अभिसरण श्रृंखला: Difference between revisions
No edit summary |
|||
(4 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
:<math>S=a_0 +a_1+ a_2 + \cdots=\sum_{k=0}^\infty a_k.</math> | :<math>S=a_0 +a_1+ a_2 + \cdots=\sum_{k=0}^\infty a_k.</math> | ||
जहाँ ''n'' आंशिक योग ''S<sub>n</sub>'' अनुक्रम के पहले ''n'' | जहाँ ''n'' आंशिक योग ''S<sub>n</sub>'' अनुक्रम के पहले ''n'' पदों का योग है; वह है, | ||
:<math>S_n = \sum_{k=1}^n a_k.</math> | :<math>S_n = \sum_{k=1}^n a_k.</math> | ||
:जब किसी श्रृंखला<math>(S_1, S_2, S_3, \dots)</math>के आंशिक योग [[अनुक्रम की सीमा]] पूर्वनिर्धारित होती हैं तब वह एक अभिसरण या अभिसारी श्रृंखला होती है ; इसका मतलब है कि, सूचकांकों द्वारा दिए गए क्रम में एक के बाद एक जोड़ते समय <math>a_k</math> आंशिक योग प्राप्त होता है जो पूर्वनिर्धारित संख्या के करीब और करीब होती जाती है। अधिक सटीकता से, एक श्रृंखला अभिसारी होती है यदि कोई अक्रमतः लघु धनात्मक संख्या <math>\varepsilon</math> के लिए संख्या <math>\ell</math> उपलब्ध है तो एक पर्याप्त रूप से दीर्घ [[पूर्णांक]] <math>N</math> है ,वह है <math>n \ge N</math>, | :जब किसी श्रृंखला<math>(S_1, S_2, S_3, \dots)</math>के आंशिक योग [[अनुक्रम की सीमा]] पूर्वनिर्धारित होती हैं तब वह एक अभिसरण या अभिसारी श्रृंखला होती है ; इसका मतलब है कि, सूचकांकों द्वारा दिए गए क्रम में एक के बाद एक जोड़ते समय <math>a_k</math> आंशिक योग प्राप्त होता है जो पूर्वनिर्धारित संख्या के करीब और करीब होती जाती है। अधिक सटीकता से, एक श्रृंखला अभिसारी होती है यदि कोई अक्रमतः लघु धनात्मक संख्या <math>\varepsilon</math> के लिए संख्या <math>\ell</math> उपलब्ध है तो एक पर्याप्त रूप से दीर्घ [[पूर्णांक]] <math>N</math> है ,वह है <math>n \ge N</math>, | ||
Line 67: | Line 67: | ||
यदि r <1, तो श्रृंखला अभिसारी होती है। यदि {{nowrap|''r'' > 1,}} तो भिन्न श्रृंखला है। यदि {{nowrap|1=''r'' = 1,}} मूल परीक्षण अनिर्णायक है, तो श्रृंखला अभिसारी या अपसारी हो सकती है। | यदि r <1, तो श्रृंखला अभिसारी होती है। यदि {{nowrap|''r'' > 1,}} तो भिन्न श्रृंखला है। यदि {{nowrap|1=''r'' = 1,}} मूल परीक्षण अनिर्णायक है, तो श्रृंखला अभिसारी या अपसारी हो सकती है। | ||
अनुपात परीक्षण और मूल परीक्षण दोनों एक रेखागणितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में कार्य करते हैं। वास्तव में, यदि अनुपात परीक्षण कार्य करता है (जिसका अर्थ है कि सीमा उपलब्ध है और 1 के बराबर नहीं है) तो मूल परीक्षण भी कार्य करता है; हालाँकि,यह | अनुपात परीक्षण और मूल परीक्षण दोनों एक रेखागणितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में कार्य करते हैं। वास्तव में, यदि अनुपात परीक्षण कार्य करता है (जिसका अर्थ है कि सीमा उपलब्ध है और 1 के बराबर नहीं है) तो मूल परीक्षण भी कार्य करता है; हालाँकि,यह सही नहीं है। सामान्य तौर पर [[जड़ परीक्षण|मूल परीक्षण]] अधिक उपयोग होता है, लेकिन वास्तविकता में सामान्य तौर पर देखी जाने वाली श्रृंखलाओं के लिए सीमा की गणना करना अक्सर कठिन होता है। | ||
[[अभिसरण के लिए अभिन्न परीक्षण|अविभाज्य परीक्षण]] | [[अभिसरण के लिए अभिन्न परीक्षण|अविभाज्य परीक्षण]] | ||
Line 141: | Line 141: | ||
* Weisstein, Eric (2005). [http://mathworld.wolfram.com/RiemannSeriesTheorem.html Riemann Series Theorem]. Retrieved May 16, 2005. | * Weisstein, Eric (2005). [http://mathworld.wolfram.com/RiemannSeriesTheorem.html Riemann Series Theorem]. Retrieved May 16, 2005. | ||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अभिसरण (गणित)]] | |||
[[Category:गणितीय श्रृंखला]] |
Latest revision as of 16:47, 12 February 2023
गणित में, संख्याओं के अनंत क्रम के पदों के योग को श्रृंखला कहते है। अधिक सटीकता से, एक अनंत अनुक्रम श्रृंखला को S से दर्शाया जाता है,
जहाँ n आंशिक योग Sn अनुक्रम के पहले n पदों का योग है; वह है,
- जब किसी श्रृंखलाके आंशिक योग अनुक्रम की सीमा पूर्वनिर्धारित होती हैं तब वह एक अभिसरण या अभिसारी श्रृंखला होती है ; इसका मतलब है कि, सूचकांकों द्वारा दिए गए क्रम में एक के बाद एक जोड़ते समय आंशिक योग प्राप्त होता है जो पूर्वनिर्धारित संख्या के करीब और करीब होती जाती है। अधिक सटीकता से, एक श्रृंखला अभिसारी होती है यदि कोई अक्रमतः लघु धनात्मक संख्या के लिए संख्या उपलब्ध है तो एक पर्याप्त रूप से दीर्घ पूर्णांक है ,वह है ,
यदि श्रृंखला अभिसारी है, तो (अनिवार्य रूप से अद्वितीय) संख्या श्रृंखला का योग कहा जाता है।
यदि श्रृंखला अभिसारी है तो इसके योग के लिए उपयोग किया जाता है जो ऊपर के सूत्र के समान अंकन है;
अथार्त यह अंकन उसी के समान है जिसका उपयोग योग के लिए किया जाता है जैसे; a + b, a और b को जोड़ने के साथ-साथ इस जोड़ के परिणाम को दर्शाता है, जिसे a और b का योग कहा जाता है ।
कोई भी श्रंखला जो अभिसारी नहीं है, अपसारी या भिन्न श्रंखला कहलाती है।
अभिसारी और अपसारी श्रृंखला के उदाहरण
- प्राकृतिक संख्या के व्युत्क्रम एक भिन्न श्रृंखला (हार्मोनिक श्रृंखला) उत्पन्न करते हैं:
- धनात्मक पूर्णांकों के व्युत्क्रम के संकेतों को बदलने से एक अभिसारी श्रृंखला (वैकल्पिक हार्मोनिक श्रृंखला) उत्पन्न होती है:
- अभाज्य संख्याओं के व्युत्क्रम एक भिन्न श्रृंखला उत्पन्न करते हैं (इसलिए अभाज्य संख्याओं का समूह "बड़ा" है); अभाज्य संख्याओं के व्युत्क्रमों के योग का विचलन देखें:
- त्रिकोणीय संख्याओं के व्युत्क्रम एक अभिसारी श्रृंखला का उत्पादन करते हैं:
- भाज्य संख्याओं के व्युत्क्रम एक अभिसारी श्रृंखला उत्पन्न करते हैं (यूलर की संख्या देखें ):
- वर्ग संख्याओं के व्युत्क्रम एक अभिसारी श्रृंखला उत्पन्न करते हैं:(बेसल समस्या)
- 2 की संख्याओं का घात का व्युत्क्रम एक अभिसारी श्रृंखला उत्पन्न करते हैं (इसलिए 2 की संख्याओं का घात समुह लघु है):
- किसी भी संख्या n>1 का घात के व्युत्क्रम एक अभिसारी श्रृंखला का निर्माण करते हैं:
- 2 की संख्याओं का घात के व्युत्क्रम के संकेतों को बदलने से भी एक अभिसारी श्रृंखला उत्पन्न होती है:
- किसी भी n>1 की घात के व्युत्क्रम के संकेतों को बदलने से अभिसारी श्रृंखला उत्पन्न होती है:
- फाइबोनैचि संख्याओं के व्युत्क्रम एक अभिसारी श्रृंखला उत्पन्न करते हैं (पारस्परिक फाइबोनैचि स्थिरांक देखें। ψ):
अभिसारी परीक्षण
कोई श्रृंखला अभिसारी श्रृंखला है या अपसारी श्रृंखला यह निर्धारित करने की कई विधियाँ हैं
यदि सभी n के लिए,पदों के क्रम की तुलना दूसरे अनुक्रम से की जाती है;तो , और श्रृंखला अभिसारी है, तब
हालाँकि,
यदि, सभी n के लिए, , और , श्रृंखला अपसारी या भिन्न है, तब
अनुपात परीक्षण।
माना कि सभी n के लिए, शून्य नहीं है और उपलब्ध है ;तो
यदि r < 1, तो श्रेणी पूर्णतः अभिसारी है। यदि r > 1, तो भिन्न श्रृंखला है। यदि r = 1, अनुपात परीक्षण अनिर्णायक है, तो श्रृंखला अभिसारी या अपसारी हो सकती है।
मूल परीक्षण या n रूट टेस्ट
माना कि प्रश्न में अनुक्रम की पद गैर-ऋणात्मक हैं तो 'r' को इस प्रकार परिभाषित करें:
- जहां 'लिम सुप' श्रेष्ठ सीमा को दर्शाता है (संभवतः ∞; यदि संख्या सीमा उपलब्ध है तो यह समान मान है)।
यदि r <1, तो श्रृंखला अभिसारी होती है। यदि r > 1, तो भिन्न श्रृंखला है। यदि r = 1, मूल परीक्षण अनिर्णायक है, तो श्रृंखला अभिसारी या अपसारी हो सकती है।
अनुपात परीक्षण और मूल परीक्षण दोनों एक रेखागणितीय श्रृंखला के साथ तुलना पर आधारित हैं, और इस तरह वे समान स्थितियों में कार्य करते हैं। वास्तव में, यदि अनुपात परीक्षण कार्य करता है (जिसका अर्थ है कि सीमा उपलब्ध है और 1 के बराबर नहीं है) तो मूल परीक्षण भी कार्य करता है; हालाँकि,यह सही नहीं है। सामान्य तौर पर मूल परीक्षण अधिक उपयोग होता है, लेकिन वास्तविकता में सामान्य तौर पर देखी जाने वाली श्रृंखलाओं के लिए सीमा की गणना करना अक्सर कठिन होता है।
अभिसारी या अपसारी स्थापित करने के लिए श्रृंखला की तुलना एक अविभाज्य संख्या से की जा सकती है। माना की एक धनात्मक और एकदिष्ट रूप से घटती हुयी संख्या है तो
- श्रृंखला अभिसारी हो सकती है । लेकिन यदि अविभाज्य संख्या भिन्न हो जाता है, तो श्रृंखला भी भिन्न हो सकती है।
यदि , और सीमा उपलब्ध है और शून्य नहीं है तब अभिसारी श्रृंखला है, अगर और केवल अगर अभिसारी श्रृंखला है।
वैकल्पिक श्रृंखला परीक्षण
इस परिक्षण को 'लीबनिज मापदंड' के रूप में भी जाना जाता है, इस परिक्षण के अनुसार वैकल्पिक श्रृंखला की संरचना के लिए , यदि एकदिष्ट रूप से घटती हुयी संख्या है और अनंत संख्या पर 0 की सीमा है, तो श्रृंखला अभिसारी हो सकती है।
इस परिक्षण के अनुसार यदि एक धनात्मक एकदिष्ट रूप से घटती हुयी संख्या है तो
अभिसारी श्रृंखला है; अगर और केवल अगर अभिसारी श्रृंखला है।
डिरिचलेट का परीक्षण
एबेल का परीक्षण
सशर्त और पूर्ण अभिसारी
किसी भी क्रम के लिए , सभी n के लिए
इसलिए,
इसका अर्थ है कि यदिअभिसारी श्रृंखला है, तब भी अभिसारी श्रृंखला है (लेकिन इसके विपरीत नहीं)।
यदि श्रृंखला अभिसारी श्रृंखला है, तब भी पूर्णतः अभिसारी श्रृंखला है। चर के प्रत्येक जटिल संख्या मान के लिए घातीय फलन की मैक्लॉरिन श्रृंखला पूर्ण रूप से अभिसारी है।
यदि श्रृंखला अभिसारी श्रृंखला है लेकिन अपसारी श्रृंखला है तो सशर्त रूप से अभिसारी श्रृंखला है। लघुगणक फलन की मैकलॉरिन श्रृंखला के लिए सशर्त अभिसारी है x = 1.
रीमैन श्रृंखला प्रमेय में कहा गया है कि यदि कोई श्रृंखला सशर्त अभिसारी श्रृंखला है, तो श्रृंखला की शर्तों को इस तरह पुनर्व्यवस्थित करना संभव है कि श्रृंखला किसी भी संख्या में अभिसारी हो सकती है, या यहां तक कि भिन्न भी हो सकती है।
समान अभिसारी
माना की व्यंजको का एक क्रम हो
समान रूप से f में अभिसारी श्रृंखला हो सकती है
यदि अनुक्रम द्वारा परिभाषित आंशिक योग की
समान रूप से f में परिवर्तित हो जाता है।
वीयरस्ट्रैस एम-टेस्ट नामक कार्यों की अनंत श्रृंखला के लिए तुलना परीक्षण का एक एनालॉग है।
कॉची अभिसारी मानदंड
कॉशी का अभिसारी परीक्षण बताता है कि एक श्रृंखला
अभिसारी श्रृंखला होती है अगर और केवल अगर आंशिक योग का क्रम एक कॉची अनुक्रम है।
इसका अर्थ है कि प्रत्येक के लिए एक धनात्मक पूर्णांक है , इस तरह
अपने पास है;
जो बराबर है,
यह भी देखें
बाहरी संबंध
- "Series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric (2005). Riemann Series Theorem. Retrieved May 16, 2005.