द्विपरत धारिता: Difference between revisions
(→धारिता) |
(→धारिता) |
||
Line 1: | Line 1: | ||
'''युग्मित-स्तर धारिता''' इलेक्ट्रिकल डबल लेयर <ref name="Stojek">[http://de.scribd.com/doc/23724566/The-Electrical-Double-Layer-and-Its-Structure Z. Stojek, The Electrical Double Layer and Its Structure]</ref><ref name="EDL">{{Cite web| title = The electrical double layer| year = 2011| url = http://www.cartage.org.lb/en/themes/sciences/Chemistry/Electrochemis/Electrochemical/ElectricalDouble/ElectricalDouble.htm| access-date = 2014-01-20| url-status = dead| archive-url = https://web.archive.org/web/20110531014449/http://www.cartage.org.lb/en/themes/Sciences/Chemistry/Electrochemis/Electrochemical/ElectricalDouble/ElectricalDouble.htm| archive-date = 2011-05-31}}</ref> की महत्वपूर्ण विशेषता है जो, उदाहरण के लिए, एक प्रवाहकीय [[इलेक्ट्रोड|विद्युतद्वार]] और एक आसन्न तरल [[इलेक्ट्रोलाइट|विद्युत् अपघट्यट]] के बीच इंटरफेस में दिखाई देती है। इस सीमा पर आवेश की दो परतें विपरीत ध्रुवीयता के रूप में होती हैं, विद्युतद्वार की सतह पर और एक विद्युत् अपघट्यट में । इन दो परतों, विद्युतद्वार पर इलेक्ट्रॉनों और विद्युत् अपघट्यट में आयनों को सामान्यतः विलायक अणुओं की एक परत से अलग किया जाता है जो विद्युतद्वार की सतह का पालन करती हैं और एक पारंपरिक [[संधारित्र]] में [[ढांकता हुआ]] कार्य करता है। डबल-लेयर | '''युग्मित-स्तर धारिता''' इलेक्ट्रिकल डबल लेयर <ref name="Stojek">[http://de.scribd.com/doc/23724566/The-Electrical-Double-Layer-and-Its-Structure Z. Stojek, The Electrical Double Layer and Its Structure]</ref><ref name="EDL">{{Cite web| title = The electrical double layer| year = 2011| url = http://www.cartage.org.lb/en/themes/sciences/Chemistry/Electrochemis/Electrochemical/ElectricalDouble/ElectricalDouble.htm| access-date = 2014-01-20| url-status = dead| archive-url = https://web.archive.org/web/20110531014449/http://www.cartage.org.lb/en/themes/Sciences/Chemistry/Electrochemis/Electrochemical/ElectricalDouble/ElectricalDouble.htm| archive-date = 2011-05-31}}</ref> की महत्वपूर्ण विशेषता है जो, उदाहरण के लिए, एक प्रवाहकीय [[इलेक्ट्रोड|विद्युतद्वार]] और एक आसन्न तरल [[इलेक्ट्रोलाइट|विद्युत् अपघट्यट]] के बीच इंटरफेस में दिखाई देती है। इस सीमा पर आवेश की दो परतें विपरीत ध्रुवीयता के रूप में होती हैं, विद्युतद्वार की सतह पर और एक विद्युत् अपघट्यट में । इन दो परतों, विद्युतद्वार पर इलेक्ट्रॉनों और विद्युत् अपघट्यट में आयनों को सामान्यतः विलायक अणुओं की एक परत से अलग किया जाता है जो विद्युतद्वार की सतह का पालन करती हैं और एक पारंपरिक [[संधारित्र]] में [[ढांकता हुआ]] कार्य करता है। डबल-लेयर संधारित्र में संग्रहीत विद्युत आवेश की मात्रा लागू [[वोल्टेज]] पर निर्भर करती है। धारिता की इकाई फैराड होती है। | ||
युग्मित-स्तर धारिता स्थिर वैद्युत् डबल-लेयर प्रकार के | युग्मित-स्तर धारिता स्थिर वैद्युत् डबल-लेयर प्रकार के सुपरसंधारित्र के पीछे का भौतिक सिद्धांत है। | ||
== इतिहास == | == इतिहास == | ||
* डबल लेयर और स्यूडोकैपेसिटेंस मॉडल का विकास देखें डबल लेयर (इंटरफेसियल) | * डबल लेयर और स्यूडोकैपेसिटेंस मॉडल का विकास देखें डबल लेयर (इंटरफेसियल) | ||
* विद्युत रासायनिक घटकों का विकास | * विद्युत रासायनिक घटकों का विकास सुपरसंधारित्र देखें | ||
== धारिता == | == धारिता == | ||
{{See also| | {{See also|सुपरकैपेसिटर}}[[File:EDLC-simplified-principle.png|thumb|right|250px| ध्रुवीकृत विलायक अणुओं की एक परत द्वारा अलग किए गए तरल विद्युत् अपघट्यट में विद्युतद्वार और सॉल्वेटेड सकारात्मक आयनों में नकारात्मक आयनों की एक डबल-परत का सरलीकृत दृश्य।]][[हरमन वॉन हेल्महोल्ट्ज़]] ने दोहरी परत की घटना को समझने के लिए सैद्धांतिक नींव रखी। विद्युत ऊर्जा को संग्रहित करने के लिए प्रत्येक विद्युत रासायनिक संधारित्र में दोहरी परतों का निर्माण किया जाता है। | ||
प्रत्येक संधारित्र में दो इलेक्ट्रोड होते हैं, जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। ये विद्युत् अपघट्यट के माध्यम से विद्युत रूप से जुड़े होते हैं, पानी जैसे विलायक में सकारात्मक और नकारात्मक आयनों का मिश्रण होता है। जहां तरल इलेक्ट्रोलाइट इलेक्ट्रोड की प्रवाहकीय धातु की सतह से संपर्क करता है, एक इंटरफ़ेस बनता है जो पदार्थ के दो चरणों के बीच एक सामान्य सीमा का प्रतिनिधित्व करता है। यह इस इंटरफ़ेस पर है, कि दोहरी परत का प्रभाव होता है।<ref name=Stojek /><ref name="EDL" /> | प्रत्येक संधारित्र में दो इलेक्ट्रोड होते हैं, जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। ये विद्युत् अपघट्यट के माध्यम से विद्युत रूप से जुड़े होते हैं, पानी जैसे विलायक में सकारात्मक और नकारात्मक आयनों का मिश्रण होता है। जहां तरल इलेक्ट्रोलाइट इलेक्ट्रोड की प्रवाहकीय धातु की सतह से संपर्क करता है, एक इंटरफ़ेस बनता है जो पदार्थ के दो चरणों के बीच एक सामान्य सीमा का प्रतिनिधित्व करता है। यह इस इंटरफ़ेस पर है, कि दोहरी परत का प्रभाव होता है।<ref name=Stojek /><ref name="EDL" /> | ||
जब | जब संधारित्र पर वोल्टेज लगाया जाता है, तो विद्युतद्वार इंटरफेस पर ध्रुवीकृत आयनों की दो परतें उत्पन्न होती हैं। एक परत ठोस विद्युतद्वार के भीतर होती है (क्रिस्टल अनाज की सतहों पर जिससे इसे बनाया जाता है जो विद्युत् अपघट्यट के संपर्क में होते हैं)। दूसरी परत, विपरीत ध्रुवता के साथ, विद्युत् अपघट्यट में वितरित वियोजन (रसायन विज्ञान) और [[समाधान]] आयनों से बनती है जो ध्रुवीकृत विद्युतद्वार की ओर चले गए हैं। ध्रुवीकृत आयनों की इन दो परतों को विलायक [[अणुओं]] के एक मोनोलेयर द्वारा अलग किया जाता है। आणविक मोनोलेयर आंतरिक हेल्महोल्ट्ज़ प्लेन (IHP) बनाता है। यह विद्युतद्वार सतह पर भौतिक [[सोखना]] का पालन करता है और एक आणविक ढांकता हुआ बनाने के लिए विपरीत ध्रुवीकृत आयनों को एक दूसरे से अलग करता है। | ||
विद्युतद्वार में चार्ज की मात्रा बाहरी हेल्महोल्ट्ज प्लेन (ओएचपी) में काउंटर-चार्ज के परिमाण से मेल खाती है। यह IHP के करीब का क्षेत्र है, जिसमें ध्रुवीकृत विद्युत् अपघट्यट आयन एकत्र होते हैं। दोहरी परत के माध्यम से ध्रुवीकृत आयनों की दो परतों का यह पृथक्करण विद्युत आवेशों को उसी तरह संग्रहीत करता है जैसे एक पारंपरिक संधारित्र में होता है। डबल-लेयर चार्ज सॉल्वेंट अणुओं की आणविक IHP परत में एक स्थिर बिजली [[विद्युत क्षेत्र]] बनाता है जो कि लागू वोल्टेज की ताकत से मेल खाता है। | विद्युतद्वार में चार्ज की मात्रा बाहरी हेल्महोल्ट्ज प्लेन (ओएचपी) में काउंटर-चार्ज के परिमाण से मेल खाती है। यह IHP के करीब का क्षेत्र है, जिसमें ध्रुवीकृत विद्युत् अपघट्यट आयन एकत्र होते हैं। दोहरी परत के माध्यम से ध्रुवीकृत आयनों की दो परतों का यह पृथक्करण विद्युत आवेशों को उसी तरह संग्रहीत करता है जैसे एक पारंपरिक संधारित्र में होता है। डबल-लेयर चार्ज सॉल्वेंट अणुओं की आणविक IHP परत में एक स्थिर बिजली [[विद्युत क्षेत्र]] बनाता है जो कि लागू वोल्टेज की ताकत से मेल खाता है। | ||
Line 21: | Line 21: | ||
:<math>E = \frac{U}{d} = \frac{2\ \text{V}}{0{,}4\ \text{nm}} = 5000\ \text{kV/mm}</math> | :<math>E = \frac{U}{d} = \frac{2\ \text{V}}{0{,}4\ \text{nm}} = 5000\ \text{kV/mm}</math> | ||
अन्य | अन्य संधारित्र प्रकारों के मूल्यों के साथ इस आंकड़े की तुलना करने के लिए [[इलेक्ट्रोलाइटिक कैपेसिटर|विद्युत् अपघट्यटिक संधारित्र]] के अनुमान की आवश्यकता होती है, पारंपरिक संधारित्र के बीच सबसे पतले ढांकता हुआ संधारित्र। [[एल्यूमीनियम ऑक्साइड]] का वोल्टेज प्रमाण, एल्यूमीनियम विद्युत् अपघट्यटिक संधारित्र की ढांकता हुआ परत, लगभग 1.4 एनएम/वी है। इसलिए 6.3 V संधारित्र के लिए परत 8.8 nm है। विद्युत क्षेत्र 6.3 V/8.8 nm = 716 kV/mm है, जो दोहरी-परत की तुलना में लगभग 7 गुना कम है। पारंपरिक संधारित्र में लगभग 5000 केवी/मिमी की क्षेत्र शक्ति अवास्तविक है। कोई पारंपरिक ढांकता हुआ पदार्थ आवेश वाहक सफलता को नहीं रोक सकता। एक डबल-लेयर संधारित्र में विलायक के आणविक बंधों की रासायनिक स्थिरता सफलता को रोकती है।<ref>Daniel Gräser, Christoph Schmid: ''Supercap, Grundlagen - Eigenschaften – Anwendungen.'' Berner Fachhochschule, Semesterarbeit in Technologie und Deutsch ([http://home.datacomm.ch/graeser/Dateien/supercap.pdf PDF]).</ref> | ||
IHP में विलायक अणुओं के आसंजन का कारण बनने वाली ताकतें रासायनिक बंधों के बजाय भौतिक बल हैं। अवशोषित अणुओं के भीतर रासायनिक बंध मौजूद होते हैं, लेकिन वे ध्रुवीकृत होते हैं। | IHP में विलायक अणुओं के आसंजन का कारण बनने वाली ताकतें रासायनिक बंधों के बजाय भौतिक बल हैं। अवशोषित अणुओं के भीतर रासायनिक बंध मौजूद होते हैं, लेकिन वे ध्रुवीकृत होते हैं। | ||
विद्युत आवेश का परिमाण जो परतों में जमा हो सकता है, adsorbed आयनों और विद्युतद्वार सतह की सांद्रता से मेल खाता है। विद्युत् अपघट्यट के [[बिजली का टूटना]] तक, यह व्यवस्था एक | विद्युत आवेश का परिमाण जो परतों में जमा हो सकता है, adsorbed आयनों और विद्युतद्वार सतह की सांद्रता से मेल खाता है। विद्युत् अपघट्यट के [[बिजली का टूटना]] तक, यह व्यवस्था एक संधारित्र की तरह व्यवहार करती है जिसमें संग्रहीत विद्युत चार्ज वोल्टेज पर रैखिक रूप से निर्भर होता है। | ||
[[File:EDLC-Charge-Distribution.png|thumb|right|300px|एक आदर्श डबल-लेयर | [[File:EDLC-Charge-Distribution.png|thumb|right|300px|एक आदर्श डबल-लेयर संधारित्र की संरचना और कार्य। दोनों विद्युतद्वार पर संधारित्र को वोल्टेज लगाने से एक हेल्महोल्ट्ज़ डबल-लेयर का गठन किया जाएगा जो विपरीत ध्रुवता के दर्पण चार्ज वितरण में विद्युत् अपघट्यट में पालन किए गए आयनों को अलग करेगा।]]दोहरी परत पारंपरिक संधारित्र में ढांकता हुआ परत की तरह है, लेकिन एक अणु की मोटाई के साथ। कैपेसिटेंस की गणना करने के लिए शुरुआती हेल्महोल्ट्ज मॉडल का उपयोग करते हुए मॉडल एक निरंतर अंतर कैपेसिटेंस सी की भविष्यवाणी करता है<sub>d</sub> आवेश घनत्व से स्वतंत्र, यहां तक कि परावैद्युतांक ε और आवेश परत पृथक्करण δ पर निर्भर करता है। | ||
:<math>\ C_d = \frac{\epsilon}{4 \pi \delta}</math> | :<math>\ C_d = \frac{\epsilon}{4 \pi \delta}</math> | ||
यदि विद्युत् अपघट्यट विलायक पानी है तो उच्च क्षेत्र की ताकत का प्रभाव 6 की पारगम्यता ε बनाता है (बिना लागू विद्युत क्षेत्र के 80 के बजाय) और परत पृथक्करण δ ca। 0.3 एनएम, हेल्महोल्ट्ज़ मॉडल लगभग 18 μF/cm के विभेदक धारिता मान की भविष्यवाणी करता है<sup>2</उप>।<ref name= "Srinivasan">S. Srinivasan, Fuel Cells, From Fundamentals to Applications, Springer eBooks, 2006, {{ISBN|978-0-387-35402-6}},[https://www.springer.com/chemistry/electrochemistry/book/978-0-387-25116-5] Download CHAPTER 2, ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER (pdf, 769 kB) [https://www.google.com/#output=search&sclient=psy-ab&q=CHAPTER+2%2C+ELECTRODE%2FELECTROLYTE+INTERFACES:+STRUCTURE+AND+KINETICS+OF+CHARGE+TRANSFER+&oq=CHAPTER+2%2C+ELECTRODE%2FELECTROLYTE+INTERFACES:+STRUCTURE+AND+KINETICS+OF+CHARGE+TRANSFER+&gs_l=hp.12...2674.2674.0.4275.1.1.0.0.0.0.76.76.1.1.0...0.0...1c..9.psy-ab.Z_SEDbAoXvw&pbx=1&bav=on.2,or.r_qf.&bvm=bv.45512109,d.Yms&fp=deab048f918a72cf&biw=1067&bih=522]</ref> इस मान का उपयोग पारंपरिक प्लेट | यदि विद्युत् अपघट्यट विलायक पानी है तो उच्च क्षेत्र की ताकत का प्रभाव 6 की पारगम्यता ε बनाता है (बिना लागू विद्युत क्षेत्र के 80 के बजाय) और परत पृथक्करण δ ca। 0.3 एनएम, हेल्महोल्ट्ज़ मॉडल लगभग 18 μF/cm के विभेदक धारिता मान की भविष्यवाणी करता है<sup>2</उप>।<ref name= "Srinivasan">S. Srinivasan, Fuel Cells, From Fundamentals to Applications, Springer eBooks, 2006, {{ISBN|978-0-387-35402-6}},[https://www.springer.com/chemistry/electrochemistry/book/978-0-387-25116-5] Download CHAPTER 2, ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER (pdf, 769 kB) [https://www.google.com/#output=search&sclient=psy-ab&q=CHAPTER+2%2C+ELECTRODE%2FELECTROLYTE+INTERFACES:+STRUCTURE+AND+KINETICS+OF+CHARGE+TRANSFER+&oq=CHAPTER+2%2C+ELECTRODE%2FELECTROLYTE+INTERFACES:+STRUCTURE+AND+KINETICS+OF+CHARGE+TRANSFER+&gs_l=hp.12...2674.2674.0.4275.1.1.0.0.0.0.76.76.1.1.0...0.0...1c..9.psy-ab.Z_SEDbAoXvw&pbx=1&bav=on.2,or.r_qf.&bvm=bv.45512109,d.Yms&fp=deab048f918a72cf&biw=1067&bih=522]</ref> इस मान का उपयोग पारंपरिक प्लेट संधारित्र के लिए मानक सूत्र का उपयोग करके कैपेसिटेंस मानों की गणना करने के लिए किया जा सकता है यदि केवल विद्युतद्वार की सतह ज्ञात हो। इस धारिता के साथ गणना की जा सकती है: | ||
:<math>C= \frac{\varepsilon A}{d}</math>. | :<math>C= \frac{\varepsilon A}{d}</math>. | ||
कैपेसिटेंस सी उच्च पारगम्यता ε, बड़े विद्युतद्वार प्लेट सतह क्षेत्रों ए और प्लेटों के बीच एक छोटी दूरी डी के साथ सामग्री से बने घटकों में सबसे बड़ा है। क्योंकि सक्रिय कार्बन विद्युतद्वार में बहुत अधिक सतह क्षेत्र और एक अत्यंत पतली डबल-परत दूरी होती है जो कुछ ångströms (0.3-0.8 nm) के क्रम में होती है, यह समझ में आता है कि | कैपेसिटेंस सी उच्च पारगम्यता ε, बड़े विद्युतद्वार प्लेट सतह क्षेत्रों ए और प्लेटों के बीच एक छोटी दूरी डी के साथ सामग्री से बने घटकों में सबसे बड़ा है। क्योंकि सक्रिय कार्बन विद्युतद्वार में बहुत अधिक सतह क्षेत्र और एक अत्यंत पतली डबल-परत दूरी होती है जो कुछ ångströms (0.3-0.8 nm) के क्रम में होती है, यह समझ में आता है कि सुपरसंधारित्र के संधारित्र के बीच उच्चतम कैपेसिटेंस मान क्यों होते हैं (में) 10 से 40 μF/cm की रेंज<sup>2</sup>).<ref name="Halper">{{cite techreport|author= Marin S. Halper, James C. Ellenbogen |title= Supercapacitors: A Brief Overview |publisher=MITRE Nanosystems Group|date= March 2006|url= http://www.mitre.org/sites/default/files/pdf/06_0667.pdf |access-date=2014-01-20}}</ref><ref name="Namisnyk">{{cite techreport |author= Adam Marcus Namisnyk |title= A SURVEY OF ELECTROCHEMICAL SUPERCAPACITOR TECHNOLOGY |url= http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf |access-date= 2014-01-20 |archive-url= https://web.archive.org/web/20141222044332/http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf |archive-date= 2014-12-22 |url-status= dead }}</ref> | ||
युग्मित-स्तर धारिता की उच्च मात्रा वाले वास्तविक उत्पादित | युग्मित-स्तर धारिता की उच्च मात्रा वाले वास्तविक उत्पादित सुपरसंधारित्र में कैपेसिटेंस मान पहले विद्युतद्वार सतह और डीएल दूरी पर निर्भर करता है। विद्युतद्वार सामग्री और संरचना, विद्युत् अपघट्यट मिश्रण, और [[स्यूडोकैपेसिटेंस]] की मात्रा जैसे पैरामीटर भी धारिता मूल्य में योगदान करते हैं।<ref name=Stojek /> | ||
क्योंकि एक इलेक्ट्रोकेमिकल | क्योंकि एक इलेक्ट्रोकेमिकल संधारित्र दो विद्युतद्वार से बना होता है, एक विद्युतद्वार पर हेल्महोल्ट्ज़ परत में इलेक्ट्रिक चार्ज दूसरे विद्युतद्वार पर दूसरी हेल्महोल्ट्ज़ परत में (विपरीत ध्रुवता के साथ) प्रतिबिम्बित होता है। इसलिए, डबल-लेयर संधारित्र का कुल कैपेसिटेंस मूल्य श्रृंखला में जुड़े दो संधारित्र का परिणाम है। यदि दोनों विद्युतद्वारों का लगभग समान धारिता मूल्य है, जैसा कि सममित सुपरसंधारित्र में होता है, तो कुल मूल्य लगभग एक विद्युतद्वार का आधा होता है। | ||
== साहित्य == | == साहित्य == |
Revision as of 11:55, 13 February 2023
युग्मित-स्तर धारिता इलेक्ट्रिकल डबल लेयर [1][2] की महत्वपूर्ण विशेषता है जो, उदाहरण के लिए, एक प्रवाहकीय विद्युतद्वार और एक आसन्न तरल विद्युत् अपघट्यट के बीच इंटरफेस में दिखाई देती है। इस सीमा पर आवेश की दो परतें विपरीत ध्रुवीयता के रूप में होती हैं, विद्युतद्वार की सतह पर और एक विद्युत् अपघट्यट में । इन दो परतों, विद्युतद्वार पर इलेक्ट्रॉनों और विद्युत् अपघट्यट में आयनों को सामान्यतः विलायक अणुओं की एक परत से अलग किया जाता है जो विद्युतद्वार की सतह का पालन करती हैं और एक पारंपरिक संधारित्र में ढांकता हुआ कार्य करता है। डबल-लेयर संधारित्र में संग्रहीत विद्युत आवेश की मात्रा लागू वोल्टेज पर निर्भर करती है। धारिता की इकाई फैराड होती है।
युग्मित-स्तर धारिता स्थिर वैद्युत् डबल-लेयर प्रकार के सुपरसंधारित्र के पीछे का भौतिक सिद्धांत है।
इतिहास
- डबल लेयर और स्यूडोकैपेसिटेंस मॉडल का विकास देखें डबल लेयर (इंटरफेसियल)
- विद्युत रासायनिक घटकों का विकास सुपरसंधारित्र देखें
धारिता
हरमन वॉन हेल्महोल्ट्ज़ ने दोहरी परत की घटना को समझने के लिए सैद्धांतिक नींव रखी। विद्युत ऊर्जा को संग्रहित करने के लिए प्रत्येक विद्युत रासायनिक संधारित्र में दोहरी परतों का निर्माण किया जाता है।
प्रत्येक संधारित्र में दो इलेक्ट्रोड होते हैं, जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। जो यांत्रिक रूप से एक विभाजक द्वारा अलग किए जाते हैं। ये विद्युत् अपघट्यट के माध्यम से विद्युत रूप से जुड़े होते हैं, पानी जैसे विलायक में सकारात्मक और नकारात्मक आयनों का मिश्रण होता है। जहां तरल इलेक्ट्रोलाइट इलेक्ट्रोड की प्रवाहकीय धातु की सतह से संपर्क करता है, एक इंटरफ़ेस बनता है जो पदार्थ के दो चरणों के बीच एक सामान्य सीमा का प्रतिनिधित्व करता है। यह इस इंटरफ़ेस पर है, कि दोहरी परत का प्रभाव होता है।[1][2]
जब संधारित्र पर वोल्टेज लगाया जाता है, तो विद्युतद्वार इंटरफेस पर ध्रुवीकृत आयनों की दो परतें उत्पन्न होती हैं। एक परत ठोस विद्युतद्वार के भीतर होती है (क्रिस्टल अनाज की सतहों पर जिससे इसे बनाया जाता है जो विद्युत् अपघट्यट के संपर्क में होते हैं)। दूसरी परत, विपरीत ध्रुवता के साथ, विद्युत् अपघट्यट में वितरित वियोजन (रसायन विज्ञान) और समाधान आयनों से बनती है जो ध्रुवीकृत विद्युतद्वार की ओर चले गए हैं। ध्रुवीकृत आयनों की इन दो परतों को विलायक अणुओं के एक मोनोलेयर द्वारा अलग किया जाता है। आणविक मोनोलेयर आंतरिक हेल्महोल्ट्ज़ प्लेन (IHP) बनाता है। यह विद्युतद्वार सतह पर भौतिक सोखना का पालन करता है और एक आणविक ढांकता हुआ बनाने के लिए विपरीत ध्रुवीकृत आयनों को एक दूसरे से अलग करता है।
विद्युतद्वार में चार्ज की मात्रा बाहरी हेल्महोल्ट्ज प्लेन (ओएचपी) में काउंटर-चार्ज के परिमाण से मेल खाती है। यह IHP के करीब का क्षेत्र है, जिसमें ध्रुवीकृत विद्युत् अपघट्यट आयन एकत्र होते हैं। दोहरी परत के माध्यम से ध्रुवीकृत आयनों की दो परतों का यह पृथक्करण विद्युत आवेशों को उसी तरह संग्रहीत करता है जैसे एक पारंपरिक संधारित्र में होता है। डबल-लेयर चार्ज सॉल्वेंट अणुओं की आणविक IHP परत में एक स्थिर बिजली विद्युत क्षेत्र बनाता है जो कि लागू वोल्टेज की ताकत से मेल खाता है।
धात्विक विद्युतद्वार में एक आवेशित परत की मोटाई, यानी सतह के लंबवत औसत विस्तार, लगभग 0.1 एनएम है, और मुख्य रूप से इलेक्ट्रॉन घनत्व पर निर्भर करता है क्योंकि ठोस विद्युतद्वार में परमाणु स्थिर होते हैं। विद्युत् अपघट्यट में, मोटाई विलायक के अणुओं के आकार और विलायक में आयनों की गति और एकाग्रता पर निर्भर करती है। यह 0.1 से 10 एनएम तक होता है जैसा कि डेबी लंबाई द्वारा वर्णित है। मोटाई का योग दोहरी परत की कुल मोटाई है।
आईएचपी की छोटी मोटाई अलग-अलग विलायक अणुओं पर एक मजबूत विद्युत क्षेत्र ई बनाती है। एक संभावित अंतर पर, उदाहरण के लिए, U = 2 V और आणविक मोटाई d = 0.4 nm, विद्युत क्षेत्र की ताकत है
अन्य संधारित्र प्रकारों के मूल्यों के साथ इस आंकड़े की तुलना करने के लिए विद्युत् अपघट्यटिक संधारित्र के अनुमान की आवश्यकता होती है, पारंपरिक संधारित्र के बीच सबसे पतले ढांकता हुआ संधारित्र। एल्यूमीनियम ऑक्साइड का वोल्टेज प्रमाण, एल्यूमीनियम विद्युत् अपघट्यटिक संधारित्र की ढांकता हुआ परत, लगभग 1.4 एनएम/वी है। इसलिए 6.3 V संधारित्र के लिए परत 8.8 nm है। विद्युत क्षेत्र 6.3 V/8.8 nm = 716 kV/mm है, जो दोहरी-परत की तुलना में लगभग 7 गुना कम है। पारंपरिक संधारित्र में लगभग 5000 केवी/मिमी की क्षेत्र शक्ति अवास्तविक है। कोई पारंपरिक ढांकता हुआ पदार्थ आवेश वाहक सफलता को नहीं रोक सकता। एक डबल-लेयर संधारित्र में विलायक के आणविक बंधों की रासायनिक स्थिरता सफलता को रोकती है।[3] IHP में विलायक अणुओं के आसंजन का कारण बनने वाली ताकतें रासायनिक बंधों के बजाय भौतिक बल हैं। अवशोषित अणुओं के भीतर रासायनिक बंध मौजूद होते हैं, लेकिन वे ध्रुवीकृत होते हैं।
विद्युत आवेश का परिमाण जो परतों में जमा हो सकता है, adsorbed आयनों और विद्युतद्वार सतह की सांद्रता से मेल खाता है। विद्युत् अपघट्यट के बिजली का टूटना तक, यह व्यवस्था एक संधारित्र की तरह व्यवहार करती है जिसमें संग्रहीत विद्युत चार्ज वोल्टेज पर रैखिक रूप से निर्भर होता है।
दोहरी परत पारंपरिक संधारित्र में ढांकता हुआ परत की तरह है, लेकिन एक अणु की मोटाई के साथ। कैपेसिटेंस की गणना करने के लिए शुरुआती हेल्महोल्ट्ज मॉडल का उपयोग करते हुए मॉडल एक निरंतर अंतर कैपेसिटेंस सी की भविष्यवाणी करता हैd आवेश घनत्व से स्वतंत्र, यहां तक कि परावैद्युतांक ε और आवेश परत पृथक्करण δ पर निर्भर करता है।
यदि विद्युत् अपघट्यट विलायक पानी है तो उच्च क्षेत्र की ताकत का प्रभाव 6 की पारगम्यता ε बनाता है (बिना लागू विद्युत क्षेत्र के 80 के बजाय) और परत पृथक्करण δ ca। 0.3 एनएम, हेल्महोल्ट्ज़ मॉडल लगभग 18 μF/cm के विभेदक धारिता मान की भविष्यवाणी करता है2</उप>।[4] इस मान का उपयोग पारंपरिक प्लेट संधारित्र के लिए मानक सूत्र का उपयोग करके कैपेसिटेंस मानों की गणना करने के लिए किया जा सकता है यदि केवल विद्युतद्वार की सतह ज्ञात हो। इस धारिता के साथ गणना की जा सकती है:
- .
कैपेसिटेंस सी उच्च पारगम्यता ε, बड़े विद्युतद्वार प्लेट सतह क्षेत्रों ए और प्लेटों के बीच एक छोटी दूरी डी के साथ सामग्री से बने घटकों में सबसे बड़ा है। क्योंकि सक्रिय कार्बन विद्युतद्वार में बहुत अधिक सतह क्षेत्र और एक अत्यंत पतली डबल-परत दूरी होती है जो कुछ ångströms (0.3-0.8 nm) के क्रम में होती है, यह समझ में आता है कि सुपरसंधारित्र के संधारित्र के बीच उच्चतम कैपेसिटेंस मान क्यों होते हैं (में) 10 से 40 μF/cm की रेंज2).[5][6] युग्मित-स्तर धारिता की उच्च मात्रा वाले वास्तविक उत्पादित सुपरसंधारित्र में कैपेसिटेंस मान पहले विद्युतद्वार सतह और डीएल दूरी पर निर्भर करता है। विद्युतद्वार सामग्री और संरचना, विद्युत् अपघट्यट मिश्रण, और स्यूडोकैपेसिटेंस की मात्रा जैसे पैरामीटर भी धारिता मूल्य में योगदान करते हैं।[1]
क्योंकि एक इलेक्ट्रोकेमिकल संधारित्र दो विद्युतद्वार से बना होता है, एक विद्युतद्वार पर हेल्महोल्ट्ज़ परत में इलेक्ट्रिक चार्ज दूसरे विद्युतद्वार पर दूसरी हेल्महोल्ट्ज़ परत में (विपरीत ध्रुवता के साथ) प्रतिबिम्बित होता है। इसलिए, डबल-लेयर संधारित्र का कुल कैपेसिटेंस मूल्य श्रृंखला में जुड़े दो संधारित्र का परिणाम है। यदि दोनों विद्युतद्वारों का लगभग समान धारिता मूल्य है, जैसा कि सममित सुपरसंधारित्र में होता है, तो कुल मूल्य लगभग एक विद्युतद्वार का आधा होता है।
साहित्य
- डबल लेयर (सतही विज्ञान)
- Béguin, Francois; Frackowiak, Elzbieta (18 November 2009). "8 Electrical Double-Layer Capacitors and Pseudocapacitors". विद्युत रासायनिक ऊर्जा भंडारण और रूपांतरण प्रणालियों के लिए कार्बन. Taylor & Francis. pp. 329–375. doi:10.1201/9781420055405-c8. ISBN 978-1-4200-5307-4.
- Müller, Klaus (1963). आवेशित इंटरफेस की संरचना पर. pp. 55–79. doi:10.1098/rspa.1963.0114.
{{cite book}}
:|work=
ignored (help) - B. E. Conway (1999), Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (in Deutsch), Berlin: Springer
- Leitner, K. W.; Winter, M.; Besenhard, J. O. (2003-12-01). "समग्र सुपरकैपेसिटर इलेक्ट्रोड". Journal of Solid State Electrochemistry. 8 (1): 15–16. doi:10.1007/s10008-003-0412-x. ISSN 1433-0768.
- Yu., M.; Volfkovich, T. M. (September 2002). "विद्युत रासायनिक संधारित्र". Russian Journal of Electrochemistry. 38 (9): 935–959. doi:10.1023/A:1020220425954. ISSN 1608-3342.
- Electrochemical Technologies for Energy Storage and Conversion, Band 1 (in Deutsch), Weinheim
संदर्भ
- ↑ 1.0 1.1 1.2 Z. Stojek, The Electrical Double Layer and Its Structure
- ↑ 2.0 2.1 "The electrical double layer". 2011. Archived from the original on 2011-05-31. Retrieved 2014-01-20.
- ↑ Daniel Gräser, Christoph Schmid: Supercap, Grundlagen - Eigenschaften – Anwendungen. Berner Fachhochschule, Semesterarbeit in Technologie und Deutsch (PDF).
- ↑ S. Srinivasan, Fuel Cells, From Fundamentals to Applications, Springer eBooks, 2006, ISBN 978-0-387-35402-6,[1] Download CHAPTER 2, ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER (pdf, 769 kB) [2]
- ↑ Marin S. Halper, James C. Ellenbogen (March 2006). Supercapacitors: A Brief Overview (PDF) (Technical report). MITRE Nanosystems Group. Retrieved 2014-01-20.
- ↑ Adam Marcus Namisnyk. A SURVEY OF ELECTROCHEMICAL SUPERCAPACITOR TECHNOLOGY (PDF) (Technical report). Archived from the original (PDF) on 2014-12-22. Retrieved 2014-01-20.