रिसाव प्रेरकत्व: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 6: Line 6:
क्षरण अधिष्ठापन और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। [[आगमनात्मक प्रतिक्रिया|क्षरण प्रतिक्रिया]] के परिणाम में विद्युत संचालन शक्ति का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक्(विद्युत शक्ति)]] पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।{{sfn|Irwin|1997|p=362}}
क्षरण अधिष्ठापन और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। [[आगमनात्मक प्रतिक्रिया|क्षरण प्रतिक्रिया]] के परिणाम में विद्युत संचालन शक्ति का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के [[हार्मोनिक्स (विद्युत शक्ति)|हार्मोनिक्(विद्युत शक्ति)]] पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।{{sfn|Irwin|1997|p=362}}


क्षरण प्रेरकत्व [[विद्युत मोटर]] सहित किसी भी अपूर्ण-युग्मित चुंबकीय परिपथ उपकरणों पर अनप्रयुक्‍त होता है।<ref name="Pyrhonen">{{harvnb|Pyrhönen|Jokinen|Hrabovcová|2008|loc=Chapter 4 Flux Leakage}}</ref>खुले परिचालित परिस्थितियों में प्रेरक युग्मन गुणांक 𝑘 के रूप में व्यक्त प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं।
क्षरण प्रेरकत्व [[विद्युत मोटर]] सहित किसी भी अपूर्ण-युग्मित चुंबकीय परिपथ उपकरणों पर अनप्रयुक्‍त होता है।<ref name="Pyrhonen">{{harvnb|Pyrhönen|Jokinen|Hrabovcová|2008|loc=Chapter 4 Flux Leakage}}</ref>मुक्त परिचालित परिस्थितियों में प्रेरक युग्मन गुणांक 𝑘 के रूप में व्यक्त प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं।


== क्षरण प्रेरकत्व और अधिष्ठापन युग्मन कारक ==
== क्षरण प्रेरकत्व और अधिष्ठापन युग्मन कारक ==
Line 12: Line 12:
चित्र संख्या 1 को दर्शाते हुए इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली [[ओपन-सर्किट टेस्ट|मुक्त-परिपथ प्रेरकत्व]] और संबंधित युग्मक गुणांक या युग्मक घटक <math>k</math> के संदर्भ में परिभाषित किया गया है।<ref>The terms inductive coupling factor and inductive leakage factor are in this article as defined in [[International Electrotechnical Commission]] [https://web.archive.org/web/20160619074202/http://www.electropedia.org/iev/iev.nsf/d253fda6386f3a52c1257af700281ce6?OpenForm Electropedia]'s [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV-131-12-41, Inductive coupling factor] and [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 IEV-131-12-42, Inductive leakage factor].</ref><ref name="18-1">{{harvnb|Brenner|Javid|1959|loc=§18-1 Mutual Inductance, pp. 587-591}}</ref><ref>IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV 131-12-41 '''Inductive coupling factor''']</ref>
चित्र संख्या 1 को दर्शाते हुए इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली [[ओपन-सर्किट टेस्ट|मुक्त-परिपथ प्रेरकत्व]] और संबंधित युग्मक गुणांक या युग्मक घटक <math>k</math> के संदर्भ में परिभाषित किया गया है।<ref>The terms inductive coupling factor and inductive leakage factor are in this article as defined in [[International Electrotechnical Commission]] [https://web.archive.org/web/20160619074202/http://www.electropedia.org/iev/iev.nsf/d253fda6386f3a52c1257af700281ce6?OpenForm Electropedia]'s [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV-131-12-41, Inductive coupling factor] and [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 IEV-131-12-42, Inductive leakage factor].</ref><ref name="18-1">{{harvnb|Brenner|Javid|1959|loc=§18-1 Mutual Inductance, pp. 587-591}}</ref><ref>IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 IEV 131-12-41 '''Inductive coupling factor''']</ref>


प्राथमिक विवृत-परिपथ स्व-प्रेरकत्व जिसके द्वारा दिया जाता है
प्रारम्भिक मुक्त-परिपथ स्व-प्रेरकत्व जिसके द्वारा दिया जाता है


:<math>L_{oc}^{pri}=L_P=L_M+L_P^\sigma</math> ------ (समीकरण 1.1 ए)
:<math>L_{oc}^{pri}=L_P=L_M+L_P^\sigma</math> ------ (समीकरण 1.1 ए)
Line 81: Line 81:


:*N<sub>P</sub> तथा N<sub>S</sub> प्राथमिक और द्वितीयक कुंडली हैं
:*N<sub>P</sub> तथा N<sub>S</sub> प्राथमिक और द्वितीयक कुंडली हैं
:*V<sub>P</sub> तथा V<sub>S</sub> और I<sub>P</sub> तथा I<sub>S</sub> प्राथमिक और द्वितीयक कुंडली वोल्टेज और धाराएं हैं।
:*V<sub>P</sub> तथा V<sub>S</sub> और I<sub>P</sub> तथा I<sub>S</sub> प्राथमिक और द्वितीयक कुंडली वोल्टता और धाराएं हैं।


गैर-आदर्श ट्रांसफार्मर के पाश समीकरणों को निम्नलिखित वोल्टेज और प्रवाह संयोजन समीकरणों द्वारा व्यक्त किया जा सकता है,<ref>{{harvnb|Hameyer|2001|loc=p. 24, eq. 3-1 thru eq. 3-4}}</ref>
गैर-आदर्श ट्रांसफार्मर के पाश समीकरणों को निम्नलिखित वोल्टेज और प्रवाह संयोजन समीकरणों द्वारा व्यक्त किया जा सकता है,<ref>{{harvnb|Hameyer|2001|loc=p. 24, eq. 3-1 thru eq. 3-4}}</ref>
Line 189: Line 189:
{{Clear}}
{{Clear}}


[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 errors]]
 
[[Category:CS1 maint]]
 
[[Category:Collapse templates]]
 
[[Category:Created On 02/02/2023]]
 
[[Category:Harv and Sfn no-target errors]]
 
[[Category:Machine Translated Page]]
 
[[Category:Navigational boxes| ]]
 
[[Category:Navigational boxes without horizontal lists]]
 
[[Category:Pages with script errors]]
 


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 271: Line 271:


<sup>{{Electric transformers}}
<sup>{{Electric transformers}}
[[Category: बिजली के ट्रांसफार्मर]]


[[de:Streufluss#Streuinduktivität]]
[[de:Streufluss#Streuinduktivität]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Created On 02/02/2023]]
[[Category:Created On 02/02/2023]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:बिजली के ट्रांसफार्मर]]

Latest revision as of 09:19, 12 February 2023

क्षरण प्रेरकत्व अपूर्ण रूप से युग्मित ट्रांसफार्मर की विद्युत संपत्ति द्वारा प्राप्त होता है जिससे प्रत्येक कुंडली संबंधित ओमी प्रतिरोध स्थिरांक के साथ श्रृंखला में स्व-प्रेरकत्व के रूप में व्यवहार करता है। यह चार कुंडली स्थिरांक ट्रांसफार्मर के पारस्परिक प्रेरकत्व के साथ भी संपर्क करते हैं। कुंडली क्षरण अधिष्ठापन क्षरण प्रवाह के कारण होता है जो प्रत्येक अपूर्ण रूप से युग्मित कुंडली के सभी घुमावों से नहीं जुड़ता है।

सामान्यतः क्षरण प्रतिघात ऊर्जा घटक, विद्युत संचालन शक्ति का पतन, प्रतिघाती विद्युत उपभोग और स्तरभ्रंश धारा विचार के कारण ट्रांसफॉर्मर धारा प्रणाली का सबसे महत्वपूर्ण तत्व है।[1][2]

क्षरण अधिष्ठापन और कुंडली अंतर्भाग की ज्यामिति पर निर्भर करता है। क्षरण प्रतिक्रिया के परिणाम में विद्युत संचालन शक्ति का पतन प्रायः ट्रांसफॉर्मर विद्युत भार के साथ अवांछनीय आपूर्ति विनियमन में होती है। लेकिन यह कुछ भारों के हार्मोनिक्(विद्युत शक्ति) पृथक्रकरण (उच्च आवृत्तियों को क्षीण करने) के लिए भी उपयोगी हो सकता है।[3]

क्षरण प्रेरकत्व विद्युत मोटर सहित किसी भी अपूर्ण-युग्मित चुंबकीय परिपथ उपकरणों पर अनप्रयुक्‍त होता है।[4]मुक्त परिचालित परिस्थितियों में प्रेरक युग्मन गुणांक 𝑘 के रूप में व्यक्त प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं।

क्षरण प्रेरकत्व और अधिष्ठापन युग्मन कारक

चित्र संख्या 1: LPσऔर LSσ खुले परिचालित परिस्थितियों में प्रेरक युग्मन गुणांक के रूप में व्यक्त प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं।

चुंबकीय परिपथ का प्रवाह जो दोनों कुंडलियों को अंतराबंध नहीं करता है, प्राथमिक क्षरण प्रेरकत्व LPσ तथा द्वितीयक क्षरण प्रेरकत्व LSσ के अनुरूप क्षरण प्रवाह होता है।

चित्र संख्या 1 को दर्शाते हुए इन क्षरण प्रेरकत्व को ट्रांसफॉर्मर कुंडली मुक्त-परिपथ प्रेरकत्व और संबंधित युग्मक गुणांक या युग्मक घटक के संदर्भ में परिभाषित किया गया है।[5][6][7]

प्रारम्भिक मुक्त-परिपथ स्व-प्रेरकत्व जिसके द्वारा दिया जाता है

------ (समीकरण 1.1 ए)

जहाँ

------ (समीकरण 1.1 बी)
------ (समीकरण 1.1 सी)

और

  • प्राथमिक स्व-प्रेरकत्व है
  • प्राथमिक क्षरण प्रेरकत्व है
  • चुंबकीय प्रेरण है
  • प्रेरक युग्मन गुणांक है

आधारिक ट्रांसफार्मर प्रेरकत्व और युग्मन कारक को मापना

ट्रांसफार्मर स्व-प्रेरकत्व और और पारस्परिक प्रेरण द्वारा दिए गए दो कुंडलियों के धनात्मक और ऋणात्मक सम्बंधित श्रृंखला में हैं,[8]

धनात्मक संबंध में,
, और,
ऋणात्मक संबंध में,
जैसे कि इन ट्रांसफॉर्मर प्रेरकत्व को निम्नलिखित तीन समीकरणों से निर्धारित किया जा सकता है:[9][10]
 ::
.

युग्मक घटक एक कुंडली में मापे गए उपपादन मान से लिया गया है, जो निम्न के अनुसार दूसरे कुंडली में लघु-परिपथ के साथ जुड़ा है:[11][12][13]

प्रति समीकरण 2.7,
और :::ऐसा है कि

कैंपबेल ब्रिज परिपथ का उपयोग ट्रांसफॉर्मर स्व-प्रेरकत्व और पारस्परिक अधिष्ठापन को निर्धारित करने के लिए भी किया जा सकता है जो संपर्क पक्षों में से एक पक्ष के लिए एक चर मानक पारस्परिक प्रेरक जोड़ी का उपयोग करता है।[14][15]

इसलिए यह विवृत-परिपथ स्व-प्रेरकत्व और प्रेरकत्व युग्मक घटक द्वारा अनुसरण करता है

------ (समीकरण 1.2), और,
, 0 <के साथ <1 ------ (समीकरण 1.3)

जहाँ

और

  • पारस्परिक प्रेरकत्व है
  • द्वितीयक स्व-प्रेरकत्व है
  • द्वितीयक क्षरण प्रेरकत्व है
  • द्वितीयक को संदर्भित चुंबकन प्रेरकत्व है
  • प्रेरक युग्मन गुणांक है
  • [lower-alpha 1] अनुमानित मोड़ अनुपात है

चित्र संख्या 1 में ट्रांसफॉर्मर आरेख की विद्युत वैधता संबंधित कुंडली प्रेरकत्व के लिए मुक्त-परिपथ स्थितियों पर पूर्ण रूप से निर्भर करती है। अधिक सामान्यीकृत परिपथ स्थितियां अगले दो खंडों में विकसित की गई हैं।

प्रेरक क्षरण कारक और अधिष्ठापन

अनादर्श रैखिक द्विकुंडली ट्रांसफॉर्मर को ट्रांसफॉर्मर के पांच आसन्नता (विद्युत) स्थिरांक को जोड़ने वाले दो पारस्परिक प्रेरकत्व-युग्मित परिपथ द्वारा दर्शाया जा सकता है जैसा कि चित्र संख्या 2 में दिखाया गया है।[6][16][17][18]

चित्र संख्या 2: गैर-आदर्श ट्रांसफार्मर परिपथ आरेख

जहाँ

* M पारस्परिक प्रेरण है
  • & प्राथमिक और द्वितीयक कुंडली प्रतिरोध हैं
* स्थिरांक , , , & ट्रांसफार्मर के अंतिम सिरे पर मापने योग्य हैं
* युग्मन कारक परिभाषित किया जाता है
, जहां 0 < <1 ------ (समीकरण 2.1)

कुंडली घुमावों का अनुपात प्राचलन पद्धति में दिया जाता है

------ (समीकरण 2.2)।[19]

जहाँ

  • NP तथा NS प्राथमिक और द्वितीयक कुंडली हैं
  • VP तथा VS और IP तथा IS प्राथमिक और द्वितीयक कुंडली वोल्टता और धाराएं हैं।

गैर-आदर्श ट्रांसफार्मर के पाश समीकरणों को निम्नलिखित वोल्टेज और प्रवाह संयोजन समीकरणों द्वारा व्यक्त किया जा सकता है,[20]

------ (समीकरण 2.3)
------ (समीकरण 2.4)
------ (समीकरण 2.5)
------ (समीकरण 2.6),
जहाँ
  • प्रवाह संयोजन है
  • समय के संबंध में प्रवाह संयोजन का व्युत्पन्न है।

इन समीकरणों को यह दिखाने के लिए विकसित किया जा सकता है कि संबंधित कुंडली प्रतिरोधों को नकारते करते हुए एक कुंडली परिपथ के अधिष्ठापन और अन्य कुंडली लघु-परिपथ और विवृत-परिपथ परीक्षण के साथ अनुपात इस प्रकार है[21]

------ (समीकरण 2.7),
जहाँ,
  • IOC और ISC विवृत-परिपथ और लघु-परिपथ धाराएँ हैं
  • LOC और LSC विवृत-परिपथ और लघु-परिपथ प्रेरकत्व हैं।
  • प्रेरक क्षरण कारक या हेलैंड कारक है[22][23][24]
  • और प्राथमिक और द्वितीयक लघु-परिपथ क्षरण प्रेरकत्व हैं।

ट्रांसफॉर्मर प्रेरकत्व को तीन प्रेरकत्व स्थिरांक के रूप में निम्नानुसार वर्णित किया जा सकता है,[25][26]

------ (समीकरण 2.8)
------ (समीकरण 2.9)
------ (समीकरण 2.10) ,

जहाँ,

चित्र संख्या 3: गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ

:* LM चुम्बकीय प्रेरण है, जो चुम्बकीय विरोध XM के अनुरूप है

  • LPσ और LSσ प्राथमिक और द्वितीयक क्षरण प्रेरकत्व हैं, जो प्राथमिक और द्वितीयक क्षरण प्रतिक्रिया XPσ और XSσ के अनुरूप है

ट्रांसफॉर्मर को चित्र संख्या 3 में समतुल्य परिपथ के रूप में अधिक आसानी से व्यक्त किया जा सकता है, जिसमें द्वितीयक स्थिरांक(अर्थात प्राइम सुपरस्क्रिप्ट नोटेशन के साथ) प्राथमिक को संदर्भित किया जाता है,[25][26] :

.
चित्र संख्या 4: युग्मन गुणांक k के संदर्भ में 4 गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ[27]

तब से

------ (समीकरण 2.11)

और

------ (समीकरण 2.12),

अपने पास

------ (समीकरण 2.13),

जो कुंडली अधिष्ठापन और चुम्बकीय प्रेरण स्थिरांक के संदर्भ में चित्र संख्या 4 में समतुल्य परिपथ की अभिव्यक्ति की अनुमति देता है, जैसा कि निम्नानुसार है,[26]

चित्र संख्या 5: सरलीकृत गैर-आदर्श ट्रांसफार्मर समकक्ष परिपथ

: ------ (समीकरण 2.14 समीकरण 1.1बी)

------ (समीकरण 2.15 समीकरण 1.1 सी)।

चित्र संख्या 4 में गैर-आदर्श ट्रांसफार्मर को चित्र संख्या 5 में सरलीकृत समतुल्य परिपथ के रूप में दिखाया जा सकता है, जिसमें द्वितीयक स्थिरांक को प्राथमिक और आदर्श ट्रांसफार्मर पृथक्रकरण के बिना संदर्भित किया जाता है, जहां,

------ (समीकरण 2.16)
  • प्रवाह ΦM द्वारा उत्तेजित धारा को चुम्बकित कर रहा है जो प्राथमिक और द्वितीयक कुंडली दोनों को जोड़ता है
  • प्राथमिक धारा है
  • ट्रांसफार्मर के प्राथमिक पक्ष को संदर्भित द्वितीयक धारा है।

परिष्कृत अधिष्ठापन क्षरण कारक

परिष्कृत प्रेरक क्षरण कारक व्युत्पत्ति

(ए) प्रति समीकरण 2.1 और आईइसी आईइवी 131-12-41 प्रेरक युग्मन कारक द्वारा दिया गया है

--------------------- (समीकरण 2.1):

(बी) प्रति समीकरण 2.7 और आईइसी आईइवी 131-12-42 प्रेरक क्षरण कारक द्वारा दिया गया है

------ (समीकरण 2.7) और (समीकरण 3.7 ए)

(सी) से गुणा देता है

----------------- (समीकरण 3.7 बी)

(डी) प्रति समीकरण 2.8 और यह जानकर

------------------------------------- (समीकरण 3.7 सी)

(इ) से गुणा देता है

------------------ (समीकरण 3.7 डी)

(एफ) प्रति समीकरण 3.5 समीकरण 1.1 बी और समीकरण 2.14 और समीकरण 3.6 समीकरण 1.1 बी और समीकरण 2.14:

--- (समीकरण 3.7 इ)

इस लेख में सभी समीकरण स्थिर-अवस्था स्थिर-आवृत्ति तरंग स्थितियों को और मानते हैं जिनके मान आयाम रहित, निश्चित, परिमित और सकारात्मक किन्तु 1 से कम हैं।

चित्र संख्या 6 में प्रवाह आरेख का संदर्भ देते हुए, निम्नलिखित समीकरण धारण करते हैं:[28][29]

चित्र संख्या 6: एक चुंबकीय परिपथ में चुंबकीयकरण और क्षरण प्रवाह

[30][28][31]

σP = ΦPσM = LPσ/LM [32] ------ (समीकरण 3.1 सम। 2.7)

उसी तरह से,

σS = ΦSσ'M = LSσ'/LM[33] ------ (समीकरण 3.2 समीकरण 2.7)

और इसीलिए,

ΦP = ΦM + ΦPσ = ΦM + σPΦM = (1 + σPM[34][35] ------ (समीकरण 3.3)
ΦS' = ΦM + ΦSσ' = ΦM + σSΦM = (1 + σSM[36][37] ------ (समीकरण 3.4)
LP = LM + LPσ = LM + σPLM = (1 + σP)LM[38] ------ (समीकरण 3.5 समीकरण 1.1बी और समीकरण 2.14)
LS' = LM + LSσ' = LM + σSLM = (1 + σS)LM[39] ------ (समीकरण 3.6 समीकरण 1.1बी और समीकरण 2.14),

जहाँ

  • σP और σS क्रमशः प्राथमिक और द्वितीयक क्षरण कारक हैं
  • ΦM और LM क्रमशः पारस्परिक प्रवाह और चुम्बकीय प्रेरण हैं
  • ΦPσ और LPσ क्रमशः प्राथमिक क्षरण प्रवाह और प्राथमिक क्षरण प्रेरकत्व हैं
  • ΦSσ'और LSσ' क्रमशः द्वितीयक क्षरण प्रवाह और द्वितीयक क्षरण प्रेरकत्व मुख्य रूप से दोनों संदर्भित हैं।

इस प्रकार क्षरण अनुपात σ उपरोक्त विशिष्ट कुंडली अधिष्ठापन और क्षरण कारक अधिष्ठापन समीकरणों के अंतर्संबंध के संदर्भ में निम्नानुसार परिष्कृत किया जा सकता है:[40]

------ (समीकरण 3.7 ए से 3.7 इ).







अनुप्रयोग

क्षरण प्रेरकत्व एक अवांछनीय गुण हो सकता है, क्योंकि यह वर्धित राशि के साथ वोल्टता को परिवर्तित करने का कारण बनता है।

उच्च क्षरण ट्रांसफार्मर

अनेक स्थिति में यह उपयोगी होता है। रिसाव अधिष्ठापन में ट्रांसफॉर्मर (अतिरिक्त भार) में उपस्थित प्रवाह को बिना स्वयं को नष्ट करने वाली शक्ति (सामान्य गैर-आदर्श ट्रांसफॉर्मर नुकसान को छोड़कर) सीमित करने का उपयोगी प्रभाव होता है। सामान्यतः ट्रांसफॉर्मर क्षरण प्रेरकत्व के एक विशिष्ट मूल्य के लिए रूपित किए जाते हैं जैसे कि इस प्रेरकत्व द्वारा बनाई गई क्षरण प्रतिक्रिया संचालन की वांछित आवृत्ति पर एक विशिष्ट मूल्य है। वस्तुतः इस स्थिति में कार्य करने वाला उपयोगी मापदण्ड क्षरण प्रेरकत्व मान नहीं है अपितु लघु-परिपथ अधिष्ठापन मान है।

सामान्यतः 2,500 केवीए तक निर्धारित किए गए वाणिज्यिक और वितरण ट्रांसफार्मर लगभग 3% और 6% के बीच के लघु-परिपथ प्रतिबाधा के साथ लगभग 3 और 6 के बीच के एक्स/आर अनुपात (कुंडली प्रतिघात/कुंडली प्रतिरोध अनुपात) के साथ रूपित किए जाते हैं। जो शून्य-विद्युत् भार और पूर्ण-विद्युत् भार के बीच द्वितीयक वोल्टता प्रतिशत भिन्नता को परिभाषित करता है। इस प्रकार विशुद्ध रूप से प्रतिरोधक भार के लिए, ऐसे ट्रांसफॉर्मर का पूर्ण-से-शून्य-विद्युत् भार वोल्टता विनियमन लगभग 1% और 2% के बीच होगा।

उच्च क्षरण प्रतिक्रिया वाले ट्रांसफॉर्मर का उपयोग कुछ नकारात्मक प्रतिरोध अनुप्रयोगों जैसे नियॉन संकेतों के लिए किया जाता है, जहां विद्युत संचालन शक्ति प्रवर्धन (ट्रांसफार्मर क्रिया) के साथ-साथ धारा सीमित करने की आवश्यकता होती है। वस्तुतः इस स्थिति में क्षरण प्रतिक्रिया पूर्ण विद्युत् भार प्रतिबाधा का 100% होता है, इसलिए ट्रांसफॉर्मर को कितना भी छोटा कर दिया जाए, यह क्षतिग्रस्त नहीं होगा। क्षरण प्रेरकत्व के बिना इन गैस निर्वहन लैंप की नकारात्मक प्रतिरोध विशेषता उन्हें अत्यधिक धारा का संचालन और नष्ट करने का कारण बनती है।

आर्क वेल्डिंग समूह में धारा को नियंत्रित करने के लिए परिवर्तनीय क्षरण प्रेरकत्व वाले ट्रांसफॉर्मर का उपयोग किया जाता है। इस स्थिति में क्षरण प्रेरकत्व विद्युत प्रवाह को वांछित परिमाण तक सीमित करता है। विद्युत् प्रणाली में अधिकतम स्वीकृत मान के भीतर परिपथ स्तरभ्रंश धारा को सीमित करने में ट्रांसफार्मर क्षरण प्रतिघात की बड़ी भूमिका होती है।[2]

इसके अतिरिक्त, एचएफ-ट्रांसफार्मर का क्षरण प्रेरकत्व एक श्रृंखला प्रेरित्र को अनुनादी परिवर्तित्र में प्रतिस्थापित कर सकता है।[41]इसके विपरीत, एक पारंपरिक ट्रांसफार्मर और एक प्रेरित्र को श्रृंखला में जोड़ने से क्षरण ट्रांसफार्मर के समान विद्युत व्यवहार होता है, लेकिन यह अवांछित क्षेत्र के कारण ट्रांसफार्मर कुंडली में आवर्त धारा के नुकसान को कम करने के लिए लाभकारी हो सकता है।

यह भी देखें

  • अवरुद्ध परिभ्रमक परीक्षण
  • वृत्त आरेख
  • पारस्परिक प्रेरकत्व
  • स्टेनमेट्ज़ समतुल्य परिपथ
  • शॉर्ट-सर्किट प्रेरकत्व
  • शॉर्ट-सर्किट परीक्षण
  • वोल्टेज अधिनियम


टिप्पणियाँ

  1. Equality is approached when the leakage inductances are small.


संदर्भ

  1. Kim 1963, p. 1
  2. 2.0 2.1 Saarbafi & Mclean 2014, AESO Transformer Modelling Guide, p. 9 of 304
  3. Irwin 1997, p. 362.
  4. Pyrhönen, Jokinen & Hrabovcová 2008, Chapter 4 Flux Leakage
  5. The terms inductive coupling factor and inductive leakage factor are in this article as defined in International Electrotechnical Commission Electropedia's IEV-131-12-41, Inductive coupling factor and IEV-131-12-42, Inductive leakage factor.
  6. 6.0 6.1 Brenner & Javid 1959, §18-1 Mutual Inductance, pp. 587-591
  7. IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, IEV 131-12-41 Inductive coupling factor
  8. Brenner & Javid 1959, §18-1 Mutual Inductance - Series connection of Mutual Inductance, pp. 591-592
  9. Brenner & Javid 1959, pp. 591-592, Fig. 18-6
  10. Harris 1952, p. 723, fig. 43
  11. Voltech, Measuring Leakage Inductance
  12. Rhombus Industries, Testing Inductance
  13. This measured short-circuit inductance value is often referred to as the leakage inductance. See for example are, Measuring Leakage Inductance,Testing Inductance. The formal leakage inductance is given by (Eq. 2.14).
  14. Harris 1952, p. 723, fig. 42
  15. Khurana 2015, p. 254, fig. 7.33
  16. Brenner & Javid 1959, §18-5 The Linear Transformer, pp. 595-596
  17. Hameyer 2001, p. 24
  18. Singh 2016, Mutual Inductance
  19. Brenner & Javid 1959, §18-6 The Ideal Transformer, pp. 597-600: Eq. 2.2 holds exactly for an ideal transformer where, at the limit, as self-inductances approach an infinite value ( → ∞ & → ∞ ), the ratio approaches a finite value.
  20. Hameyer 2001, p. 24, eq. 3-1 thru eq. 3-4
  21. Hameyer 2001, p. 25, eq. 3-13
  22. Knowlton 1949, pp. §8–67, p. 802: Knowlton describes The Leakage Factor as "The total flux which passes through the yoke and enters the pole = Φm = Φa + Φe and the ratio Φma is called the leakage factor and is greater than 1." This factor is evidently different from the inductive leakage factor described in this Leakage inductance article.
  23. IEC 60050 (Publication date: 1990-10). Section 131-12: Circuit theory / Circuit elements and their characteristics, IEV ref. 131-12-42: "Inductive leakage factor
  24. IEC 60050 (Publication date: 1990-10). Section 221-04: Magnetic bodies, IEV ref. 221-04-12: "Magnetic leakage factor - the ratio of the total magnetic flux to the useful magnetic flux of a magnetic circuit." This factor is also different from the inductive leakage factor described in this Leakage inductance article.
  25. 25.0 25.1 Hameyer 2001, p. 27
  26. 26.0 26.1 26.2 Brenner & Javid 1959, §18-7 Equivalent Circuit for the nonideal transformer, pp. 600-602 & fig. 18-18
  27. Brenner & Javid 1959, p. 602, "Fig. 18-18 In this equivalent circuit of a (nonideal) transformer the elements are physically realizable and the isolationg property of the transformer has been retained."
  28. 28.0 28.1 Erickson & Maksimovic, Chapter 12 Basic Magnetic Theory, §12.2.3. Leakage inductances
  29. Kim 1963, pp. 3-12, Magnetice Leakage in Transformers; pp. 13-19, Leakage Reactance in Transformers.
  30. Hameyer 2001, p. 29, Fig. 26
  31. Kim 1963, p. 4, Fig. 1, Magnetic field due to current in the inner winding of a core-type transformer; Fig. 2, Magnetic field due to current in the outer winding of Fig. 1
  32. Hameyer 2001, pp. 28, eq. 3-31
  33. Hameyer 2001, pp. 28, eq. 3-32
  34. Hameyer 2001, pp. 29, eq. 3-33
  35. Kim 1963, p. 10, eq. 12
  36. Hameyer 2001, pp. 29, eq. 3-34
  37. Kim 1963, p. 10, eq. 13
  38. Hameyer 2001, pp. 29, eq. 3-35
  39. Hameyer 2001, pp. 29, eq. 3-36
  40. Hameyer 2001, p. 29, eq. 3-37
  41. "11kW, 70kHz LLC Converter Design for 98% Efficiency". November 2020: 1–8. doi:10.1109/COMPEL49091.2020.9265771. S2CID 227278364. {{cite journal}}: Cite journal requires |journal= (help)


बाहरी कड़ियाँ

IEC Electropedia links:


ग्रन्थसूची