> समुच्चय कहा जाएगा) सामान्य रूप से G<sub>δ</sub> समुच्चय नहीं है। उदाहरण के लिए, परिमेय संख्याएँ <math>\Q</math> और  <math>\R</math> है।
* एक टोपोलॉजिकल स्पेस में, प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का [[शून्य सेट]] <math>f</math> एक (बंद) जी है<sub>δ</sub> सेट, के बाद से <math>f^{-1}(0)</math> खुले सेटों का चौराहा है <math>\{x \in X : -1/n < f(x) < 1/n\}</math>, <math>(n = 1, 2, \ldots)</math>.
* एक टोपोलॉजिकल स्थान में प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का [[शून्य सेट|शून्य समुच्चय]] <math>f</math> एक (बंद) G<sub>δ</sub> समुच्चय के बाद से <math>f^{-1}(0)</math> खुले समुच्चयों का प्रतिच्छेदनहै। <math>\{x \in X : -1/n < f(x) < 1/n\}</math>, <math>(n = 1, 2, \ldots)</math>.
* [[metrizable]] स्पेस में, प्रत्येक [[बंद सेट]] एक जी है<sub>δ</sub> सेट और, दो तरह से, हर खुला सेट एक एफ है<sub>σ</sub> तय करना।<ref>Willard, 15C, p. 105</ref> दरअसल, एक बंद सेट <math>F \subseteq X</math> निरंतर कार्य का शून्य सेट है <math>f(x) = d(x, F)</math>, कहाँ <math>d</math> [[एक सेट की दूरी]] को इंगित करता है। [[स्यूडोमेट्रिजेबल]] स्पेस में भी ऐसा ही होता है।
* [[पूरी तरह से मेट्रिजेबल|मेट्रिजेबल]] स्थान में प्रत्येक [[बंद सेट|बंद समुच्चय]] एक G<sub>δ</sub> समुच्चय है और दो तरह से हर खुला समुच्चय एक Fσ समुच्चय है।<ref>Willard, 15C, p. 105</ref> दरअसल एक बंद समुच्चय <math>F \subseteq X</math> निरंतर कार्य का शून्य समुच्चय है <math>f(x) = d(x, F)</math>, जहाँ <math>d</math> [[एक सेट की दूरी|एक समुच्चय की दूरी]] को इंगित करता है। [[स्यूडोमेट्रिजेबल]] स्थान में भी ऐसा ही होता है।
* पहले गणनीय T1 स्थान में|T<sub>1</sub> अंतरिक्ष, हर [[सिंगलटन (गणित)]] एक जी है<sub>δ</sub> सेट।<ref>{{Cite web|url=https://math.stackexchange.com/questions/1882733|title=General topology - when are singletons $G_\delta$?}}</ref>
* पहले गणनीय T1 स्थान में प्रत्येक सिंगलटन एक G <sub>δ</sub> समुच्चय होता है।<ref>{{Cite web|url=https://math.stackexchange.com/questions/1882733|title=General topology - when are singletons $G_\delta$?}}</ref>
* [[पूरी तरह से मेट्रिजेबल]] स्पेस का एक [[टोपोलॉजिकल सबस्पेस]] <math>X</math> अगर और केवल अगर यह एक G है तो यह खुद पूरी तरह से मेट्रिजेबल है<sub>δ</sub> शुरु होना <math>X</math>.<ref>Willard, theorem 24.12, p. 179</ref><ref>Engelking, theorems 4.3.23 and 4.3.24 on p. 274.  From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.</ref>
* [[पूरी तरह से मेट्रिजेबल]] स्थान का एक [[टोपोलॉजिकल सबस्पेस|टोपोलॉजिकल]] उप-स्थान <math>X</math> है अगर यह एक G<sub>δ</sub> समुच्चय है तो यह स्वयं पूरी तरह से मेट्रिज़ेबल है।<ref>Willard, theorem 24.12, p. 179</ref><ref>Engelking, theorems 4.3.23 and 4.3.24 on p. 274.  From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.</ref>
* पोलिश अंतरिक्ष का एक उप-स्थान <math>X</math> स्वयं पोलिश है यदि और केवल यदि वह G है<sub>δ</sub> शुरु होना <math>X</math>. यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल सबस्पेस के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्पेस के प्रत्येक सबस्पेस वियोज्य है।
* पोलिश अंतरिक्ष का एक उप-स्थान <math>X</math> स्वयं पोलिश है यदि यह G<sub>δ</sub> समुच्चय है। यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल उप-स्थान के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्थान के प्रत्येक उप-स्थान वियोज्य है।
* एक टोपोलॉजिकल स्पेस <math>X</math> पोलिश है अगर और केवल अगर यह जी के लिए [[होमियोमॉर्फिक]] है<sub>δ</sub> [[कॉम्पैक्ट जगह]] मेट्रिक स्पेस का सबसेट।<ref>Fremlin, p. 334</ref><ref>The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.</ref>
* एक टोपोलॉजिकल स्थान <math>X</math> पोलिश है अगर यह [[कॉम्पैक्ट जगह|ठोस]] मेट्रिक स्थान का G<sub>δ</sub> उपसमुच्चय के लिए [[होमियोमॉर्फिक]] है।<ref>Fremlin, p. 334</ref><ref>The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.</ref>
 
=== वास्तविक मूल्यवान कार्यों का निरंतरता समुच्चय ===
 
=== वास्तविक मूल्यवान कार्यों का निरंतरता सेट ===
 
उन बिंदुओं का समूह जहां एक फ़ंक्शन होता है <math>f</math> टोपोलॉजिकल स्पेस से मेट्रिक स्पेस तक [[निरंतर कार्य]] होता है <math>\mathrm {G_\delta}</math> तय करना। ऐसा इसलिए है क्योंकि एक बिंदु पर निरंतरता <math>p</math> ए द्वारा परिभाषित किया जा सकता है <math>\Pi^0_2</math> सूत्र, अर्थात्: सभी सकारात्मक पूर्णांकों के लिए <math>n,</math> एक खुला सेट है <math>U</math> युक्त <math>p</math> ऐसा है कि <math>d(f(x), f(y)) < 1/n</math> सबके लिए <math>x, y</math> में <math>U</math>. यदि का मान <math>n</math> तय है, का सेट <math>p</math> जिसके लिए इस तरह का एक समान खुला है <math>U</math> अपने आप में एक खुला सेट है (खुले सेटों का एक संघ होने के नाते), और सार्वभौमिक क्वांटिफायर चालू है <math>n</math> इन सेटों के (गणनीय) चौराहे से मेल खाती है। परिणामस्वरूप, जबकि अपरिमेय के लिए एक फ़ंक्शन के निरंतरता बिंदुओं का सेट होना संभव है ([[पॉपकॉर्न समारोह]] देखें), एक फ़ंक्शन का निर्माण करना असंभव है जो केवल परिमेय संख्याओं पर निरंतर हो।
 
वास्तविक रेखा में, विलोम भी धारण करता है; किसी भी जी के लिए<sub>δ</sub> सबसेट <math>A</math> वास्तविक रेखा का, एक कार्य है <math>f : \R \to \R</math> यह बिल्कुल बिंदुओं पर निरंतर है <math>A</math>.<ref>{{cite web |last1=Saito |first1=Shingo |title=Properties of G<sub>δ</sub> subsets of <math>\mathbb{R}</math> |url=http://www.artsci.kyushu-u.ac.jp/~ssaito/eng/maths/Gdelta.pdf}}</ref>


उन बिंदुओं का समूह जहां एक कार्य होता है <math>f</math> टोपोलॉजिकल स्थान से मेट्रिक स्थान तक [[निरंतर कार्य]] तय करना। ऐसा इसलिए है क्योंकि एक बिंदु पर निरंतरता <math>p</math> <math>\Pi^0_2</math> सूत्र द्वारा परिभाषित किया जा सकता है अर्थात् सभी सही पूर्णांकों के लिए <math>n,</math> एक खुला समुच्चय है <math>U</math> युक्त <math>p</math> ऐसा है कि <math>d(f(x), f(y)) < 1/n</math> सबके लिए <math>x, y</math> में <math>U</math> है। यदि इसका मान <math>n</math> तय है, तो समुच्चय <math>p</math> जिसके लिए इस तरह का एक समान खुला  <math>U</math> अपने आप में एक खुला समुच्चय है और सार्वभौमिक परिमाणक <math>n</math> चालू है। इन समुच्चयों के (गणनीय) प्रतिच्छेदन से मेल खाती है। परिणामस्वरूप जबकि अपरिमेय के लिए एक कार्य के निरंतरता बिंदुओं का समुच्चय होना संभव है और एक कार्य का निर्माण करना असंभव है जो केवल परिमेय संख्याओं पर निरंतर हो। वास्तविक रेखा में विलोम भी धारण करता है कि किसी भी जी G<sub>δ</sub> उपसमुच्चय के लिए <math>A</math> वास्तविक रेखा का एक कार्य <math>f : \R \to \R</math>  यह बिल्कुल बिंदुओं पर निरंतर है <math>A</math>.<ref>{{cite web |last1=Saito |first1=Shingo |title=Properties of G<sub>δ</sub> subsets of <math>\mathbb{R}</math> |url=http://www.artsci.kyushu-u.ac.jp/~ssaito/eng/maths/Gdelta.pdf}}</ref>
== जी G<sub>δ</sub> अंतरिक्ष ==


== जी<sub>δ</sub> अंतरिक्ष ==
G<sub>δ</sub> अंतरिक्ष<ref>Steen & Seebach, p. 162</ref> एक टोपोलॉजिकल स्थान है जिसमें हर बंद समुच्चय एक G<sub>δ</sub> समुच्चय {{harv|जॉनसन |1970}} है। एक [[सामान्य स्थान]] जो कि G<sub>δ</sub> अंतरिक्ष को [[बिल्कुल सामान्य स्थान]] कहा जाता है। उदाहरण के लिए प्रत्येक मेट्रिजेबल स्थान पूरी तरह से सामान्य है।


ए Gδ अंतरिक्ष | जी<sub>δ</sub> अंतरिक्ष<ref>Steen & Seebach, p. 162</ref> एक टोपोलॉजिकल स्पेस है जिसमें हर बंद सेट एक जी है<sub>δ</sub> सेट {{harv|Johnson|1970}}. एक [[सामान्य स्थान]] जो कि G भी है<sub>δ</sub> अंतरिक्ष को [[बिल्कुल सामान्य स्थान]] कहा जाता है। उदाहरण के लिए, प्रत्येक मेट्रिजेबल स्पेस पूरी तरह से सामान्य है।


== यह भी देखें ==
== यह भी देखें ==


* एफσ सेट | एफ<sub>σ</sub> सेट, [[द्वैत (गणित)]] अवधारणा; ध्यान दें कि G जर्मन है (विकट:Gebiet#जर्मन) और F फ्रेंच है (विकट:fermé#French|fermé)
* F<sub>σ</sub> समुच्चय, दोहरी अवधारणा; ध्यान दें कि "जी" जर्मन (गेबिएट) है और "एफ" फ्रेंच (फर्मे) है।
* पी-स्पेस | पी-स्पेस, कोई भी स्पेस जिसमें संपत्ति है कि हर जी<sub>δ</sub> सेट खुला है
* P -स्थान, कोई भी स्थान जिसमें संपत्ति है कि हर Gδ समुच्चय खुला है


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 65: Line 62:
* {{cite journal |first=Roy A. |last=Johnson |year=1970 |title=A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta |journal=The American Mathematical Monthly |volume=77 |issue=2 |pages=172–176 |jstor=2317335 |doi=10.2307/2317335}}
* {{cite journal |first=Roy A. |last=Johnson |year=1970 |title=A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta |journal=The American Mathematical Monthly |volume=77 |issue=2 |pages=172–176 |jstor=2317335 |doi=10.2307/2317335}}


{{DEFAULTSORT:G Set}}[[Category: सामान्य टोपोलॉजी]] [[Category: वर्णनात्मक सेट सिद्धांत]]
{{DEFAULTSORT:G Set}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 03/02/2023|G Set]]
[[Category:Created On 03/02/2023]]
[[Category:Lua-based templates|G Set]]
[[Category:Machine Translated Page|G Set]]
[[Category:Pages with ignored display titles]]
[[Category:Pages with script errors|G Set]]
[[Category:Short description with empty Wikidata description|G Set]]
[[Category:Templates Vigyan Ready|G Set]]
[[Category:Templates that add a tracking category|G Set]]
[[Category:Templates that generate short descriptions|G Set]]
[[Category:Templates using TemplateData|G Set]]
[[Category:वर्णनात्मक सेट सिद्धांत|G Set]]
[[Category:सामान्य टोपोलॉजी|G Set]]

Latest revision as of 19:29, 9 February 2023

टोपोलॉजी के गणितीय क्षेत्र में, एक Gδ समुच्चय टोपोलॉजिकल स्थान का उपसमुच्चय है जो खुले समुच्चयों का एक गणनीय प्रतिच्छेदन (समुच्चय थ्योरी) है। नोटेशन की उत्पत्ति जर्मन में G से Gebiet ( जर्मन : क्षेत्र, या पड़ोस) के साथ हुई है, जिसका अर्थ इस मामले में खुला समुच्चय है और δ Durchschnitt ( जर्मन : प्रतिच्छेदन) के लिए है।[1]

ऐतिहासिक रूप से Gδ समुच्चय को आंतरिक सीमित समुच्चय भी कहा जाता था[2] लेकिन वह शब्दावली अब उपयोग में नहीं है।

Gδ समुच्चय और उनका दोहरा Fσ समुच्चय, बोरेल पदानुक्रम का दूसरा स्तर हैं।

परिभाषा

एक टोपोलॉजिकल स्थान में एक Gδ समुच्चय खुले समुच्चयों का एक गणनीय प्रतिच्छेदन(समुच्चय सिद्धांत) है। Gδ समुच्चय बिल्कुल स्तर Π0
2
बोरेल पदानुक्रम के समुच्चय है।

उदाहरण

  • कोई भी खुला समुच्चय तुच्छ रूप से Gδ समुच्चय होता है।
  • अपरिमेय संख्याएँ वास्तविक संख्याओं में Gδ समुच्चय होता है। उन्हें खुले समुच्चय के गणनीय प्रतिच्छेदन के रूप में लिखा जा सकता है (सुपरस्क्रिप्ट पूरक (समुच्चय सिद्धांत) को दर्शाता है) जहां परिमेय संख्या है।
  • परिमेय संख्याओं का समुच्चय Gδ समुच्चय नहीं है। अगर खुले समुच्चयों का प्रतिच्छेदनथा प्रत्येक घना समुच्चय होगा क्योंकि में घना है . हालांकि ऊपर के निर्माण ने अपरिमेय संख्या को खुले घने उपसमुच्चय के एक गणनीय प्रतिच्छेदन के रूप में दिया। इन दोनों समुच्चयों के प्रतिच्छेदन को लेने से खाली समुच्चय को खुले घने समुच्चयों के गणनीय प्रतिच्छेदन के रूप में मिलता है और बेयर श्रेणी प्रमेय का उल्लंघन करता है।
  • किसी वास्तविक मूल्यवान कार्य का निरंतरता एक Gδ समुच्चय इसके डोमेन का उपसमुच्चय है (अधिक सामान्य कथन के लिए गुण अनुभाग देखें)।
  • हर जगह अलग-अलग वास्तविक-मूल्यवान कार्य के व्युत्पन्न (गणित) का शून्य-समुच्चय एक Gδ समुच्चय तय करता है। यह खाली आंतरिक भाग के साथ एक सघन समुच्चय हो सकता है, जैसा कि पोम्पेयू के निर्माण द्वारा दिखाया गया है।
  • कार्यों का समुच्चय के भीतर किसी भी बिंदु पर अलग नहीं किया जा सकता है जिसमे मीट्रिक स्थान का एक सघन Gδ समुच्चय होता है।

गुण

मीट्रिक (और टोपोलॉजिकल) रिक्त स्थान में Gδ समुच्चय पूर्ण मीट्रिक स्थान के साथ-साथ बेयर श्रेणी प्रमेय की धारणा से संबंधित है। नीचे गुणों की सूची में पूरी तरह से मेट्रिज़ेबल रिक्त स्थान के बारे में परिणाम देखें। समुच्चय और उनके पूरक भी वास्तविक विश्लेषण में महत्वपूर्ण हैं और विशेष रूप से माप सिद्धांत है।

बुनियादी गुण

  • एक G δ समुच्चय का पूरक एक F σ समुच्चय होता है।
  • गिने-चुने कई Gδ समुच्चयों का प्रतिच्छेदन एक Gδ समुच्चय होता है।
  • बहुत से Gδ समुच्चयों का संघ एक Gδ समुच्चय होता है।
  • Gδ समुच्चय का एक गणनीय संघ (जिसे Gδσ समुच्चय कहा जाएगा) सामान्य रूप से Gδ समुच्चय नहीं है। उदाहरण के लिए, परिमेय संख्याएँ और है।
  • एक टोपोलॉजिकल स्थान में प्रत्येक वास्तविक मूल्यवान निरंतर कार्य का शून्य समुच्चय एक (बंद) Gδ समुच्चय के बाद से खुले समुच्चयों का प्रतिच्छेदनहै। , .
  • मेट्रिजेबल स्थान में प्रत्येक बंद समुच्चय एक Gδ समुच्चय है और दो तरह से हर खुला समुच्चय एक Fσ समुच्चय है।[3] दरअसल एक बंद समुच्चय निरंतर कार्य का शून्य समुच्चय है , जहाँ एक समुच्चय की दूरी को इंगित करता है। स्यूडोमेट्रिजेबल स्थान में भी ऐसा ही होता है।
  • पहले गणनीय T1 स्थान में प्रत्येक सिंगलटन एक G δ समुच्चय होता है।[4]
  • पूरी तरह से मेट्रिजेबल स्थान का एक टोपोलॉजिकल उप-स्थान है अगर यह एक Gδ समुच्चय है तो यह स्वयं पूरी तरह से मेट्रिज़ेबल है।[5][6]
  • पोलिश अंतरिक्ष का एक उप-स्थान स्वयं पोलिश है यदि यह Gδ समुच्चय है। यह पिछले परिणाम से पूरी तरह से मेट्रिजेबल उप-स्थान के बारे में है और तथ्य यह है कि एक वियोज्य मीट्रिक स्थान के प्रत्येक उप-स्थान वियोज्य है।
  • एक टोपोलॉजिकल स्थान पोलिश है अगर यह ठोस मेट्रिक स्थान का Gδ उपसमुच्चय के लिए होमियोमॉर्फिक है।[7][8]

वास्तविक मूल्यवान कार्यों का निरंतरता समुच्चय

उन बिंदुओं का समूह जहां एक कार्य होता है टोपोलॉजिकल स्थान से मेट्रिक स्थान तक निरंतर कार्य तय करना। ऐसा इसलिए है क्योंकि एक बिंदु पर निरंतरता सूत्र द्वारा परिभाषित किया जा सकता है अर्थात् सभी सही पूर्णांकों के लिए एक खुला समुच्चय है युक्त ऐसा है कि सबके लिए में है। यदि इसका मान तय है, तो समुच्चय जिसके लिए इस तरह का एक समान खुला अपने आप में एक खुला समुच्चय है और सार्वभौमिक परिमाणक चालू है। इन समुच्चयों के (गणनीय) प्रतिच्छेदन से मेल खाती है। परिणामस्वरूप जबकि अपरिमेय के लिए एक कार्य के निरंतरता बिंदुओं का समुच्चय होना संभव है और एक कार्य का निर्माण करना असंभव है जो केवल परिमेय संख्याओं पर निरंतर हो। वास्तविक रेखा में विलोम भी धारण करता है कि किसी भी जी Gδ उपसमुच्चय के लिए वास्तविक रेखा का एक कार्य यह बिल्कुल बिंदुओं पर निरंतर है .[9]

जी Gδ अंतरिक्ष

Gδ अंतरिक्ष[10] एक टोपोलॉजिकल स्थान है जिसमें हर बंद समुच्चय एक Gδ समुच्चय (जॉनसन 1970) है। एक सामान्य स्थान जो कि Gδ अंतरिक्ष को बिल्कुल सामान्य स्थान कहा जाता है। उदाहरण के लिए प्रत्येक मेट्रिजेबल स्थान पूरी तरह से सामान्य है।


यह भी देखें

  • Fσ समुच्चय, दोहरी अवधारणा; ध्यान दें कि "जी" जर्मन (गेबिएट) है और "एफ" फ्रेंच (फर्मे) है।
  • P -स्थान, कोई भी स्थान जिसमें संपत्ति है कि हर Gδ समुच्चय खुला है

टिप्पणियाँ

  1. Stein, Elias M.; Shakarchi, Rami (2009), Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, p. 23, ISBN 9781400835560.
  2. Young, William; Young, Grace Chisholm (1906), Theory of Sets of Points, Cambridge University Press
  3. Willard, 15C, p. 105
  4. "General topology - when are singletons $G_\delta$?".
  5. Willard, theorem 24.12, p. 179
  6. Engelking, theorems 4.3.23 and 4.3.24 on p. 274. From the historical notes on p. 276, the forward implication was shown in a special case by S. Mazurkiewicz and in the general case by M. Lavrentieff; the reverse implication was shown in a special case by P. Alexandroff and in the general case by F. Hausdorff.
  7. Fremlin, p. 334
  8. The sufficiency of the condition uses the fact that every compact metric space is separable and complete, and hence Polish.
  9. Saito, Shingo. "Properties of Gδ subsets of " (PDF).
  10. Steen & Seebach, p. 162


संदर्भ