अभिसरण श्रृंखला: Difference between revisions
Line 55: | Line 55: | ||
यदि r < 1, तो श्रेणी पूर्णतः अभिसारी है। अगर {{nowrap|''r'' > 1,}} तो भिन्न श्रृंखला है। अगर {{nowrap|1=''r'' = 1,}} अनुपात परीक्षण अनिर्णायक है, तो श्रृंखला अभिसरण या अपसारी हो सकती है। | यदि r < 1, तो श्रेणी पूर्णतः अभिसारी है। अगर {{nowrap|''r'' > 1,}} तो भिन्न श्रृंखला है। अगर {{nowrap|1=''r'' = 1,}} अनुपात परीक्षण अनिर्णायक है, तो श्रृंखला अभिसरण या अपसारी हो सकती है। | ||
[[जड़ परीक्षण]] या '' | [[जड़ परीक्षण|मूल परीक्षण]] या ''n'' रूट टेस्ट। माना कि प्रश्न में अनुक्रम की पद गैर-ऋणात्मक हैं तो '''r''<nowiki/>' को इस प्रकार परिभाषित करें: | ||
:<math>r = \limsup_{n\to\infty}\sqrt[n]{|a_n|},</math> | :<math>r = \limsup_{n\to\infty}\sqrt[n]{|a_n|},</math> | ||
:जहां लिम | :जहां 'लिम सुप' [[श्रेष्ठ सीमा]] को दर्शाता है (संभवतः ∞; यदि संख्या सीमा उपलब्ध है तो यह समान मान है)। | ||
यदि | यदि r <1, तो श्रृंखला अभिसरित होती है। अगर {{nowrap|''r'' > 1,}} फिर श्रृंखला विचलन करती है। अगर {{nowrap|1=''r'' = 1,}} मूल परीक्षण अनिर्णायक है, और श्रृंखला अभिसरण या विचलन कर सकती है। | ||
अनुपात परीक्षण और मूल परीक्षण दोनों एक ज्यामितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में काम करते हैं। वास्तव में, यदि अनुपात परीक्षण काम करता है (जिसका अर्थ है कि सीमा | अनुपात परीक्षण और मूल परीक्षण दोनों एक ज्यामितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में काम करते हैं। वास्तव में, यदि अनुपात परीक्षण काम करता है (जिसका अर्थ है कि सीमा उपलब्ध है और 1 के बराबर नहीं है) तो मूल परीक्षण भी काम करता है; हालाँकि, इसका विलोम सत्य नहीं है। रूट परीक्षण इसलिए अधिक आम तौर पर लागू होता है, लेकिन एक व्यावहारिक मामले के रूप में आमतौर पर देखी जाने वाली श्रृंखलाओं के लिए सीमा की गणना करना अक्सर मुश्किल होता है। | ||
[[अभिसरण के लिए अभिन्न परीक्षण]]। अभिसरण या विचलन स्थापित करने के लिए श्रृंखला की तुलना एक अभिन्न से की जा सकती है। होने देना <math>f(n) = a_n</math> एक सकारात्मक और नीरस कार्य करें। अगर | [[अभिसरण के लिए अभिन्न परीक्षण]]। अभिसरण या विचलन स्थापित करने के लिए श्रृंखला की तुलना एक अभिन्न से की जा सकती है। होने देना <math>f(n) = a_n</math> एक सकारात्मक और नीरस कार्य करें। अगर | ||
Line 69: | Line 69: | ||
फिर श्रृंखला अभिसरण करती है। लेकिन अगर इंटीग्रल अलग हो जाता है, तो श्रृंखला भी ऐसा करती है। | फिर श्रृंखला अभिसरण करती है। लेकिन अगर इंटीग्रल अलग हो जाता है, तो श्रृंखला भी ऐसा करती है। | ||
[[सीमा तुलना परीक्षण]]। अगर <math>\left \{ a_n \right \}, \left \{ b_n \right \} > 0</math>, और सीमा <math>\lim_{n \to \infty} \frac{a_n}{b_n}</math> | [[सीमा तुलना परीक्षण]]। अगर <math>\left \{ a_n \right \}, \left \{ b_n \right \} > 0</math>, और सीमा <math>\lim_{n \to \infty} \frac{a_n}{b_n}</math> उपलब्ध है और फिर शून्य नहीं है <math display="inline">\sum_{n=1}^\infty a_n</math> अभिसरण [[अगर और केवल अगर]] <math display="inline">\sum_{n=1}^\infty b_n</math> अभिसरण। | ||
[[वैकल्पिक श्रृंखला]] परीक्षण। 'लीबनिज कसौटी' के रूप में भी जाना जाता है, [[वैकल्पिक श्रृंखला परीक्षण]] बताता है कि प्रपत्र की एक वैकल्पिक श्रृंखला के लिए <math display="inline">\sum_{n=1}^\infty a_n (-1)^n</math>, अगर <math>\left \{ a_n \right \}</math> नीरस रूप से घट रहा है, और अनंत पर 0 की सीमा है, तो श्रृंखला अभिसरण करती है। | [[वैकल्पिक श्रृंखला]] परीक्षण। 'लीबनिज कसौटी' के रूप में भी जाना जाता है, [[वैकल्पिक श्रृंखला परीक्षण]] बताता है कि प्रपत्र की एक वैकल्पिक श्रृंखला के लिए <math display="inline">\sum_{n=1}^\infty a_n (-1)^n</math>, अगर <math>\left \{ a_n \right \}</math> नीरस रूप से घट रहा है, और अनंत पर 0 की सीमा है, तो श्रृंखला अभिसरण करती है। | ||
Line 82: | Line 82: | ||
== सशर्त और पूर्ण अभिसरण == | == सशर्त और पूर्ण अभिसरण == | ||
किसी भी क्रम के लिए <math>\left \{ a_1,\ a_2,\ a_3,\dots \right \}</math>, <math>a_n \le \left| a_n \right|</math> सभी के लिए | किसी भी क्रम के लिए <math>\left \{ a_1,\ a_2,\ a_3,\dots \right \}</math>, <math>a_n \le \left| a_n \right|</math> सभी के लिए n। इसलिए, | ||
:<math>\sum_{n=1}^\infty a_n \le \sum_{n=1}^\infty \left| a_n \right|.</math> | :<math>\sum_{n=1}^\infty a_n \le \sum_{n=1}^\infty \left| a_n \right|.</math> | ||
Line 103: | Line 103: | ||
समान रूप से f में परिवर्तित हो जाता है। | समान रूप से f में परिवर्तित हो जाता है। | ||
[[वीयरस्ट्रैस एम-टेस्ट]] नामक कार्यों की अनंत श्रृंखला के लिए तुलना परीक्षण का एक | [[वीयरस्ट्रैस एम-टेस्ट]] नामक कार्यों की अनंत श्रृंखला के लिए तुलना परीक्षण का एक nालॉग है। | ||
== कॉची अभिसरण मानदंड == | == कॉची अभिसरण मानदंड == |
Revision as of 18:54, 7 February 2023
गणित में, संख्याओं के अनंत क्रम के पदों के योग को श्रृंखला कहते है। अधिक सटीकता से एक अनंत अनुक्रम श्रृंखला को S से दर्शाया जाता है,
जहाँ n आंशिक योग Sn अनुक्रम के पहले n पदों का योग है; वह है,
एक श्रृंखला अभिसरण होती है जब इसके आंशिक योग अनुक्रम की सीमा पूर्वनिर्धारित होती हैं; इसका मतलब है कि, सूचकांकों द्वारा दिए गए क्रम में एक के बाद एक जोड़ते समय आंशिक योग प्राप्त होता है जो पूर्वनिर्धारित संख्या के करीब और करीब होती जाती है। अधिक सटीकता से, एक श्रृंखला अभिसरण करती है यदि कोई अक्रमतः लघु धनात्मक संख्या के लिए संख्या उपलब्ध है तो एक पर्याप्त रूप से दीर्घ पूर्णांक है ,वह है ,
यदि श्रृंखला अभिसरण है, तो (अनिवार्य रूप से अद्वितीय) संख्या श्रृंखला का योग कहा जाता है।
समान अंकन
यदि श्रृंखला अभिसारी है तो इसके योग के लिए उपयोग किया जाता है। यहअंकन उसी के समान है जिसका उपयोग योग के लिए किया जाता है: a + b, a और b को जोड़ने के साथ-साथ इस जोड़ के परिणाम को दर्शाता है, जिसे a और b का योग कहा जाता है ।
कोई भी श्रंखला जो अभिसारी नहीं है, अपसारी या भिन्न श्रंखला कहलाती है।
अभिसारी और अपसारी श्रृंखला के उदाहरण
- प्राकृतिक संख्या के व्युत्क्रम एक भिन्न श्रृंखला (हार्मोनिक श्रृंखला ) उत्पन्न करते हैं:
- धनात्मक पूर्णांकों के व्युत्क्रम के संकेतों को बदलने से एक अभिसरण श्रृंखला (वैकल्पिक हार्मोनिक श्रृंखला) उत्पन्न होती है:
- अभाज्य संख्याओं के व्युत्क्रम एक भिन्न श्रृंखला का निर्माण करते हैं (इसलिए अभाज्य संख्याओं का समुच्चय लघु समुच्चय (कॉम्बिनेटरिक्स) है; अभाज्य संख्याओं के व्युत्क्रमों के योग का विचलन देखें):
- त्रिकोणीय संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला का उत्पादन करते हैं:
- भाज्य संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करते हैं (यूलर की संख्या देखें ):
- वर्ग संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करते हैं:(बेसल समस्या)
- 2 की संख्याओं का घात का व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करता है (इसलिए 2 की संख्याओं का घात लघु समुह है):
- किसी भी संख्या n>1 का घात के व्युत्क्रम एक अभिसारी श्रृंखला का निर्माण करते हैं:
- 2 की संख्याओं का घात व्युत्क्रम के संकेतों को बदलने से भी एक अभिसरण श्रृंखला उत्पन्न होती है:
- किसी भी n>1 की घात के व्युत्क्रम के संकेतों को बदलने से अभिसरण श्रृंखला उत्पन्न होती है:
- फाइबोनैचि संख्याओं के व्युत्क्रम एक अभिसरण श्रृंखला उत्पन्न करते हैं (पारस्परिक फाइबोनैचि स्थिरांक देखें। ψ):
अभिसरण परीक्षण
कोई श्रृंखला अभिसरण श्रृंखला है या अपसारी श्रृंखला यह निर्धारित करने की कई विधियाँ हैं
प्रत्यक्ष तुलना परीक्षण। यदि सभी n के लिए,पदों के क्रम की तुलना दूसरे अनुक्रम से की जाती है;
, और अभिसरण करता है, तो
हालाँकि,
अगर, सभी n के लिए, , और भिन्न होता है, तो
अनुपात परीक्षण। माना कि सभी n के लिए, शून्य नहीं है और उपलब्ध है ;
यदि r < 1, तो श्रेणी पूर्णतः अभिसारी है। अगर r > 1, तो भिन्न श्रृंखला है। अगर r = 1, अनुपात परीक्षण अनिर्णायक है, तो श्रृंखला अभिसरण या अपसारी हो सकती है।
मूल परीक्षण या n रूट टेस्ट। माना कि प्रश्न में अनुक्रम की पद गैर-ऋणात्मक हैं तो 'r' को इस प्रकार परिभाषित करें:
- जहां 'लिम सुप' श्रेष्ठ सीमा को दर्शाता है (संभवतः ∞; यदि संख्या सीमा उपलब्ध है तो यह समान मान है)।
यदि r <1, तो श्रृंखला अभिसरित होती है। अगर r > 1, फिर श्रृंखला विचलन करती है। अगर r = 1, मूल परीक्षण अनिर्णायक है, और श्रृंखला अभिसरण या विचलन कर सकती है।
अनुपात परीक्षण और मूल परीक्षण दोनों एक ज्यामितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में काम करते हैं। वास्तव में, यदि अनुपात परीक्षण काम करता है (जिसका अर्थ है कि सीमा उपलब्ध है और 1 के बराबर नहीं है) तो मूल परीक्षण भी काम करता है; हालाँकि, इसका विलोम सत्य नहीं है। रूट परीक्षण इसलिए अधिक आम तौर पर लागू होता है, लेकिन एक व्यावहारिक मामले के रूप में आमतौर पर देखी जाने वाली श्रृंखलाओं के लिए सीमा की गणना करना अक्सर मुश्किल होता है।
अभिसरण के लिए अभिन्न परीक्षण। अभिसरण या विचलन स्थापित करने के लिए श्रृंखला की तुलना एक अभिन्न से की जा सकती है। होने देना एक सकारात्मक और नीरस कार्य करें। अगर
फिर श्रृंखला अभिसरण करती है। लेकिन अगर इंटीग्रल अलग हो जाता है, तो श्रृंखला भी ऐसा करती है।
सीमा तुलना परीक्षण। अगर , और सीमा उपलब्ध है और फिर शून्य नहीं है अभिसरण अगर और केवल अगर अभिसरण।
वैकल्पिक श्रृंखला परीक्षण। 'लीबनिज कसौटी' के रूप में भी जाना जाता है, वैकल्पिक श्रृंखला परीक्षण बताता है कि प्रपत्र की एक वैकल्पिक श्रृंखला के लिए , अगर नीरस रूप से घट रहा है, और अनंत पर 0 की सीमा है, तो श्रृंखला अभिसरण करती है।
कॉची संक्षेपण परीक्षण। अगर तब एक सकारात्मक मोनोटोन घटता क्रम है अभिसरण अगर और केवल अगर अभिसरण।
डिरिचलेट का परीक्षण
हाबिल की परीक्षा
सशर्त और पूर्ण अभिसरण
किसी भी क्रम के लिए , सभी के लिए n। इसलिए,
इसका मतलब है कि अगर जुट जाता है, तब अभिसरण भी करता है (लेकिन इसके विपरीत नहीं)।
यदि श्रृंखला अभिसरण, फिर श्रृंखला पूर्णतः अभिसारी है। चर के प्रत्येक सम्मिश्र संख्या मान के लिए घातीय फलन की मैक्लॉरिन श्रृंखला पूर्ण रूप से अभिसारी है।
यदि श्रृंखला अभिसरण लेकिन श्रृंखला विचलन, फिर श्रृंखला सशर्त रूप से अभिसरण है। लघुगणक फलन की मैकलॉरिन श्रृंखला के लिए सशर्त अभिसरण है x = 1.
रीमैन श्रृंखला प्रमेय में कहा गया है कि यदि कोई श्रृंखला सशर्त अभिसरण करती है, तो श्रृंखला की शर्तों को इस तरह पुनर्व्यवस्थित करना संभव है कि श्रृंखला किसी भी मूल्य में परिवर्तित हो जाती है, या यहां तक कि विचलन भी करती है।
समान अभिसरण
होने देना कार्यों का एक क्रम हो। श्रृंखला समान रूप से f में अभिसरण करने के लिए कहा जाता है यदि अनुक्रम द्वारा परिभाषित आंशिक रकम की
समान रूप से f में परिवर्तित हो जाता है।
वीयरस्ट्रैस एम-टेस्ट नामक कार्यों की अनंत श्रृंखला के लिए तुलना परीक्षण का एक nालॉग है।
कॉची अभिसरण मानदंड
कॉशी का अभिसरण परीक्षण बताता है कि एक श्रृंखला
अभिसरण करता है अगर और केवल अगर आंशिक रकम का क्रम एक कॉची अनुक्रम है। इसका अर्थ है कि प्रत्येक के लिए एक सकारात्मक पूर्णांक है ऐसा कि सभी के लिए अपने पास
जो बराबर है
यह भी देखें
बाहरी संबंध
- "Series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric (2005). Riemann Series Theorem. Retrieved May 16, 2005.