अभिसरण श्रृंखला: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mathematical series with a finite sum}} {{for|the short story collection|Convergent Series (short story collection)}} {{redirect|Convergence (mathematics)|...")
 
mNo edit summary
Line 1: Line 1:
{{Short description|Mathematical series with a finite sum}}
{{for|the short story collection|Convergent Series (short story collection)}}
{{redirect|Convergence (mathematics)||Convergence (disambiguation)}}
[[गणित]] में, एक [[श्रृंखला (गणित)]] संख्याओं के [[अनंत क्रम]] के पदों का [[योग]] है। अधिक सटीक, एक अनंत अनुक्रम <math>(a_0, a_1, a_2, \ldots)</math> एक श्रृंखला को परिभाषित करता है (गणित) {{mvar|S}} जिसे दर्शाया गया है
[[गणित]] में, एक [[श्रृंखला (गणित)]] संख्याओं के [[अनंत क्रम]] के पदों का [[योग]] है। अधिक सटीक, एक अनंत अनुक्रम <math>(a_0, a_1, a_2, \ldots)</math> एक श्रृंखला को परिभाषित करता है (गणित) {{mvar|S}} जिसे दर्शाया गया है
:<math>S=a_0 +a_1+ a_2 + \cdots=\sum_{k=0}^\infty a_k.</math>
:<math>S=a_0 +a_1+ a_2 + \cdots=\sum_{k=0}^\infty a_k.</math>
Line 43: Line 40:
*: <math>\frac{1}{1} +  \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \cdots = \psi.</math>
*: <math>\frac{1}{1} +  \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \cdots = \psi.</math>


 
<big>अभिसरण परीक्षण</big>
== अभिसरण परीक्षण ==
{{main|Convergence tests}}
{{main|Convergence tests}}
यह निर्धारित करने की कई विधियाँ हैं कि कोई श्रृंखला अभिसरण करती है या अपसारी श्रृंखला।
यह निर्धारित करने की कई विधियाँ हैं कि कोई श्रृंखला अभिसरण करती है या अपसारी श्रृंखला।

Revision as of 12:34, 7 February 2023

गणित में, एक श्रृंखला (गणित) संख्याओं के अनंत क्रम के पदों का योग है। अधिक सटीक, एक अनंत अनुक्रम एक श्रृंखला को परिभाषित करता है (गणित) S जिसे दर्शाया गया है

n'}}वाँ आंशिक योग Sn प्रथम का योग है n अनुक्रम की शर्तें; वह है,

अनुक्रम अभिसारी (या अभिसरण) एक श्रृंखला है इसके आंशिक योग अनुक्रम की सीमा तक जाते हैं; इसका मतलब है कि, एक जोड़ते समय सूचकांकों द्वारा दिए गए क्रम में एक के बाद एक आंशिक राशि प्राप्त होती है जो दी गई संख्या के करीब और करीब होती जाती है। अधिक सटीक रूप से, यदि कोई संख्या मौजूद है, तो एक श्रृंखला अभिसरण करती है ऐसा है कि हर मनमाने ढंग से छोटी सकारात्मक संख्या के लिए , एक (पर्याप्त रूप से बड़ा) पूर्णांक है ऐसा कि सभी के लिए ,

यदि श्रृंखला अभिसरण है, तो (अनिवार्य रूप से अद्वितीय) संख्या श्रृंखला का योग कहा जाता है।

वही अंकन

श्रृंखला के लिए उपयोग किया जाता है, और, यदि यह अभिसारी है, तो इसके योग के लिए। यह कन्वेंशन उसी के समान है जिसका उपयोग जोड़ के लिए किया जाता है: a + b जोड़ने की क्रिया को दर्शाता है a और bसाथ ही इस जोड़ का परिणाम, जिसे योग कहा जाता है a और b.

कोई भी श्रृंखला जो अभिसारी नहीं है, उसे अपसारी श्रृंखला या अपसारी श्रृंखला कहा जाता है।

अभिसारी और अपसारी श्रृंखला के उदाहरण

  • प्राकृतिक संख्या के व्युत्क्रम एक भिन्न श्रृंखला (हार्मोनिक श्रृंखला (गणित)) उत्पन्न करते हैं:
  • सकारात्मक पूर्णांकों के व्युत्क्रम के संकेतों को बदलने से एक अभिसरण श्रृंखला (वैकल्पिक हार्मोनिक श्रृंखला) उत्पन्न होती है:
  • अभाज्य संख्याओं के व्युत्क्रम एक भिन्न श्रृंखला का निर्माण करते हैं (इसलिए अभाज्य संख्याओं का समुच्चय छोटा समुच्चय (कॉम्बिनेटरिक्स) है; अभाज्य संख्याओं के व्युत्क्रमों के योग का विचलन देखें):
  • त्रिकोणीय संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला का उत्पादन करते हैं:
  • कारख़ाने का्स के व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करते हैं (देखें ई (गणितीय स्थिरांक) | यूलर की संख्या):
  • वर्ग संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला (बेसल समस्या) उत्पन्न करते हैं:
  • दो की शक्ति का व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करता है (इसलिए 2 की शक्तियों का सेट छोटा सेट (कॉम्बिनेटरिक्स) है):
  • ज्यामितीय श्रृंखला के व्युत्क्रम | किसी भी n>1 की घात एक अभिसारी श्रृंखला का निर्माण करते हैं:
  • दो की शक्ति के व्युत्क्रम के संकेतों को बदलने से भी एक अभिसरण श्रृंखला उत्पन्न होती है:
  • किसी भी n>1 की शक्तियों के व्युत्क्रम के संकेतों को बदलने से अभिसरण श्रृंखला उत्पन्न होती है:
  • फाइबोनैचि संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करते हैं (पारस्परिक फाइबोनैचि स्थिरांक देखें। ψ):

अभिसरण परीक्षण

यह निर्धारित करने की कई विधियाँ हैं कि कोई श्रृंखला अभिसरण करती है या अपसारी श्रृंखला।

यदि नीली श्रृंखला, अभिसरण सिद्ध किया जा सकता है, फिर छोटी श्रृंखला, जुटना चाहिए। गर्भनिरोधक द्वारा, यदि लाल श्रृंखला तब विचलन सिद्ध होता है भी हटना चाहिए।

प्रत्यक्ष तुलना परीक्षण। क्रम की शर्तें की तुलना दूसरे अनुक्रम से की जाती है . यदि,

सभी एन के लिए, , और अभिसरण करता है, तो ऐसा करता है हालाँकि, अगर, सभी एन के लिए, , और विचलन करता है, तो ऐसा करता है अनुपात परीक्षण। मान लें कि सभी 'एन' के लिए, शून्य नहीं है। मान लीजिए कि मौजूद है ऐसा है कि

यदि r < 1, तो श्रेणी पूर्णतः अभिसारी है। अगर r > 1, फिर श्रृंखला विचलन करती है। अगर r = 1, अनुपात परीक्षण अनिर्णायक है, और श्रृंखला अभिसरण या विचलन कर सकती है।

जड़ परीक्षण या एन रूट टेस्ट। मान लीजिए कि प्रश्न में अनुक्रम की शर्तें गैर-ऋणात्मक हैं। 'आर' को इस प्रकार परिभाषित करें:

जहां लिम सुपर श्रेष्ठ सीमा को दर्शाता है (संभवतः ∞; यदि सीमा मौजूद है तो यह समान मान है)।

यदि आर <1, तो श्रृंखला अभिसरित होती है। अगर r > 1, फिर श्रृंखला विचलन करती है। अगर r = 1, मूल परीक्षण अनिर्णायक है, और श्रृंखला अभिसरण या विचलन कर सकती है।

अनुपात परीक्षण और मूल परीक्षण दोनों एक ज्यामितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में काम करते हैं। वास्तव में, यदि अनुपात परीक्षण काम करता है (जिसका अर्थ है कि सीमा मौजूद है और 1 के बराबर नहीं है) तो मूल परीक्षण भी काम करता है; हालाँकि, इसका विलोम सत्य नहीं है। रूट परीक्षण इसलिए अधिक आम तौर पर लागू होता है, लेकिन एक व्यावहारिक मामले के रूप में आमतौर पर देखी जाने वाली श्रृंखलाओं के लिए सीमा की गणना करना अक्सर मुश्किल होता है।

अभिसरण के लिए अभिन्न परीक्षण। अभिसरण या विचलन स्थापित करने के लिए श्रृंखला की तुलना एक अभिन्न से की जा सकती है। होने देना एक सकारात्मक और नीरस कार्य करें। अगर

फिर श्रृंखला अभिसरण करती है। लेकिन अगर इंटीग्रल अलग हो जाता है, तो श्रृंखला भी ऐसा करती है।

सीमा तुलना परीक्षण। अगर , और सीमा मौजूद है और फिर शून्य नहीं है अभिसरण अगर और केवल अगर अभिसरण।

वैकल्पिक श्रृंखला परीक्षण। 'लीबनिज कसौटी' के रूप में भी जाना जाता है, वैकल्पिक श्रृंखला परीक्षण बताता है कि प्रपत्र की एक वैकल्पिक श्रृंखला के लिए , अगर नीरस रूप से घट रहा है, और अनंत पर 0 की सीमा है, तो श्रृंखला अभिसरण करती है।

कॉची संक्षेपण परीक्षण। अगर तब एक सकारात्मक मोनोटोन घटता क्रम है अभिसरण अगर और केवल अगर अभिसरण।

डिरिचलेट का परीक्षण

हाबिल की परीक्षा

सशर्त और पूर्ण अभिसरण

किसी भी क्रम के लिए , सभी के लिए एन। इसलिए,

इसका मतलब है कि अगर जुट जाता है, तब अभिसरण भी करता है (लेकिन इसके विपरीत नहीं)।

यदि श्रृंखला अभिसरण, फिर श्रृंखला पूर्णतः अभिसारी है। चर के प्रत्येक सम्मिश्र संख्या मान के लिए घातीय फलन की मैक्लॉरिन श्रृंखला पूर्ण रूप से अभिसारी है।

यदि श्रृंखला अभिसरण लेकिन श्रृंखला विचलन, फिर श्रृंखला सशर्त रूप से अभिसरण है। लघुगणक फलन की मैकलॉरिन श्रृंखला के लिए सशर्त अभिसरण है x = 1.

रीमैन श्रृंखला प्रमेय में कहा गया है कि यदि कोई श्रृंखला सशर्त अभिसरण करती है, तो श्रृंखला की शर्तों को इस तरह पुनर्व्यवस्थित करना संभव है कि श्रृंखला किसी भी मूल्य में परिवर्तित हो जाती है, या यहां तक ​​कि विचलन भी करती है।

समान अभिसरण

होने देना कार्यों का एक क्रम हो। श्रृंखला समान रूप से f में अभिसरण करने के लिए कहा जाता है यदि अनुक्रम द्वारा परिभाषित आंशिक रकम की

समान रूप से f में परिवर्तित हो जाता है।

वीयरस्ट्रैस एम-टेस्ट नामक कार्यों की अनंत श्रृंखला के लिए तुलना परीक्षण का एक एनालॉग है।

कॉची अभिसरण मानदंड

कॉशी का अभिसरण परीक्षण बताता है कि एक श्रृंखला

अभिसरण करता है अगर और केवल अगर आंशिक रकम का क्रम एक कॉची अनुक्रम है। इसका अर्थ है कि प्रत्येक के लिए एक सकारात्मक पूर्णांक है ऐसा कि सभी के लिए अपने पास

जो बराबर है


यह भी देखें

बाहरी संबंध

  • "Series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Weisstein, Eric (2005). Riemann Series Theorem. Retrieved May 16, 2005.