सममित घटक: Difference between revisions

From Vigyanwiki
(Created page with "विद्युत अभियन्त्रण में, सममित घटकों की विधि सामान्य और असामान्य...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[विद्युत अभियन्त्रण]] में, सममित घटकों की विधि सामान्य और असामान्य दोनों स्थितियों के तहत असंतुलित तीन-[[चरण]] बिजली प्रणालियों के विश्लेषण को सरल बनाती है। मूल विचार यह है कि 'एन' फेजर्स के एक विषम सेट को एक [[जटिल संख्या]] [[रैखिक परिवर्तन]] के माध्यम से फेजर्स के 'एन' सममित सेट के [[रैखिक संयोजन]] के रूप में व्यक्त किया जा सकता है।<ref>{{cite book|url=https://books.google.com/books?id=bpEeycYeWJIC&pg=PT244 |title=Power Systems and Restructuring |last1=Hadjsaïd |first1=Nouredine |first2=Jean-Claude |last2=Sabonnadière |publisher=John Wiley & Sons |year=2013 |isbn=9781118599921 |page=244}}</ref> फोर्टेस्क्यू प्रमेय (सममित घटक) [[सुपरपोजिशन प्रमेय]] पर आधारित है,<ref>{{Cite book|last1=Mathis|first1=Wolfgang|last2=Pauli|first2=Rainer|title=Network Theorems|url=https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W2507|website=Wiley Online Library|year=1999 |doi=10.1002/047134608X.W2507|isbn=047134608X |quote=[…] the results of Fortescue […] are proven by the superposition theorem, and for this reason, a direct generalization to nonlinear networks is impossible.}}</ref> इसलिए यह केवल रेखीय विद्युत प्रणालियों पर लागू होता है, या गैर-रैखिक विद्युत प्रणालियों के रेखीय सन्निकटनों के लिए।
[[विद्युत अभियन्त्रण]] में, '''''सममित घटकों''''' की विधि सामान्य और असामान्य दोनों स्थितियों के अंतर्गत असंतुलित [[चरण|तीन-फ़ेज]] विद्युत प्रणालियों के विश्लेषण को सरल बनाती है। मूल सिद्धांत यह है कि [[जटिल संख्या|समिश्र संख्या]] [[रैखिक परिवर्तन|रैखिक रूपांतरण]] के माध्यम से ''N'' फ़ेज के एक असममित समुच्चय को फ़ेज ''N'' के सममित समुच्चयों के एक [[रैखिक संयोजन]] के रूप में व्यक्त किया जा सकता है।<ref>{{cite book|url=https://books.google.com/books?id=bpEeycYeWJIC&pg=PT244 |title=Power Systems and Restructuring |last1=Hadjsaïd |first1=Nouredine |first2=Jean-Claude |last2=Sabonnadière |publisher=John Wiley & Sons |year=2013 |isbn=9781118599921 |page=244}}</ref> फोर्टेस्क्यू की प्रमेय (सममित घटक) [[सुपरपोजिशन प्रमेय|अध्यारोपण सिद्धांत]] पर आधारित है<ref>{{Cite book|last1=Mathis|first1=Wolfgang|last2=Pauli|first2=Rainer|title=Network Theorems|url=https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W2507|website=Wiley Online Library|year=1999 |doi=10.1002/047134608X.W2507|isbn=047134608X |quote=[…] the results of Fortescue […] are proven by the superposition theorem, and for this reason, a direct generalization to nonlinear networks is impossible.}}</ref> इसलिए यह केवल रैखिक विद्युत प्रणालियों पर प्रयुक्त होती है या गैर-रैखिक विद्युत प्रणालियों के रैखिक अनुमानों पर प्रयुक्त होती है।
 
तीन-चरण प्रणालियों के सबसे आम मामले में, परिणामी सममित घटकों को प्रत्यक्ष (या सकारात्मक), उलटा (या नकारात्मक) और शून्य (या एकाधिकार) के रूप में संदर्भित किया जाता है। सममित घटकों के क्षेत्र में शक्ति प्रणाली का विश्लेषण बहुत सरल है, क्योंकि परिणामी समीकरण पारस्परिक रूप से [[रैखिक रूप से स्वतंत्र]] हैं यदि सर्किट स्वयं [[संतुलित सर्किट]] है।{{citation needed|date=November 2016}}
 


तीन-फ़ेज प्रणालियों की सबसे सामान्य स्थिति में, परिणामी सममित घटकों को प्रत्यक्ष या धनात्मक, उत्क्रमित या ऋणात्मक और शून्य या एकाधिक के रूप में संदर्भित किया जाता है। सममित घटकों के क्षेत्र में ऊर्जा प्रणाली का विश्लेषण बहुत सरल होता है क्योंकि, यदि परिपथ स्वयं संतुलित है तो परिणामी समीकरण पारस्परिक रूप से [[रैखिक रूप से स्वतंत्र|एकघाततः स्वतंत्र]] होते हैं।{{citation needed|date=November 2016}}
== विवरण ==
== विवरण ==
फ़ाइल: असंतुलित सममित घटक.pdf|thumb|400px|तीन असंतुलित फेजर्स का सेट, और आवश्यक सममित घटक जो तल पर परिणामी प्लॉट का योग करते हैं।
1918 में [[चार्ल्स लेगेट फोर्टेस्क्यू]] ने एक पेपर प्रस्तुत किया <ref>Charles L. Fortescue, "[http://www.energyscienceforum.com/files/fortescue/methodofsymmetrical.pdf Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks]".  Presented at the 34th annual convention of the AIEE (American Institute of Electrical Engineers) in Atlantic City, N.J. on 28 June 1918.  Published in: ''AIEE Transactions'', vol. 37, part II, pages 1027–1140 (1918). For a brief history of the early years of symmetrical component theory, see: J. Lewis Blackburn, ''Symmetrical Components for Power Engineering'' (Boca Raton, Florida: CRC Press, 1993), pages 3–4.</ref> जिसमें दिखाया गया कि ''N'' असंतुलित फ़ेज के किसी भी समुच्चय (अर्थात, ऐसा कोई [[पॉलीपेज़ सिस्टम|पॉलीपेज़]] संकेत) ''N'' के मानों के लिए संतुलित फ़ेज ''N'' के सममित समुच्चयों के योग के रूप में व्यक्त किया जा सकता है, जो फ़ेज द्वारा केवल एकल आवृत्ति घटक का प्रतिनिधित्व करता है।


1918 में [[चार्ल्स लेगेट फोर्टेस्क्यू]] ने एक पेपर प्रस्तुत किया<ref>Charles L. Fortescue, "[http://www.energyscienceforum.com/files/fortescue/methodofsymmetrical.pdf Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks]".  Presented at the 34th annual convention of the AIEE (American Institute of Electrical Engineers) in Atlantic City, N.J. on 28 June 1918.  Published in: ''AIEE Transactions'', vol. 37, part II, pages 1027–1140 (1918). For a brief history of the early years of symmetrical component theory, see: J. Lewis Blackburn, ''Symmetrical Components for Power Engineering'' (Boca Raton, Florida: CRC Press, 1993), pages 3–4.</ref> जिसने प्रदर्शित किया कि एन असंतुलित फेजर्स के किसी भी सेट (अर्थात, ऐसे किसी भी [[पॉलीपेज़ सिस्टम]] सिग्नल) को एन के मूल्यों के लिए संतुलित फासर्स के एन सममित सेटों के योग के रूप में व्यक्त किया जा सकता है, जो कि प्रमुख हैं। फेजर्स द्वारा केवल एक आवृत्ति घटक का प्रतिनिधित्व किया जाता है।
1943 में [[एडिथ क्लार्क]] ने तीन-फ़ेज प्रणालियों के लिए सममित घटकों के उपयोग की एक विधि देते हुए एक पाठ्यपुस्तक प्रकाशित किया। जिसने मूल फोर्टेस्क पेपर की तुलना में गणनाओं को बहुत सरल बना दिया था। <ref>Gabriele Kass-Simon, Patricia Farnes, Deborah Nash (ed), ''Women of Science: Righting the Record'' , Indiana University Press, 1993, {{ISBN|0253208130}}. pages 164-168</ref> तीन-फ़ेज प्रणाली में, फ़ेज के एक समुच्चय में अध्ययन के अंतर्गत प्रणाली मे समान [[चरण अनुक्रम|फ़ेज अनुक्रम]] होता है जिसे धनात्मक ''abc'' अनुक्रम कहते हैं, दूसरे समुच्चय में निश्चित फ़ेज अनुक्रम को ऋणात्मक ''abc'' अनुक्रम कहा जाता है और तीसरे समुच्चय में फ़ेज ''a'', ''b'' और ''c'' एक दूसरे के साथ फ़ेज में होते हैं जिसे शून्य अनुक्रम या [[सामान्य-मोड संकेत]] अनुक्रम कहा जाता है। अनिवार्य रूप से, यह विधि तीन असंतुलित फ़ेज को तीन स्वतंत्र स्रोतों में परिवर्तित करती है जो असममित त्रुटि विश्लेषण को अधिक सरल बनाती है।


1943 में [[एडिथ क्लार्क]] ने तीन-चरण प्रणालियों के लिए सममित घटकों के उपयोग की एक विधि देते हुए एक पाठ्यपुस्तक प्रकाशित की, जिसने मूल फोर्टेस्क्यू पेपर पर गणनाओं को बहुत सरल बना दिया।<ref>Gabriele Kass-Simon, Patricia Farnes, Deborah Nash (ed), ''Women of Science: Righting the Record'' , Indiana University Press, 1993, {{ISBN|0253208130}}. pages 164-168</ref> तीन-चरण प्रणाली में, चरणों के एक सेट में अध्ययन के तहत प्रणाली के समान [[चरण अनुक्रम]] होता है (सकारात्मक अनुक्रम; एबीसी कहते हैं), दूसरे सेट में रिवर्स चरण अनुक्रम (नकारात्मक अनुक्रम; एसीबी) होता है, और तीसरे सेट में फेजर्स ए, बी और सी एक दूसरे के साथ चरण में हैं (शून्य अनुक्रम, [[सामान्य-मोड संकेत]])। अनिवार्य रूप से, यह विधि तीन असंतुलित चरणों को तीन स्वतंत्र स्रोतों में परिवर्तित करती है, जो दोष (पावर इंजीनियरिंग)#असममित दोष विश्लेषण को अधिक ट्रैक्टेबल बनाती है।
धनात्मक अनुक्रम, ऋणात्मक अनुक्रम और [[विद्युत जनरेटर|विद्युत जनित्र]], [[ट्रांसफार्मर|परिवर्तक]] और [[ओवरहेड बिजली लाइन|ओवरहेड लाइनों]] और केबलों सहित अन्य उपकरणों के शून्य अनुक्रम प्रतिबाधा को दिखाने के लिए एक-पंक्ति आरेख का विस्तार करके, इस तरह की असंतुलित स्थितियों का विश्लेषण स्थिर लघु-परिपथ त्रुटि के लिए एक पंक्ति के रूप में बहुत अधिक सरलीकृत होता है। तकनीक को उच्च क्रम फ़ेज प्रणालियों तक भी विस्तृत किया जा सकता है।


सकारात्मक अनुक्रम, नकारात्मक अनुक्रम, और [[विद्युत जनरेटर]], [[ट्रांसफार्मर]] और [[ओवरहेड बिजली लाइन]] और विद्युत केबल सहित अन्य उपकरणों के शून्य अनुक्रम प्रतिबाधा दिखाने के लिए एक-लाइन आरेख का विस्तार करके, शॉर्ट-सर्किट के लिए एकल लाइन के रूप में ऐसी असंतुलित स्थितियों का विश्लेषण दोष बहुत सरल है। तकनीक को उच्च क्रम चरण प्रणालियों तक भी बढ़ाया जा सकता है।
भौतिक रूप से तीन-फ़ेज प्रणाली में, धाराओं का एक धनात्मक अनुक्रम समुच्चय एक सामान्य घूर्णन क्षेत्र उत्पन्न करता है और ऋणात्मक अनुक्रम समुच्चय के विपरीत घूर्णन के साथ एक क्षेत्र को उत्पन्न करता है और शून्य अनुक्रम समुच्चय एक ऐसा क्षेत्र उत्पन्न करता है जो दोलन करता है लेकिन फ़ेज कुंडली के बीच घूर्णन नहीं करता है। चूंकि इन प्रभावों को भौतिक रूप से अनुक्रम फ़ेज के साथ यह पता लगाया जा सकता है कि गणितीय उपकरण [[सुरक्षात्मक रिले]] की संरचना का मूल आधार है, जो ऋणात्मक-अनुक्रम वोल्टेज और धाराओं को त्रुटि की स्थिति के विश्वसनीय संकेतक के रूप में उपयोग करता है। इस प्रकार के रिले का उपयोग [[परिपथ वियोजक]] का खंडन करने या विद्युत प्रणाली की सुरक्षा करने के लिए किया जा सकता है।


शारीरिक रूप से, तीन चरण प्रणाली में, धाराओं का एक सकारात्मक अनुक्रम सेट एक सामान्य घूर्णन क्षेत्र उत्पन्न करता है, एक नकारात्मक अनुक्रम सेट विपरीत घुमाव के साथ एक क्षेत्र का उत्पादन करता है, और शून्य अनुक्रम सेट एक ऐसा क्षेत्र उत्पन्न करता है जो दोलन करता है लेकिन चरण वाइंडिंग के बीच घूमता नहीं है। चूंकि इन प्रभावों को भौतिक रूप से अनुक्रम फिल्टर के साथ पता लगाया जा सकता है, गणितीय उपकरण [[सुरक्षात्मक रिले]] के डिजाइन का आधार बन गया, जो नकारात्मक-अनुक्रम वोल्टेज और धाराओं को गलती की स्थिति के विश्वसनीय संकेतक के रूप में उपयोग करता था। इस तरह के रिले का उपयोग [[परिपथ वियोजक]] को ट्रिप करने या इलेक्ट्रिकल सिस्टम की सुरक्षा के लिए अन्य कदम उठाने के लिए किया जा सकता है।
विश्लेषणात्मक तकनीक को सामान्य [[बिजली की तार|विद्युत]] और [[वेस्टिंगहाउस इलेक्ट्रिक कॉर्पोरेशन|वेस्टिंगहाउस]] में इंजीनियरों द्वारा स्वीकृत और प्रस्तुत किया गया था जो [[द्वितीय विश्व युद्ध]] के बाद से यह असममित त्रुटि विश्लेषण के लिए एक स्वीकृत तरीका बन गया है।


जनरल [[बिजली की तार]] [[वेस्टिंगहाउस इलेक्ट्रिक कॉर्पोरेशन]] में इंजीनियरों द्वारा विश्लेषणात्मक तकनीक को अपनाया और उन्नत किया गया था, और [[द्वितीय विश्व युद्ध]] के बाद यह असममित दोष विश्लेषण के लिए एक स्वीकृत तरीका बन गया।
जैसा कि ऊपर दाईं ओर के चित्र में दिखाया गया है कि सममित घटकों के तीन समुच्चय (धनात्मक, ऋणात्मक और शून्य अनुक्रम) तीन असंतुलित फ़ेजों को प्रणाली बनाने के लिए जोड़ते हैं जैसा कि आरेख के निचले भाग में चित्रित किया गया है। सदिश के समुच्चय के बीच परिमाण और फ़ेज परिवर्तन में अंतर के कारण फ़ेज के बीच असंतुलन उत्पन्न होता है। ध्यान दें कि अलग-अलग अनुक्रम सदिश के रंग (लाल, नीला और पीला) तीन अलग-अलग फ़ेज (उदाहरण के लिए ए, बी और सी) के अनुरूप हैं। अंतिम आलेख पर अभिगमन के लिए, प्रत्येक फ़ेज के सदिशों के योग की गणना की जाती है। यह परिणामी सदिश उस विशेष फ़ेज का प्रभावी फ़ेजर प्रतिनिधित्व होता है। यह प्रक्रिया, बार-बार तीन-फ़ेजों में से प्रत्येक के लिए फ़ेजर का निर्माण करती है।


जैसा कि ऊपर दाईं ओर के चित्र में दिखाया गया है, सममित घटकों के तीन सेट (सकारात्मक, नकारात्मक और शून्य अनुक्रम) तीन असंतुलित चरणों की प्रणाली बनाने के लिए जोड़ते हैं जैसा कि आरेख के निचले भाग में चित्रित किया गया है। वैक्टर के सेट के बीच परिमाण और चरण बदलाव में अंतर के कारण चरणों के बीच असंतुलन उत्पन्न होता है। ध्यान दें कि अलग-अलग अनुक्रम वैक्टर के रंग (लाल, नीला और पीला) तीन अलग-अलग चरणों (उदाहरण के लिए ए, बी और सी) के अनुरूप हैं। अंतिम प्लॉट पर पहुंचने के लिए, प्रत्येक चरण के सदिशों के योग की गणना की जाती है। यह परिणामी वेक्टर उस विशेष चरण का प्रभावी फेजर प्रतिनिधित्व है। यह प्रक्रिया, दोहराई जाती है, तीन चरणों में से प्रत्येक के लिए चरण उत्पन्न करती है।
== तीन-फ़ेज की स्थिति ==
तीन-फ़ेज विद्युत ऊर्जा प्रणालियों के विश्लेषण के लिए सममित घटकों का सबसे अधिक उपयोग किया जाता है। किसी बिंदु पर तीन-फ़ेज प्रणाली के वोल्टेज या धारा को तीन-फ़ेज द्वारा इंगित किया जा सकता है जिसे वोल्टेज या धारा के तीन फ़ेज घटक के रूप मे जाना जाता है।


== तीन चरण का मामला ==
यह लेख वोल्टेज पर चर्चा करता है हालाँकि, ये निर्धारित धारा पर भी प्रयुक्त होते हैं। और पूर्ण रूप से संतुलित तीन-फ़ेज विद्युत प्रणाली में, वोल्टेज फ़ेजर घटकों के समान परिमाण मे होते हैं लेकिन 120 डिग्री अलग होते हैं। एक असंतुलित प्रणाली में, वोल्टेज फ़ेजर घटकों के परिमाण और फ़ेज भिन्न होते हैं। वोल्टेज फ़ेजर घटकों को सममित घटकों के एक समुच्चय में विघटित करने से प्रणाली का विश्लेषण और साथ-साथ किसी भी असंतुलन की कल्पना करने में सहायता प्राप्त होती है। यदि तीन वोल्टेज घटकों को फ़ेज (जो समिश्र संख्याएं हैं) के रूप में व्यक्त किया जाता है, तो एक समिश्र सदिश बनाया जा सकता है जिसमें तीन-फ़ेज घटक सदिश के मुख्य घटक होते हैं। तीन-फ़ेज वोल्टेज घटकों को एक समिश्र सदिश के रूप में लिखा जा सकता है।
तीन-चरण विद्युत शक्ति | तीन-चरण विद्युत शक्ति प्रणालियों के विश्लेषण के लिए सममित घटकों का सबसे अधिक उपयोग किया जाता है। किसी बिंदु पर तीन-चरण प्रणाली के वोल्टेज या करंट को तीन चरणों द्वारा इंगित किया जा सकता है, जिसे वोल्टेज या करंट के तीन घटक कहा जाता है।
 
यह लेख वोल्टेज पर चर्चा करता है; हालाँकि, वही विचार वर्तमान पर भी लागू होते हैं। पूरी तरह से संतुलित तीन-चरण बिजली व्यवस्था में, वोल्टेज फेजर घटकों के समान परिमाण होते हैं लेकिन 120 डिग्री अलग होते हैं। एक असंतुलित प्रणाली में, वोल्टेज फेजर घटकों के परिमाण और चरण भिन्न होते हैं।
 
वोल्टेज फेजर घटकों को सममित घटकों के एक सेट में विघटित करने से सिस्टम का विश्लेषण करने के साथ-साथ किसी भी असंतुलन की कल्पना करने में मदद मिलती है।
यदि तीन वोल्टेज घटकों को फेजर्स (जो जटिल संख्याएं हैं) के रूप में व्यक्त किया जाता है, तो एक जटिल वेक्टर बनाया जा सकता है जिसमें तीन चरण घटक वेक्टर के घटक होते हैं। तीन चरण वोल्टेज घटकों के लिए एक वेक्टर के रूप में लिखा जा सकता है
:<math>\mathbf{v}_{abc} = \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}</math>
:<math>\mathbf{v}_{abc} = \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}</math>
और वेक्टर को तीन सममित घटकों में विघटित करना देता है
यह सदिश को तीन सममित घटकों में विघटित कर देता है
:<math>\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} =
:<math>\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} =
\begin{bmatrix} V_{a,0} \\ V_{b,0} \\ V_{c,0} \end{bmatrix} + \begin{bmatrix} V_{a,1} \\ V_{b,1} \\ V_{c,1} \end{bmatrix} + \begin{bmatrix} V_{a,2} \\ V_{b,2} \\ V_{c,2} \end{bmatrix}</math>
\begin{bmatrix} V_{a,0} \\ V_{b,0} \\ V_{c,0} \end{bmatrix} + \begin{bmatrix} V_{a,1} \\ V_{b,1} \\ V_{c,1} \end{bmatrix} + \begin{bmatrix} V_{a,2} \\ V_{b,2} \\ V_{c,2} \end{bmatrix}</math>
जहां सबस्क्रिप्ट 0, 1 और 2 क्रमशः शून्य, सकारात्मक और नकारात्मक अनुक्रम घटकों को संदर्भित करते हैं। अनुक्रम घटक केवल उनके चरण कोणों से भिन्न होते हैं, जो सममित हैं और इसलिए हैं <math>\scriptstyle\frac{2}{3}\pi</math> रेडियन या 120°.
जहां 0, 1 और 2 क्रमशः शून्य, धनात्मक और ऋणात्मक अनुक्रम घटकों को संदर्भित करते हैं। अनुक्रम घटक केवल उनके फ़ेज कोणों से भिन्न होते हैं, जो सममित हैं और इसलिए <math>\scriptstyle\frac{2}{3}\pi</math> रेडियंस या 120° के होते हैं।


=== एक मैट्रिक्स ===
=== आव्यूह ===
फेजर रोटेशन ऑपरेटर को परिभाषित करें <math>\alpha</math>, जो फेजर वेक्टर को इसके द्वारा गुणा किए जाने पर वामावर्त 120 डिग्री घुमाता है:
फ़ेजर घूर्णन संचालक <math>\alpha</math> को परिभाषित करें, जो फ़ेजर सदिश को इसके द्वारा गुणा किए जाने पर वामावर्त 120 डिग्री पर घुमाता है:
:<math>\alpha \equiv e^{\frac{2}{3}\pi i}</math>.
:<math>\alpha \equiv e^{\frac{2}{3}\pi i}</math>.
ध्यान दें कि <math>\alpha^3 = 1</math> ताकि <math>\alpha^{-1} = \alpha^2</math>.
ध्यान दें कि <math>\alpha^3 = 1</math> ताकि <math>\alpha^{-1} = \alpha^2</math>


शून्य अनुक्रम घटकों में समान परिमाण होता है और एक दूसरे के साथ चरण में होते हैं, इसलिए:
जिनका शून्य अनुक्रम घटकों में समान परिमाण होता है और एक दूसरे के साथ फ़ेज में होते हैं, इसलिए:
:<math>V_0 \equiv V_{a,0} = V_{b,0} = V_{c,0}</math>,
:<math>V_0 \equiv V_{a,0} = V_{b,0} = V_{c,0}</math>


और अन्य अनुक्रम घटकों का परिमाण समान होता है, लेकिन उनके चरण कोणों में 120° का अंतर होता है। यदि वोल्टेज फेजर्स के मूल असंतुलित सेट में सकारात्मक या एबीसी चरण अनुक्रम होता है, तो:
और अन्य अनुक्रम घटकों का परिमाण समान होता है, लेकिन उनके फ़ेज कोणों में 120° का अंतर होता है। यदि वोल्टेज फ़ेज के मूल असंतुलित समुच्चय में धनात्मक या ''abc'' फ़ेज अनुक्रम होते है, तो:
:<math>\begin{align}
:<math>\begin{align}
  V_1 &\equiv V_{a,1} = \alpha V_{b,1} = \alpha^2 V_{c,1}
  V_1 &\equiv V_{a,1} = \alpha V_{b,1} = \alpha^2 V_{c,1}
Line 47: Line 40:
  V_2 &\equiv V_{a,2} = \alpha^2 V_{b,2} = \alpha V_{c,2}
  V_2 &\equiv V_{a,2} = \alpha^2 V_{b,2} = \alpha V_{c,2}
\end{align}</math>,
\end{align}</math>,
मतलब है कि
जिसका अर्थ है कि
:<math>\begin{align} V_{b,1} = \alpha^2 V_1\end{align}</math>,
:<math>\begin{align} V_{b,1} = \alpha^2 V_1\end{align}</math>,
:<math>\begin{align} V_{c,1} = \alpha V_1\end{align}</math>,
:<math>\begin{align} V_{c,1} = \alpha V_1\end{align}</math>,
Line 53: Line 46:
:<math>\begin{align} V_{c,2} = \alpha^2 V_2\end{align}</math>.
:<math>\begin{align} V_{c,2} = \alpha^2 V_2\end{align}</math>.


इस प्रकार,
इसी प्रकार,
:<math>\begin{align}
:<math>\begin{align}
  \mathbf{v}_{abc}
  \mathbf{v}_{abc}
Line 63: Line 56:
  &= \textbf{A} \mathbf{v}_{012}
  &= \textbf{A} \mathbf{v}_{012}
\end{align}</math>
\end{align}</math>
कहाँ पे
जहाँ पर,
:<math>\mathbf{v}_{012} = \begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix}, \textbf{A} = \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix}</math>
:<math>\mathbf{v}_{012} = \begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix}, \textbf{A} = \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix}</math>
यदि इसके बजाय वोल्टेज फेजर्स के मूल असंतुलित सेट में नकारात्मक या एसीबी चरण अनुक्रम होता है, तो निम्न मैट्रिक्स समान रूप से प्राप्त किया जा सकता है:
यदि इसके अतिरिक्त वोल्टेज फ़ेज के मूल असंतुलित समुच्चय में ऋणात्मक या ''abc'' फ़ेज अनुक्रम होता है, तो निम्न आव्यूह समान रूप से प्राप्त किया जा सकता है:
:<math>\textbf{A}_{acb} = \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix}</math>
:<math>\textbf{A}_{acb} = \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix}</math>
=== अपघटन ===
=== अपघटन ===
अनुक्रम घटक विश्लेषण समीकरण से प्राप्त होते हैं
अनुक्रम घटक विश्लेषण समीकरण से प्राप्त होते हैं
:<math>\mathbf{v}_{012} = \textbf{A}^{-1} \mathbf{v}_{abc} </math>
:<math>\mathbf{v}_{012} = \textbf{A}^{-1} \mathbf{v}_{abc} </math>
कहाँ पे
जहाँ पर,
:<math>\textbf{A}^{-1} = \frac{1}{3} \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix}</math>
:<math>\textbf{A}^{-1} = \frac{1}{3} \begin{bmatrix}1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix}</math>
उपरोक्त दो समीकरण बताते हैं कि तीन चरणों के एक विषम सेट के अनुरूप सममित घटकों को कैसे प्राप्त किया जाए:
उपरोक्त दो समीकरण यह प्रदर्शित करते हैं कि तीन-फ़ेज के एक विषम समुच्चय के अनुरूप सममित घटकों को कैसे प्राप्त किया जाए:
* अनुक्रम 0 मूल तीन चरणों के योग का एक तिहाई है।
* अनुक्रम 0 मूल तीन-फ़ेज के योग का एक तिहाई है।
* अनुक्रम 1 वामावर्त 0°, 120°, और 240° घुमाए गए मूल तीन चरणों के योग का एक-तिहाई है।
* अनुक्रम 1 वामावर्त 0°, 120°, और 240° घुमाए गए मूल तीन-फ़ेज के योग का एक-तिहाई है।
* अनुक्रम 2 वामावर्त 0°, 240°, और 120° घुमाए गए मूल तीन चरणों के योग का एक-तिहाई है।
* अनुक्रम 2 वामावर्त 0°, 240°, और 120° घुमाए गए मूल तीन-फ़ेज के योग का एक-तिहाई है।


दृष्टिगत रूप से, यदि मूल घटक सममित हैं, अनुक्रम 0 और 2 प्रत्येक त्रिभुज का निर्माण करेंगे, जिसका योग शून्य होगा, और अनुक्रम 1 घटक एक सीधी रेखा में योग करेंगे।
सामान्यतः यदि मूल घटक सममित अनुक्रम 0 और 2 हैं, तो प्रत्येक त्रिभुज का योग शून्य होगा और अनुक्रम 1 घटक एक सीधी रेखा का योग होगा।


=== अंतर्ज्ञान ===
=== अंतर्ज्ञान ===
[[Image:Napoleon's theorem.svg|thumb|नेपोलियन की प्रमेय: यदि L, M, और N पर केन्द्रित त्रिभुज समबाहु हैं, तो हरा त्रिभुज भी ऐसा ही है।]]चरण <math>\scriptstyle V_{(ab)}= V_{(a)}-V_{(b)}; \;V_{(bc)}= V_{(b)}-V_{(c)}; \; V_{(ca)}= V_{(c)}-V_{(a)}</math> एक बंद त्रिकोण बनाएं (उदाहरण के लिए, बाहरी वोल्टेज या लाइन से लाइन वोल्टेज)। चरणों के तुल्यकालिक और व्युत्क्रम घटकों को खोजने के लिए, बाहरी त्रिकोण के किसी भी पक्ष को लें और चयनित पक्ष को आधार के रूप में साझा करते हुए दो संभावित समबाहु त्रिभुज बनाएं। ये दो समबाहु त्रिभुज एक तुल्यकालिक और एक व्युत्क्रम प्रणाली का प्रतिनिधित्व करते हैं।
[[Image:Napoleon's theorem.svg|thumb|नेपोलियन की प्रमेय: यदि L, M, और N पर केन्द्रित त्रिभुज समबाहु हैं, तो हरा त्रिभुज भी ऐसा ही है।]]फ़ेज <math>\scriptstyle V_{(ab)}= V_{(a)}-V_{(b)}; \;V_{(bc)}= V_{(b)}-V_{(c)}; \; V_{(ca)}= V_{(c)}-V_{(a)}</math> एक सवृत त्रिकोण बनाते है (उदाहरण के लिए, बाहरी वोल्टेज या लाइन से लाइन वोल्टेज।) फ़ेज के समकालिक और व्युत्क्रम घटकों को खोजने के लिए, बाहरी त्रिकोण के किसी भी पक्ष का चयन करे और चयनित पक्ष को आधार के रूप में साझा करते हुए दो संभावित समबाहु त्रिभुज बनाएं। ये दो समबाहु त्रिभुज समकालिक और एक व्युत्क्रम प्रणाली का प्रतिनिधित्व करते हैं।


यदि चरण V पूरी तरह से तुल्यकालिक प्रणाली थे, तो आधार रेखा पर बाहरी त्रिभुज का शीर्ष उसी स्थिति में नहीं होगा, जैसा कि समकालिक प्रणाली का प्रतिनिधित्व करने वाले समबाहु त्रिभुज के संगत शीर्ष पर होता है। व्युत्क्रम घटक की किसी भी मात्रा का अर्थ इस स्थिति से विचलन होगा। विचलन व्युत्क्रम चरण घटक का ठीक 3 गुना है।
यदि फ़ेज V पूरी तरह से समकालिक प्रणाली है तो आधार रेखा पर बाहरी त्रिभुज का शीर्ष उसी स्थिति में नहीं होता है जैसा कि समकालिक प्रणाली का प्रतिनिधित्व करने वाले समबाहु त्रिभुज के संगत कोण शीर्ष पर होता है। व्युत्क्रम घटक के किसी भी योग का अर्थ इस स्थिति से विचलन होता है। जैसे कि विचलन व्युत्क्रम फ़ेज घटक का ठीक 3 गुना है।


तुल्यकालिक घटक उसी तरह से उलटा समबाहु त्रिभुज से विचलन का 3 गुना है। प्रासंगिक चरण के लिए इन घटकों के निर्देश सही हैं। ऐसा लगता है कि यह सभी तीन चरणों के लिए काम करता है, चाहे चुने गए पक्ष की परवाह किए बिना, लेकिन यह इस चित्रण की सुंदरता है। ग्राफिक नेपोलियन के प्रमेय से है, जो एक ग्राफिकल गणना तकनीक से मेल खाता है जो कभी-कभी पुरानी संदर्भ पुस्तकों में प्रकट होता है।<ref>{{Cite book|title=Symmetrical Components|last1=Wagner|first1=C. F.|last2=Evans|first2=R. D.|publisher=McGraw Hill|year=1933|location=New York and London|pages=265}}</ref>
समकालिक घटक उसी प्रकार से व्युत्क्रम समबाहु त्रिभुज से विचलन का 3 गुना है। जिस प्रकार संगत फ़ेज के लिए इन घटकों के निर्देश सही हैं। जिससे यह प्रतीत होता है कि यह सभी तीन-फ़ेज के लिए कार्य करते है, चयनित पक्ष की उपेक्षा के साथ यह इस चित्रण की सुंदरता है। ग्राफिक नेपोलियन की प्रमेय के अनुसार, यह एक ग्राफिकल गणना तकनीक के अनुरूप है जो कभी-कभी पुरानी संदर्भ पुस्तकों में प्रदर्शित होता है।<ref>{{Cite book|title=Symmetrical Components|last1=Wagner|first1=C. F.|last2=Evans|first2=R. D.|publisher=McGraw Hill|year=1933|location=New York and London|pages=265}}</ref>
== पॉली-फ़ेज कारक ==
यह देखा जा सकता है कि उपरोक्त रूपांतरण आव्यूह एक [[असतत फूरियर रूपांतरण]] है और इस प्रकार, किसी भी बहु-फ़ेज प्रणाली के लिए सममित घटकों की गणना की जा सकती है।


== 3-फ़ेज विद्युत प्रणालियों में सममित घटकों के लिए हार्मोनिक्स का योगदान ==
गैर-रैखिक भार के परिणामस्वरूप [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक्स (विद्युत ऊर्जा)]] प्रायः विद्युत प्रणालियों में होते हैं। हार्मोनिक्स का प्रत्येक क्रम विभिन्न अनुक्रम घटकों में योगदान देता है। अनुक्रम के मूल और <math>\scriptstyle 3n + 1</math> हार्मोनिक्स धनात्मक अनुक्रम घटक में योगदान देता है और अनुक्रम <math>\scriptstyle 3n - 1</math> के हार्मोनिक्स ऋणात्मक अनुक्रम में योगदान देता है। जो अनुक्रम <math>\scriptstyle 3n</math> हार्मोनिक्स शून्य अनुक्रम में योगदान देता है।


== पॉली-फेज केस ==
ध्यान दें कि उपरोक्त नियम केवल तभी प्रयुक्त होते हैं जब प्रत्येक फ़ेज में फ़ेज मान (या विरूपण) पूर्णतः समान हों। कृपया आगे ध्यान दें कि ऊर्जा प्रणाली में हार्मोनिक्स भी सामान्य नहीं हैं।
{{Unreferenced section|date=March 2022}}
यह देखा जा सकता है कि उपरोक्त परिवर्तन मैट्रिक्स एक [[असतत फूरियर रूपांतरण]] है, और इस प्रकार, किसी भी बहु-चरण प्रणाली के लिए सममित घटकों की गणना की जा सकती है।


== 3-चरण बिजली प्रणालियों में सममित घटकों में हार्मोनिक्स का योगदान ==
== विद्युत प्रणालियों में शून्य अनुक्रम घटक का परिणाम ==
{{Unreferenced section|date=March 2022}}
शून्य अनुक्रम असंतुलित फ़ेज के घटक का प्रतिनिधित्व करता है जो परिमाण और फ़ेज में बराबर होता है। क्योंकि वे फ़ेज शून्य अनुक्रम में हैं और एक n-फ़ेज नेटवर्क के माध्यम से प्रवाहित होने वाली धाराएँ विशेष शून्य अनुक्रम धाराओं के घटकों के परिमाण का n गुना योग करती है जो सामान्य परिचालन स्थितियों के अंतर्गत यह राशि नगण्य होने के लिए अपेक्षाकृत छोटी होती है। हालांकि, बड़े शून्य अनुक्रम की घटनाओं जैसे कि विद्युत आघात के समय, धाराओं का यह गैर-शून्य योग फ़ेज सुचालकों की तुलना में तटस्थ सुचालक के माध्यम से अत्यधिक प्रवाह उत्पन्न कर सकता है। क्योंकि तटस्थ सुचालक सामान्यतः मुख्य फ़ेज सुचालकों से बड़े नहीं होते हैं और प्रायः इन सुचालकों की तुलना में छोटे होते हैं एक बड़ा शून्य अनुक्रम घटक तटस्थ सुचालकों और ऊष्मा के अधितापन का कारण बन सकता है।
गैर-रैखिक भार के परिणामस्वरूप [[हार्मोनिक्स (विद्युत शक्ति)]] अक्सर बिजली प्रणालियों में होते हैं। हार्मोनिक्स का प्रत्येक क्रम विभिन्न अनुक्रम घटकों में योगदान देता है। आदेश के मौलिक और हार्मोनिक्स <math>\scriptstyle 3n + 1</math> सकारात्मक अनुक्रम घटक में योगदान देगा। आदेश के हार्मोनिक्स <math>\scriptstyle 3n - 1</math> नकारात्मक अनुक्रम में योगदान देगा। आदेश के हार्मोनिक्स <math>\scriptstyle 3n</math> शून्य अनुक्रम में योगदान करें।


ध्यान दें कि उपरोक्त नियम केवल तभी लागू होते हैं जब प्रत्येक चरण में चरण मान (या विरूपण) बिल्कुल समान हों। कृपया आगे ध्यान दें कि पावर सिस्टम में हार्मोनिक्स भी आम नहीं हैं।
बड़े शून्य अनुक्रम धाराओं को स्थगित करने का एक अन्य तरीका डेल्टा संयोजन का उपयोग करना है, जो शून्य अनुक्रम धाराओं के लिए एक विवृत परिपथ के रूप में प्रकट होता है। इस कारण से, डेल्टा का उपयोग करके अधिकांश संचार और उप-संचार प्रयुक्त किया जाता है। डेल्टा का उपयोग करके बहुत अधिक वितरण भी प्रयुक्त किया जाता है ताकि लाइन की क्षमता को कम परिवर्तित लागत पर बढ़ाया जा सके, लेकिन इसकी लागत पर एक उच्च केंद्रीय स्टेशन सुरक्षात्मक रिले लागत थी। हालांकि पुरानी कार्य वितरण प्रणाली को कभी-कभी वाईड-अप ([[डेल्टा-वाई ट्रांसफार्मर|डेल्टा-वाई परिवर्तक]] से डेल्टा-वाई परिवर्तक में परिवर्तित) किया जाता है।
 
== पावर सिस्टम्स में शून्य अनुक्रम घटक का परिणाम ==
{{Unreferenced section|date=March 2022}}
शून्य अनुक्रम असंतुलित चरणों के घटक का प्रतिनिधित्व करता है जो परिमाण और चरण में बराबर होता है। क्योंकि वे चरण में हैं, एक एन-चरण नेटवर्क के माध्यम से बहने वाली शून्य अनुक्रम धाराएं व्यक्तिगत शून्य अनुक्रम धाराओं के घटकों के परिमाण का n गुना योग करेंगी। सामान्य परिचालन स्थितियों के तहत यह राशि नगण्य होने के लिए काफी छोटी है। हालांकि, बड़े शून्य अनुक्रम की घटनाओं जैसे कि बिजली गिरने के दौरान, धाराओं का यह गैर-शून्य योग व्यक्तिगत चरण कंडक्टरों की तुलना में तटस्थ कंडक्टर के माध्यम से एक बड़ा प्रवाह पैदा कर सकता है। क्योंकि तटस्थ कंडक्टर आमतौर पर व्यक्तिगत चरण कंडक्टरों से बड़े नहीं होते हैं, और अक्सर इन कंडक्टरों की तुलना में छोटे होते हैं, एक बड़ा शून्य अनुक्रम घटक तटस्थ कंडक्टरों और आग को गर्म करने का कारण बन सकता है।
 
बड़े शून्य अनुक्रम धाराओं को रोकने का एक तरीका डेल्टा कनेक्शन का उपयोग करना है, जो शून्य अनुक्रम धाराओं के लिए एक खुले सर्किट के रूप में प्रकट होता है। इस कारण से, डेल्टा का उपयोग करके अधिकांश संचरण और बहुत उप-संचरण लागू किया जाता है। डेल्टा का उपयोग करके बहुत अधिक वितरण भी लागू किया जाता है, हालांकि पुरानी कार्य वितरण प्रणाली को कभी-कभी वाईड-अप ([[डेल्टा-वाई ट्रांसफार्मर]] से डेल्टा-वाई ट्रांसफॉर्मर में परिवर्तित) किया जाता है ताकि लाइन की क्षमता को कम परिवर्तित लागत पर बढ़ाया जा सके, लेकिन इसकी कीमत पर एक उच्च केंद्रीय स्टेशन सुरक्षात्मक रिले लागत।


== यह भी देखें ==
== यह भी देखें ==
* [[समरूपता]]
* [[समरूपता]]
* [[डको परिवर्तन]]
* [[डको परिवर्तन|डको रूपांतरण]]
* अल्फा-बीटा परिवर्तन
* अल्फा-बीटा रूपांतरण


==संदर्भ==
==संदर्भ==
Line 114: Line 100:
{{Reflist}}
{{Reflist}}
;Bibliography
;Bibliography
* J. Lewis Blackburn ''Symmetrical Components for Power Systems Engineering'', Marcel Dekker, New York (1993). {{ISBN|0-8247-8767-6}}
* J. Lewis Blackburn ''Symmetrical Components for Power Systems Engineering'', Marcel Dekker, New York (1993). {{ISBN|0-8247-8767-6}}
* William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', [[McGraw-Hill]], New York (1975). {{ISBN|0-07-061285-4}}.
* William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', [[McGraw-Hill]], New York (1975). {{ISBN|0-07-061285-4}}.
* [https://web.archive.org/web/20050104223344/http://www.ieee.org/organizations/pes/public/2004/nov/peshistory.html History article] from [[IEEE]] on early development of symmetrical components, retrieved May 12, 2005.
* [https://web.archive.org/web/20050104223344/http://www.ieee.org/organizations/pes/public/2004/nov/peshistory.html History article] from [[IEEE]] on early development of symmetrical components, retrieved May 12, 2005.
* Westinghouse Corporation, ''Applied Protective Relaying'', 1976, Westinghouse Corporation, no ISBN, Library of Congress card no. 76-8060 - a standard reference on electromechanical protective relays
* Westinghouse Corporation, ''Applied Protective Relaying'', 1976, Westinghouse Corporation, no ISBN, Library of Congress card no. 76-8060 - a standard reference on electromechanical protective relays


{{Authority control}}
{{Authority control}}
[[Category: विद्युत अभियन्त्रण]] [[Category: तीन चरण एसी शक्ति]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with unsourced statements from November 2016]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:तीन चरण एसी शक्ति]]
[[Category:विद्युत अभियन्त्रण]]

Latest revision as of 09:15, 12 February 2023

विद्युत अभियन्त्रण में, सममित घटकों की विधि सामान्य और असामान्य दोनों स्थितियों के अंतर्गत असंतुलित तीन-फ़ेज विद्युत प्रणालियों के विश्लेषण को सरल बनाती है। मूल सिद्धांत यह है कि समिश्र संख्या रैखिक रूपांतरण के माध्यम से N फ़ेज के एक असममित समुच्चय को फ़ेज N के सममित समुच्चयों के एक रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।[1] फोर्टेस्क्यू की प्रमेय (सममित घटक) अध्यारोपण सिद्धांत पर आधारित है[2] इसलिए यह केवल रैखिक विद्युत प्रणालियों पर प्रयुक्त होती है या गैर-रैखिक विद्युत प्रणालियों के रैखिक अनुमानों पर प्रयुक्त होती है।

तीन-फ़ेज प्रणालियों की सबसे सामान्य स्थिति में, परिणामी सममित घटकों को प्रत्यक्ष या धनात्मक, उत्क्रमित या ऋणात्मक और शून्य या एकाधिक के रूप में संदर्भित किया जाता है। सममित घटकों के क्षेत्र में ऊर्जा प्रणाली का विश्लेषण बहुत सरल होता है क्योंकि, यदि परिपथ स्वयं संतुलित है तो परिणामी समीकरण पारस्परिक रूप से एकघाततः स्वतंत्र होते हैं।[citation needed]

विवरण

1918 में चार्ल्स लेगेट फोर्टेस्क्यू ने एक पेपर प्रस्तुत किया [3] जिसमें दिखाया गया कि N असंतुलित फ़ेज के किसी भी समुच्चय (अर्थात, ऐसा कोई पॉलीपेज़ संकेत) N के मानों के लिए संतुलित फ़ेज N के सममित समुच्चयों के योग के रूप में व्यक्त किया जा सकता है, जो फ़ेज द्वारा केवल एकल आवृत्ति घटक का प्रतिनिधित्व करता है।

1943 में एडिथ क्लार्क ने तीन-फ़ेज प्रणालियों के लिए सममित घटकों के उपयोग की एक विधि देते हुए एक पाठ्यपुस्तक प्रकाशित किया। जिसने मूल फोर्टेस्क पेपर की तुलना में गणनाओं को बहुत सरल बना दिया था। [4] तीन-फ़ेज प्रणाली में, फ़ेज के एक समुच्चय में अध्ययन के अंतर्गत प्रणाली मे समान फ़ेज अनुक्रम होता है जिसे धनात्मक abc अनुक्रम कहते हैं, दूसरे समुच्चय में निश्चित फ़ेज अनुक्रम को ऋणात्मक abc अनुक्रम कहा जाता है और तीसरे समुच्चय में फ़ेज a, b और c एक दूसरे के साथ फ़ेज में होते हैं जिसे शून्य अनुक्रम या सामान्य-मोड संकेत अनुक्रम कहा जाता है। अनिवार्य रूप से, यह विधि तीन असंतुलित फ़ेज को तीन स्वतंत्र स्रोतों में परिवर्तित करती है जो असममित त्रुटि विश्लेषण को अधिक सरल बनाती है।

धनात्मक अनुक्रम, ऋणात्मक अनुक्रम और विद्युत जनित्र, परिवर्तक और ओवरहेड लाइनों और केबलों सहित अन्य उपकरणों के शून्य अनुक्रम प्रतिबाधा को दिखाने के लिए एक-पंक्ति आरेख का विस्तार करके, इस तरह की असंतुलित स्थितियों का विश्लेषण स्थिर लघु-परिपथ त्रुटि के लिए एक पंक्ति के रूप में बहुत अधिक सरलीकृत होता है। तकनीक को उच्च क्रम फ़ेज प्रणालियों तक भी विस्तृत किया जा सकता है।

भौतिक रूप से तीन-फ़ेज प्रणाली में, धाराओं का एक धनात्मक अनुक्रम समुच्चय एक सामान्य घूर्णन क्षेत्र उत्पन्न करता है और ऋणात्मक अनुक्रम समुच्चय के विपरीत घूर्णन के साथ एक क्षेत्र को उत्पन्न करता है और शून्य अनुक्रम समुच्चय एक ऐसा क्षेत्र उत्पन्न करता है जो दोलन करता है लेकिन फ़ेज कुंडली के बीच घूर्णन नहीं करता है। चूंकि इन प्रभावों को भौतिक रूप से अनुक्रम फ़ेज के साथ यह पता लगाया जा सकता है कि गणितीय उपकरण सुरक्षात्मक रिले की संरचना का मूल आधार है, जो ऋणात्मक-अनुक्रम वोल्टेज और धाराओं को त्रुटि की स्थिति के विश्वसनीय संकेतक के रूप में उपयोग करता है। इस प्रकार के रिले का उपयोग परिपथ वियोजक का खंडन करने या विद्युत प्रणाली की सुरक्षा करने के लिए किया जा सकता है।

विश्लेषणात्मक तकनीक को सामान्य विद्युत और वेस्टिंगहाउस में इंजीनियरों द्वारा स्वीकृत और प्रस्तुत किया गया था जो द्वितीय विश्व युद्ध के बाद से यह असममित त्रुटि विश्लेषण के लिए एक स्वीकृत तरीका बन गया है।

जैसा कि ऊपर दाईं ओर के चित्र में दिखाया गया है कि सममित घटकों के तीन समुच्चय (धनात्मक, ऋणात्मक और शून्य अनुक्रम) तीन असंतुलित फ़ेजों को प्रणाली बनाने के लिए जोड़ते हैं जैसा कि आरेख के निचले भाग में चित्रित किया गया है। सदिश के समुच्चय के बीच परिमाण और फ़ेज परिवर्तन में अंतर के कारण फ़ेज के बीच असंतुलन उत्पन्न होता है। ध्यान दें कि अलग-अलग अनुक्रम सदिश के रंग (लाल, नीला और पीला) तीन अलग-अलग फ़ेज (उदाहरण के लिए ए, बी और सी) के अनुरूप हैं। अंतिम आलेख पर अभिगमन के लिए, प्रत्येक फ़ेज के सदिशों के योग की गणना की जाती है। यह परिणामी सदिश उस विशेष फ़ेज का प्रभावी फ़ेजर प्रतिनिधित्व होता है। यह प्रक्रिया, बार-बार तीन-फ़ेजों में से प्रत्येक के लिए फ़ेजर का निर्माण करती है।

तीन-फ़ेज की स्थिति

तीन-फ़ेज विद्युत ऊर्जा प्रणालियों के विश्लेषण के लिए सममित घटकों का सबसे अधिक उपयोग किया जाता है। किसी बिंदु पर तीन-फ़ेज प्रणाली के वोल्टेज या धारा को तीन-फ़ेज द्वारा इंगित किया जा सकता है जिसे वोल्टेज या धारा के तीन फ़ेज घटक के रूप मे जाना जाता है।

यह लेख वोल्टेज पर चर्चा करता है हालाँकि, ये निर्धारित धारा पर भी प्रयुक्त होते हैं। और पूर्ण रूप से संतुलित तीन-फ़ेज विद्युत प्रणाली में, वोल्टेज फ़ेजर घटकों के समान परिमाण मे होते हैं लेकिन 120 डिग्री अलग होते हैं। एक असंतुलित प्रणाली में, वोल्टेज फ़ेजर घटकों के परिमाण और फ़ेज भिन्न होते हैं। वोल्टेज फ़ेजर घटकों को सममित घटकों के एक समुच्चय में विघटित करने से प्रणाली का विश्लेषण और साथ-साथ किसी भी असंतुलन की कल्पना करने में सहायता प्राप्त होती है। यदि तीन वोल्टेज घटकों को फ़ेज (जो समिश्र संख्याएं हैं) के रूप में व्यक्त किया जाता है, तो एक समिश्र सदिश बनाया जा सकता है जिसमें तीन-फ़ेज घटक सदिश के मुख्य घटक होते हैं। तीन-फ़ेज वोल्टेज घटकों को एक समिश्र सदिश के रूप में लिखा जा सकता है।

यह सदिश को तीन सममित घटकों में विघटित कर देता है

जहां 0, 1 और 2 क्रमशः शून्य, धनात्मक और ऋणात्मक अनुक्रम घटकों को संदर्भित करते हैं। अनुक्रम घटक केवल उनके फ़ेज कोणों से भिन्न होते हैं, जो सममित हैं और इसलिए रेडियंस या 120° के होते हैं।

आव्यूह

फ़ेजर घूर्णन संचालक को परिभाषित करें, जो फ़ेजर सदिश को इसके द्वारा गुणा किए जाने पर वामावर्त 120 डिग्री पर घुमाता है:

.

ध्यान दें कि ताकि

जिनका शून्य अनुक्रम घटकों में समान परिमाण होता है और एक दूसरे के साथ फ़ेज में होते हैं, इसलिए:

और अन्य अनुक्रम घटकों का परिमाण समान होता है, लेकिन उनके फ़ेज कोणों में 120° का अंतर होता है। यदि वोल्टेज फ़ेज के मूल असंतुलित समुच्चय में धनात्मक या abc फ़ेज अनुक्रम होते है, तो:

,
,

जिसका अर्थ है कि

,
,
,
.

इसी प्रकार,

जहाँ पर,

यदि इसके अतिरिक्त वोल्टेज फ़ेज के मूल असंतुलित समुच्चय में ऋणात्मक या abc फ़ेज अनुक्रम होता है, तो निम्न आव्यूह समान रूप से प्राप्त किया जा सकता है:

अपघटन

अनुक्रम घटक विश्लेषण समीकरण से प्राप्त होते हैं

जहाँ पर,

उपरोक्त दो समीकरण यह प्रदर्शित करते हैं कि तीन-फ़ेज के एक विषम समुच्चय के अनुरूप सममित घटकों को कैसे प्राप्त किया जाए:

  • अनुक्रम 0 मूल तीन-फ़ेज के योग का एक तिहाई है।
  • अनुक्रम 1 वामावर्त 0°, 120°, और 240° घुमाए गए मूल तीन-फ़ेज के योग का एक-तिहाई है।
  • अनुक्रम 2 वामावर्त 0°, 240°, और 120° घुमाए गए मूल तीन-फ़ेज के योग का एक-तिहाई है।

सामान्यतः यदि मूल घटक सममित अनुक्रम 0 और 2 हैं, तो प्रत्येक त्रिभुज का योग शून्य होगा और अनुक्रम 1 घटक एक सीधी रेखा का योग होगा।

अंतर्ज्ञान

नेपोलियन की प्रमेय: यदि L, M, और N पर केन्द्रित त्रिभुज समबाहु हैं, तो हरा त्रिभुज भी ऐसा ही है।

फ़ेज एक सवृत त्रिकोण बनाते है (उदाहरण के लिए, बाहरी वोल्टेज या लाइन से लाइन वोल्टेज।) फ़ेज के समकालिक और व्युत्क्रम घटकों को खोजने के लिए, बाहरी त्रिकोण के किसी भी पक्ष का चयन करे और चयनित पक्ष को आधार के रूप में साझा करते हुए दो संभावित समबाहु त्रिभुज बनाएं। ये दो समबाहु त्रिभुज समकालिक और एक व्युत्क्रम प्रणाली का प्रतिनिधित्व करते हैं।

यदि फ़ेज V पूरी तरह से समकालिक प्रणाली है तो आधार रेखा पर बाहरी त्रिभुज का शीर्ष उसी स्थिति में नहीं होता है जैसा कि समकालिक प्रणाली का प्रतिनिधित्व करने वाले समबाहु त्रिभुज के संगत कोण शीर्ष पर होता है। व्युत्क्रम घटक के किसी भी योग का अर्थ इस स्थिति से विचलन होता है। जैसे कि विचलन व्युत्क्रम फ़ेज घटक का ठीक 3 गुना है।

समकालिक घटक उसी प्रकार से व्युत्क्रम समबाहु त्रिभुज से विचलन का 3 गुना है। जिस प्रकार संगत फ़ेज के लिए इन घटकों के निर्देश सही हैं। जिससे यह प्रतीत होता है कि यह सभी तीन-फ़ेज के लिए कार्य करते है, चयनित पक्ष की उपेक्षा के साथ यह इस चित्रण की सुंदरता है। ग्राफिक नेपोलियन की प्रमेय के अनुसार, यह एक ग्राफिकल गणना तकनीक के अनुरूप है जो कभी-कभी पुरानी संदर्भ पुस्तकों में प्रदर्शित होता है।[5]

पॉली-फ़ेज कारक

यह देखा जा सकता है कि उपरोक्त रूपांतरण आव्यूह एक असतत फूरियर रूपांतरण है और इस प्रकार, किसी भी बहु-फ़ेज प्रणाली के लिए सममित घटकों की गणना की जा सकती है।

3-फ़ेज विद्युत प्रणालियों में सममित घटकों के लिए हार्मोनिक्स का योगदान

गैर-रैखिक भार के परिणामस्वरूप हार्मोनिक्स (विद्युत ऊर्जा) प्रायः विद्युत प्रणालियों में होते हैं। हार्मोनिक्स का प्रत्येक क्रम विभिन्न अनुक्रम घटकों में योगदान देता है। अनुक्रम के मूल और हार्मोनिक्स धनात्मक अनुक्रम घटक में योगदान देता है और अनुक्रम के हार्मोनिक्स ऋणात्मक अनुक्रम में योगदान देता है। जो अनुक्रम हार्मोनिक्स शून्य अनुक्रम में योगदान देता है।

ध्यान दें कि उपरोक्त नियम केवल तभी प्रयुक्त होते हैं जब प्रत्येक फ़ेज में फ़ेज मान (या विरूपण) पूर्णतः समान हों। कृपया आगे ध्यान दें कि ऊर्जा प्रणाली में हार्मोनिक्स भी सामान्य नहीं हैं।

विद्युत प्रणालियों में शून्य अनुक्रम घटक का परिणाम

शून्य अनुक्रम असंतुलित फ़ेज के घटक का प्रतिनिधित्व करता है जो परिमाण और फ़ेज में बराबर होता है। क्योंकि वे फ़ेज शून्य अनुक्रम में हैं और एक n-फ़ेज नेटवर्क के माध्यम से प्रवाहित होने वाली धाराएँ विशेष शून्य अनुक्रम धाराओं के घटकों के परिमाण का n गुना योग करती है जो सामान्य परिचालन स्थितियों के अंतर्गत यह राशि नगण्य होने के लिए अपेक्षाकृत छोटी होती है। हालांकि, बड़े शून्य अनुक्रम की घटनाओं जैसे कि विद्युत आघात के समय, धाराओं का यह गैर-शून्य योग फ़ेज सुचालकों की तुलना में तटस्थ सुचालक के माध्यम से अत्यधिक प्रवाह उत्पन्न कर सकता है। क्योंकि तटस्थ सुचालक सामान्यतः मुख्य फ़ेज सुचालकों से बड़े नहीं होते हैं और प्रायः इन सुचालकों की तुलना में छोटे होते हैं एक बड़ा शून्य अनुक्रम घटक तटस्थ सुचालकों और ऊष्मा के अधितापन का कारण बन सकता है।

बड़े शून्य अनुक्रम धाराओं को स्थगित करने का एक अन्य तरीका डेल्टा संयोजन का उपयोग करना है, जो शून्य अनुक्रम धाराओं के लिए एक विवृत परिपथ के रूप में प्रकट होता है। इस कारण से, डेल्टा का उपयोग करके अधिकांश संचार और उप-संचार प्रयुक्त किया जाता है। डेल्टा का उपयोग करके बहुत अधिक वितरण भी प्रयुक्त किया जाता है ताकि लाइन की क्षमता को कम परिवर्तित लागत पर बढ़ाया जा सके, लेकिन इसकी लागत पर एक उच्च केंद्रीय स्टेशन सुरक्षात्मक रिले लागत थी। हालांकि पुरानी कार्य वितरण प्रणाली को कभी-कभी वाईड-अप (डेल्टा-वाई परिवर्तक से डेल्टा-वाई परिवर्तक में परिवर्तित) किया जाता है।

यह भी देखें

संदर्भ

Notes
  1. Hadjsaïd, Nouredine; Sabonnadière, Jean-Claude (2013). Power Systems and Restructuring. John Wiley & Sons. p. 244. ISBN 9781118599921.
  2. Mathis, Wolfgang; Pauli, Rainer (1999). Network Theorems. doi:10.1002/047134608X.W2507. ISBN 047134608X. […] the results of Fortescue […] are proven by the superposition theorem, and for this reason, a direct generalization to nonlinear networks is impossible. {{cite book}}: |website= ignored (help)
  3. Charles L. Fortescue, "Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks". Presented at the 34th annual convention of the AIEE (American Institute of Electrical Engineers) in Atlantic City, N.J. on 28 June 1918. Published in: AIEE Transactions, vol. 37, part II, pages 1027–1140 (1918). For a brief history of the early years of symmetrical component theory, see: J. Lewis Blackburn, Symmetrical Components for Power Engineering (Boca Raton, Florida: CRC Press, 1993), pages 3–4.
  4. Gabriele Kass-Simon, Patricia Farnes, Deborah Nash (ed), Women of Science: Righting the Record , Indiana University Press, 1993, ISBN 0253208130. pages 164-168
  5. Wagner, C. F.; Evans, R. D. (1933). Symmetrical Components. New York and London: McGraw Hill. p. 265.
Bibliography
  • J. Lewis Blackburn Symmetrical Components for Power Systems Engineering, Marcel Dekker, New York (1993). ISBN 0-8247-8767-6
  • William D. Stevenson, Jr. Elements of Power System Analysis Third Edition, McGraw-Hill, New York (1975). ISBN 0-07-061285-4.
  • History article from IEEE on early development of symmetrical components, retrieved May 12, 2005.
  • Westinghouse Corporation, Applied Protective Relaying, 1976, Westinghouse Corporation, no ISBN, Library of Congress card no. 76-8060 - a standard reference on electromechanical protective relays