प्रभाव सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 112: Line 112:
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.mathphysics.com/opthy/OpHistory.html History of Operator Theory]
* [http://www.mathphysics.com/opthy/OpHistory.html History of Operator Theory]
[[Category: संचालक सिद्धांत | संचालक सिद्धांत ]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:संचालक सिद्धांत| संचालक सिद्धांत ]]

Latest revision as of 17:16, 12 February 2023

गणित में, प्रभाव सिद्धांत की क्रिया रिक्त स्थान पर रैखिक प्रभाव का अध्ययन है, जो अंतर प्रभाव और अभिन्न प्रभाव से प्रारंभ होता है। प्रभाव को उनकी विशेषताओं के अनुसार बाध्य रैखिक प्रभाव या बंद प्रभाव द्वारा संक्षेप में प्रस्तुत किया जाता है और गैर-रैखिक प्रभाव को विचार दिया जाता है। अध्ययन के अनुसार जो कार्य स्थान की सांस्थिति पर अधिक निर्भर करता है। वो कार्यात्मक विश्लेषण की शाखा होती है।

यदि संकारक का संग्रह किसी क्षेत्र पर बीजगणित बनाता है, तो यह संकारक बीजगणित होता है। जिसे प्रभाव बीजगणित के विवरण प्रभाव सिद्धांत का भाग कहते है।

प्रभाव सिद्धांत

प्रभाव सिद्धांत प्रभाव के गुण और वर्गीकरण से संबंधित होता है, जिन्हें समय के अनुसार माना जाता है। उदाहरण के लिए, प्रभाव के वर्णक्रम की स्थिति में सामान्य प्रभाव का वर्गीकरण इस श्रेणी के अंतर्गत आता है।

प्रभाव का वर्णक्रम

वर्णक्रमीय प्रमेय रैखिक प्रभाव या मैट्रिक्स (गणित) के बारे में कई परिणामों से सम्बंधित होते है।[1] यह व्यापक शब्द में वर्णक्रमीय प्रमेय में ऐसी स्थितियाँ प्रदान करता है जिसके अनुसार प्रभाव (गणित) या मैट्रिक्स (विकर्ण मैट्रिक्स) होता है। (किसी आधार पर विकर्ण मैट्रिक्स के रूप में दर्शाया गया है)। परिमित-आयामी रिक्त स्थान पर प्रभाव के लिए विकर्णकरण की यह अवधारणा अपेक्षाकृत सरल है, यद्यपि अनंत-आयामी रिक्त स्थान पर प्रभाव के लिए कुछ संशोधन की आवश्यकता होती है। सामान्यतः वर्णक्रमीय प्रमेय रैखिक प्रभाव के वर्ग का स्वीकरन करता है जिसे गुणन प्रभाव द्वारा प्रतिरूपित किया जाता है, जो कि उतना ही सरल है जितना इसके अनुसंधान की अपेक्षा कर सकता है अर्थात् अधिक अमूर्त भाषा में, वर्णक्रमीय प्रमेय क्रम विनिमेयC -बीजगणित के बारे में कथनीय है। ऐतिहासिक परिप्रेक्ष्य के लिए वर्णक्रमीय सिद्धांत भी देखें।

प्रभाव के उदाहरण के लिए वर्णक्रमीय प्रमेय में प्रयुक्त होता है। वे स्व-संबद्ध प्रभाव या हिल्बर्ट रिक्त स्थान पर अधिक रूप से सामान्य प्रभावित होते हैं।

वर्णक्रमीय प्रमेय भी विहित रूप से अपघटन प्रदान करता है, जिसे वर्णक्रमीय अपघटन, ईजेनवैल्यू अपघटन, या मैट्रिक्स की कार्यसूची में संयोजन कहा जाता है जिसके अंतर्निहित सदिश स्थान पर प्रभाव कार्य करता है।

सामान्य प्रभाव

जटिल हिल्बर्ट के अनुसार H पर सामान्य प्रभाव निरंतर कार्य (टोपोलॉजी) पर रैखिक प्रभाव NH → H है जो कम्यूटेटर अपने हर्मिटियन के साथ N अर्थात् NN* = N*N होता है।[2]

सामान्य संकारक महत्वपूर्ण होता हैं जिससे की वर्णक्रमीय प्रमेय उनके लिए मान्य होते है। वर्तमान समय में सामान्य संचालक के अध्ययन को उचित रूप से समझा जा सकता है। जो कि सामान्य प्रभाव के उदाहरण हैं।

  • कियात्मक संचालक N*= N-1
  • हर्मिटियन प्रभाव सेल्फ़ एड ज्वाइंट (विरोधी स्वयं संयुक्त) प्रभाव, N* = N; साथ ही, एंटी-सेल्फ़ एड जॉइंट(विरोधी स्वयं संयुक्त) प्रभाव N* = -N.
  • सकारात्मक संकारक N = MM*
  • सामान्य मैट्रिक्स को सामान्य प्रभाव के रूप में देखा जाता है यदि कोई हिल्बर्ट स्थान काCN लेता है।

वर्णक्रमीय प्रमेय मैट्रिक्स के अधिक सामान्य वर्ग तक फैला हुआ है। A को परिमित-आयामी आंतरिक उत्पाद के स्थान के प्रभावित होता है। जिस कारण A को सामान्य मैट्रिक्स कहा जाता है। यदि A* A =A A* होता है जिसमे यह देखा जा सकता है कि A सामान्य और क्रियात्मक रूप से विकर्ण होता है जिस कारण शूर अपघटन के द्वारा हमारे समक्ष A=UTU होता है जंहा U क्रियात्मक होता है और T ऊपरी त्रिकोणीय है।

चूँकि A सामान्य T T*=T*T होता है जिस कारण T विकर्ण होता है यधपि सामान्य ऊपरी त्रिकोणीय आव्यूह विकर्ण को स्पष्ट करता है।

दूसरे शब्द में, A सामान्य रूप से यदि क्रियात्मक मैट्रिक्स U में उपस्तिथ होता है। जैसे कि


जहां डी विकर्ण मैट्रिक्स है। फिर, डी के विकर्ण की प्रविष्टियाँ ए के eigenvalue हैं। यू के स्तंभ सदिश ए के ईजेनवेक्टर हैं और वे ऑर्थोनॉर्मल हैं। हर्मिटियन स्थिति के विपरीत, D की प्रविष्टियाँ वास्तविक होने की आवश्यकता नहीं होती है।

ध्रुवीय अपघटन

जटिल हिल्बर्ट रिक्त स्थान के बीच किसी भी बंधे हुए रैखिक प्रभाव ए का ध्रुवीय अपघटन आंशिक समरूपता और गैर-नकारात्मक प्रभाव के उत्पाद के रूप में विहित गुणनखंड होता है।[3]

मैट्रिक्स के लिए ध्रुवीय अपघटन निम्नानुसार सामान्य रूप से कार्य करता है यदि A परिबद्ध रैखिक संकारक है तो उत्पाद A = UP के रूप में A का अद्वितीय गुणनखंडन होता है, जहां U आंशिक समरूपता है, P गैर-नकारात्मक स्व-आसन्न संकारक है और प्रारंभिक U का स्थान P की सीमा का समापन है।

निम्नलिखित मुद्दे के कारण प्रभाव U को सकारात्मक के अतिरिक्त आंशिक समरूपता के लिए दुर्बल होना चाहिए। यदि A शिफ्ट प्रभाव है तब बदलाव के लिए (N), फिर |A| = (A* A)1/2 =L2 I. तो यदि A = U |A|, U को A होना चाहिए, जो सकारात्मक नहीं होता है।

ध्रुवीय अपघटन का अस्तित्व डगलस लेम्मा का परिणाम है।

लेम्मा — यदि A, B हिल्बर्ड स्पेस H, और A*A' और B*B पर बाध्य ऑपरेटर है, तो संकुचन C मौजूद है जेसे A = CB इसके अलावा, C अद्वितीय है अगर Ker(B*) ⊂ Ker(C).

प्रभाव C द्वारा परिभाषित किया जा सकता है कि C(Bh) = Ah, Ran(B) के बंद होने तक निरंतरता द्वारा विस्तारित और त्रिकोणीय पूरक पर शून्य द्वारा Ran(B). प्रभाव C से विशेष प्रकार से परिभाषित है जिससे A*AB*B तात्पर्य Ker(B) ⊂ Ker(A). लेम्मा इसके पश्चात् आता है।

विशेष रूप से, यदि A*A = B*B, तो C आंशिक समरूपता है, जो अद्वितीय है यदि Ker(B*) ⊂ Ker(C).

सामान्यतः किसी भी बाध्य प्रभाव A के लिए,

जंहा (A * A)1/2 सामान्य क्रियात्मक कलन द्वारा दिया जाता है जो A*A का अद्वितीय धनात्मक वर्गमूल है। तो लेम्मा द्वारा हमारे समक्ष होता है

कुछ आंशिक समरूपता U के लिए, जो अद्वितीय है यदि Ker(A) ⊂ Ker(U). (टिप्पणी Ker(A) = Ker(A*A) = Ker(B) = Ker(B*), जंहा B = B* = (A*A)1/2.) P को (A*A)1/2 मान लीजिए और ध्रुवीय अपघटन A = UP प्राप्त करता है। ध्यान दें कि समरूप तर्क का उपयोग A = P'U' दिखाने के लिए किया जाता है, जहाँ P' धनात्मक है और U' आंशिक सममिति है। जब H परिमित आयामी है, तो U क्रियात्मक प्रभाव तक बढ़ाया जाता है यह सामान्य रूप से सत्य नहीं है (उपरोक्त उदाहरण देखें)। वैकल्पिक रूप से, ध्रुवीय अपघटन हिल्बर्ट रिक्त स्थान पर वचन मूल्य अपघटन बाउंडेड प्रभाव के प्रभाव संस्करण का उपयोग करके दिखाया जा सकता है।

निरंतर कार्यात्मक कैलकुस की संपत्ति से, |A| A द्वारा उत्पन्न C*-बीजगणित में है। आंशिक समरूपता के लिए समान दुर्बल कथन प्रयुक्त होता है। ध्रुवीय भाग U A द्वारा उत्पन्न वॉन न्यूमैन बीजगणित में है। यदि A व्युत्क्रमणीय है, तो U C*-बीजगणित में A द्वारा भी उत्पन्न किया गया होगा।

जटिल विश्लेषण के साथ संबंध

अध्ययन किए गए कई प्रभाव होलोमोर्फिक कार्य के हिल्बर्ट रिक्त स्थान पर प्रभावित हैं।

प्रभाव का कार्य सिद्धांत में प्रश्न से घनिष्ठ रूप से जुड़ा हुआ है।

उदाहरण के लिए, बेर्लिंग का प्रमेय आंतरिक कार्य के संदर्भ में बदलाव के अपरिवर्तनीय उप-स्थान का वर्णन करता है, जो गोले पर लगभग हर जगह यूनिमॉड्यूलर सीमा के मान के साथ यूनिट डिस्क पर होलोमॉर्फिक क्रिया से घिरा होता है। बर्लिंग ने बदलाव को हार्डी स्पेस पर स्वतंत्र चर द्वारा गुणन के रूप में व्याख्या की।[4] गुणन प्रभाव का अध्ययन करने में सफलता और अधिक सामान्यतः Toeplitz(तोएप्लित्ज़) प्रभाव (जो हार्डी अंतरिक्ष पर प्रक्षेपण के बाद गुणन हैं) ने बर्गमैन अंतरिक्ष जैसे अन्य स्थान पर इसी प्रकार के प्रश्नों के अध्ययन को प्रेरित किया।

प्रभाव बीजगणित

प्रभाव बीजगणित का सिद्धांत C*-बीजगणित जैसे प्रभाव के क्षेत्र में बीजगणित को सामने लाता है।

C*- बीजगणित

C*-बीजगणित, A, नक्शा (गणित) के साथ जटिल संख्याओं के क्षेत्र में प्रभाव बीजगणित है। A* AA. A के अवयव x के प्रतिबिम्ब के लिए x* लिखते हैं। मानचित्र x* में निम्नलिखित गुण हैं।[5]

  • यह A में प्रत्येक के लिए, पेचीदगी वाला अर्ध समूह है।
  • A में सभी, Y के लिए
  • C में प्रत्येक λ और A में प्रत्येक x के लिए
  • A में सभी के लिए

टिप्पणी। प्रथम तीन सर्वसमिकाएँ कहती हैं कि A*-बीजगणित है। अंतिम समरूपता को C* समरूपता कहा जाता है जो इसके समान्तर होती है

C*-पहचान मजबूत आवश्यकता है। उदाहरण के लिए, वर्णक्रमीय त्रिज्या के साथ, इसका तात्पर्य है कि C*-नोर्म विशिष्ट रूप से बीजगणितीय संरचना द्वारा निर्धारित किया जाता है

यह भी देखें

संदर्भ

  1. Sunder, V.S. Functional Analysis: Spectral Theory (1997) Birkhäuser Verlag
  2. Hoffman, Kenneth; Kunze, Ray (1971), Linear algebra (2nd ed.), Englewood Cliffs, N.J.: Prentice-Hall, Inc., p. 312, MR 0276251
  3. Conway, John B. (2000), A Course in Operator Theory, Graduate Studies in Mathematics, American Mathematical Society, ISBN 0821820656
  4. Nikolski, N. (1986), A treatise on the shift operator, Springer-Verlag, ISBN 0-387-90176-0. A sophisticated treatment of the connections between Operator theory and Function theory in the Hardy space.
  5. Arveson, W. (1976), An Invitation to C*-Algebra, Springer-Verlag, ISBN 0-387-90176-0. An excellent introduction to the subject, accessible for those with a knowledge of basic functional analysis.


अग्रिम पठन


बाहरी संबंध