बीजगणितीय पूर्णांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Complex number that solves a monic polynomial with integer coefficients
{{Short description|Complex number that solves a monic polynomial with integer coefficients
}}
}}
{{about|the ring of complex numbers integral over <math>\mathbb{Z}</math>|the general notion of algebraic integer|Integrality}}
[[बीजगणितीय संख्या सिद्धांत]] में, '''बीजगणितीय पूर्णांक''' [[जटिल संख्या]] है जो जो पूर्णांकों पर [[अभिन्न तत्व]] है। अर्थात्, बीजगणितीय पूर्णांक कुछ मोनिक [[बहुपद]] (बहुपद जिसका प्रमुख गुणांक 1 है) का जटिल मूल है, जिसके गुणांक पूर्णांक हैं। सभी बीजगणितीय पूर्णांकों का समुच्चय {{mvar|A}} जोड़, घटाव और गुणा के अंतर्गत बंद है और इसलिए जटिल संख्याओं का क्रमविनिमेय उपसमूह है।
{{Distinguish|algebraic element|algebraic number}}
[[बीजगणितीय संख्या सिद्धांत]] में, बीजगणितीय पूर्णांक [[जटिल संख्या]] है जो पूर्णांक # बीजगणितीय गुणों पर [[अभिन्न तत्व]] है। अर्थात्, बीजगणितीय पूर्णांक कुछ मोनिक [[बहुपद]] (बहुपद जिसका प्रमुख गुणांक 1 है) के बहुपद का जटिल मूल है, जिसके गुणांक पूर्णांक हैं। सभी बीजगणितीय पूर्णांकों का समुच्चय {{mvar|A}} जोड़, घटाव और गुणा के तहत बंद है और इसलिए जटिल संख्याओं का क्रमविनिमेय वलय है।


किसी संख्या फ़ील्ड के पूर्णांकों का वलय {{mvar|K}}, द्वारा चिह्नित {{math|{{mathcal|O}}<sub>''K''</sub>}}, का प्रतिच्छेदन (सेट सिद्धांत) है {{mvar|K}} और {{mvar|A}}: इसे [[क्षेत्र (गणित)]] के अधिकतम आदेश (रिंग थ्योरी) के रूप में भी वर्णित किया जा सकता है {{mvar|K}}. प्रत्येक बीजगणितीय पूर्णांक किसी संख्या क्षेत्र के पूर्णांकों के वलय से संबंधित होता है। संख्या {{mvar|α}}  बीजगणितीय पूर्णांक है [[अगर और केवल अगर]] अंगूठी <math>\mathbb{Z}[\alpha]</math> [[एबेलियन समूह]] के रूप में [[अंतिम रूप से उत्पन्न एबेलियन समूह]] है, जिसे कहना है, एक के रूप में <math>\mathbb{Z}</math>-[[मॉड्यूल (गणित)]]।
किसी संख्या क्षेत्र {{mvar|K}} के पूर्णांकों का वलय, जिसे {{math|{{mathcal|O}}<sub>''K''</sub>}} द्वारा निरूपित किया जाता है, {{mvar|K}} और {{mvar|A}} का प्रतिच्छेदन है: इसे [[क्षेत्र (गणित)]] {{mvar|K}} के अधिकतम क्रम (रिंग सिद्धांत) के रूप में भी वर्णित किया जा सकता है {{mvar|K}}. प्रत्येक बीजगणितीय पूर्णांक किसी संख्या क्षेत्र के पूर्णांकों के वलय से संबंधित होता है। संख्या {{mvar|α}}  बीजगणितीय पूर्णांक है [[अगर और केवल अगर|यदि और केवल यदि]] रिंग <math>\mathbb{Z}[\alpha]</math> [[एबेलियन समूह]] के रूप में [[अंतिम रूप से उत्पन्न एबेलियन समूह]] है, जिसे कहना है, एक के रूप में <math>\mathbb{Z}</math>-[[मॉड्यूल (गणित)]]।


== परिभाषाएँ ==
== परिभाषाएँ ==


निम्नलिखित बीजगणितीय पूर्णांक की समतुल्य परिभाषाएँ हैं। होने देना {{mvar|K}} संख्या क्षेत्र हो (यानी, का एक [[परिमित विस्तार]] <math>\mathbb{Q}</math>, परिमेय संख्याओं का क्षेत्र), दूसरे शब्दों में, <math>K = \Q(\theta)</math> कुछ [[बीजगणितीय संख्या]] के लिए <math>\theta \in \Complex</math> [[आदिम तत्व प्रमेय]] द्वारा।
निम्नलिखित बीजगणितीय पूर्णांक की समतुल्य परिभाषाएँ हैं। माना {{mvar|K}} संख्या क्षेत्र हो (अर्थात, का एक [[परिमित विस्तार]] <math>\mathbb{Q}</math>, परिमेय संख्याओं का क्षेत्र), दूसरे शब्दों में, <math>K = \Q(\theta)</math> कुछ [[बीजगणितीय संख्या]] के लिए <math>\theta \in \Complex</math> [[आदिम तत्व प्रमेय]] द्वारा।


* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि मोनिक बहुपद मौजूद है <math>f(x) \in \Z[x]</math> ऐसा है कि {{math|1=''f''(''α'') = 0}}.
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि मोनिक बहुपद उपस्थित है <math>f(x) \in \Z[x]</math> ऐसा है कि {{math|1=''f''(''α'') = 0}}.
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)]] का मोनिक बहुपद {{mvar|α}} ऊपर <math>\mathbb{Q}</math> में है <math>\Z[x]</math>.
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि {{mvar|α}} का [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)|न्यूनतम बहुपद '''(क्षेत्र सिद्धांत)''']] का मोनिक बहुपद '''{{mvar|α}} ऊपर''' <math>\mathbb{Q}</math> में <math>\Z[x]</math> है।
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि <math>\Z[\alpha]</math> निश्चित रूप से उत्पन्न होता है <math>\Z</math>-मापांक।
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि <math>\Z[\alpha]</math> निश्चित रूप से उत्पन्न होता है <math>\Z</math>-मापांक।
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि कोई गैर-शून्य अंतिम रूप से उत्पन्न होता है <math>\Z</math>[[submodule]] <math>M \subset \Complex</math> ऐसा है कि {{math|''αM'' ⊆ ''M''}}.
* {{math|''α'' ∈ ''K''}} बीजगणितीय पूर्णांक है यदि कोई गैर-शून्य अंतिम रूप से उत्पन्न होता है <math>\Z</math>[[submodule|सबमॉड्यूल]] <math>M \subset \Complex</math> ऐसा है कि {{math|''αM'' ⊆ ''M''}}.


बीजगणितीय पूर्णांक रिंग एक्सटेंशन के अभिन्न तत्वों का विशेष मामला है। विशेष रूप से, बीजगणितीय पूर्णांक परिमित विस्तार का अभिन्न तत्व है <math>K / \mathbb{Q}</math>.
बीजगणितीय पूर्णांक रिंग एक्सटेंशन के अभिन्न तत्वों का विशेष स्थिति है। विशेष रूप से, बीजगणितीय पूर्णांक <math>K / \mathbb{Q}</math> परिमित विस्तार का अभिन्न तत्व है।


== उदाहरण ==
== उदाहरण ==
* एकमात्र बीजगणितीय पूर्णांक जो परिमेय संख्याओं के समुच्चय में पाए जाते हैं, पूर्णांक हैं। दूसरे शब्दों में, का प्रतिच्छेदन <math>\mathbb{Q}</math> और {{mvar|A}} बिल्कुल सही है <math>\mathbb{Z}</math>. तर्कसंगत संख्या {{math|{{sfrac|''a''|''b''}}}} बीजगणितीय पूर्णांक नहीं है जब तक {{mvar|b}} [[भाजक]] {{mvar|a}}. ध्यान दें कि बहुपद का प्रमुख गुणांक {{math|''bx'' − ''a''}} पूर्णांक है {{mvar|b}}. अन्य विशेष मामले के रूप में, [[वर्गमूल]] <math>\sqrt{n}</math> गैर-नकारात्मक पूर्णांक का {{mvar|n}} बीजगणितीय पूर्णांक है, लेकिन [[अपरिमेय संख्या]] है जब तक {{mvar|n}} [[वर्ग संख्या]] है।
* एकमात्र बीजगणितीय पूर्णांक जो परिमेय संख्याओं के समुच्चय में पाए जाते हैं, पूर्णांक हैं। दूसरे शब्दों में, <math>\mathbb{Q}</math> और {{mvar|A}} का प्रतिच्छेदन <math>\mathbb{Q}</math> और {{mvar|A}} बिल्कुल सही है <math>\mathbb{Z}</math>तर्कसंगत संख्या {{math|{{sfrac|''a''|''b''}}}} बीजगणितीय पूर्णांक नहीं है जब तक जब तक कि {{mvar|b}}, {{mvar|a}} को [[भाजक|विभाजित]] नहीं करता। ध्यान दें कि बहुपद {{math|''bx'' − ''a''}} का प्रमुख गुणांक {{math|''bx'' − ''a''}} पूर्णांक {{mvar|b}} है। अन्य विशेष स्थिति के रूप में, [[वर्गमूल]] <math>\sqrt{n}</math> गैर-नकारात्मक पूर्णांक का {{mvar|n}} बीजगणितीय पूर्णांक है, किन्तु [[अपरिमेय संख्या]] है जब तक {{mvar|n}} [[वर्ग संख्या]] है।
*अगर {{mvar|d}} वर्ग-मुक्त पूर्णांक है तो [[फील्ड एक्सटेंशन]] <math>K = \mathbb{Q}(\sqrt{d}\,)</math> परिमेय संख्याओं का [[द्विघात क्षेत्र विस्तार]] है। बीजगणितीय पूर्णांकों का वलय {{math|{{mathcal|O}}<sub>''K''</sub>}} रोकना <math>\sqrt{d}</math> चूंकि यह मोनिक बहुपद की जड़ है {{math|''x''<sup>2</sup> − ''d''}}. इसके अलावा, अगर {{math|''d'' ≡ 1 [[modular arithmetic|mod]] 4}}, फिर तत्व <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math> बीजगणितीय पूर्णांक भी है। यह बहुपद को संतुष्ट करता है {{math|''x''<sup>2</sup> − ''x'' + {{sfrac|1|4}}(1 − ''d'')}} जहां निरंतर शब्द {{math|{{sfrac|1|4}}(1 − ''d'')}} पूर्णांक है। पूर्णांकों का पूरा वलय किसके द्वारा उत्पन्न होता है <math>\sqrt{d}</math> या <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math> क्रमश। अधिक के लिए [[द्विघात पूर्णांक]] देखें।
*यदि {{mvar|d}} वर्ग-मुक्त पूर्णांक है तो [[फील्ड एक्सटेंशन|क्षेत्र विस्तार]] <math>K = \mathbb{Q}(\sqrt{d}\,)</math> परिमेय संख्याओं का [[द्विघात क्षेत्र विस्तार]] है। बीजगणितीय पूर्णांकों के वलय में {{math|{{mathcal|O}}<sub>''K''</sub>}} समाहित है <math>\sqrt{d}</math> चूंकि यह मोनिक बहुपद {{math|''x''<sup>2</sup> − ''d''}} का मूल है। {{math|''x''<sup>2</sup> − ''d''}}. इसके अतिरिक्त, यदि {{math|''d'' ≡ 1 [[modular arithmetic|mod]] 4}}, फिर तत्व <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math> बीजगणितीय पूर्णांक भी है। यह बहुपद {{math|''x''<sup>2</sup> − ''x'' + {{sfrac|1|4}}(1 − ''d'')}} को संतुष्ट करता है {{math|''x''<sup>2</sup> − ''x'' + {{sfrac|1|4}}(1 − ''d'')}} जहां स्थिर शब्द {{math|{{sfrac|1|4}}(1 − ''d'')}} पूर्णांक है। पूर्णांकों का पूरा वलय किसके द्वारा उत्पन्न होता है, क्रमशः <math>\sqrt{d}</math> या <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math>अधिक के लिए [[द्विघात पूर्णांक]] देखें।
* क्षेत्र के पूर्णांकों का वलय <math>F = \Q[\alpha]</math>, {{math|1=''α'' = {{radic|''m''|3}}}}, निम्नलिखित [[अभिन्न आधार]] है, लेखन {{math|1=''m'' = ''hk''<sup>2</sup>}} दो वर्ग-मुक्त पूर्णांक | वर्ग-मुक्त [[सह अभाज्य]] पूर्णांकों के लिए {{mvar|h}} और {{mvar|k}}:<ref>{{cite book| last1=Marcus | first1=Daniel A. | title=Number Fields |edition=3rd | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90279-1 | year=1977 |at=ch. 2, p. 38 and ex. 41}}</ref> <math display="block">\begin{cases}
* क्षेत्र के पूर्णांकों का वलय <math>F = \Q[\alpha]</math>, {{math|1=''α'' = {{radic|''m''|3}}}}, का निम्नलिखित [[अभिन्न आधार|समाकल आधार]] है, लेखन {{math|1=''m'' = ''hk''<sup>2</sup>}} दो वर्ग-मुक्त [[सह अभाज्य]] पूर्णांक {{mvar|h}} और {{mvar|k}}<ref name=":0">{{cite book| last1=Marcus | first1=Daniel A. | title=Number Fields |edition=3rd | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90279-1 | year=1977 |at=ch. 2, p. 38 and ex. 41}}</ref> के लिए: <math display="block">\begin{cases}
1, \alpha, \dfrac{\alpha^2 \pm k^2 \alpha + k^2}{3k} & m \equiv \pm 1 \bmod 9 \\
1, \alpha, \dfrac{\alpha^2 \pm k^2 \alpha + k^2}{3k} & m \equiv \pm 1 \bmod 9 \\
1, \alpha, \dfrac{\alpha^2}k  & \text{otherwise}
1, \alpha, \dfrac{\alpha^2}k  & \text{otherwise}
\end{cases}</math>
\end{cases}</math>
* अगर {{mvar|ζ<sub>n</sub>}} एकता का आदिम मूल है {{mvar|n}}[[एकता की जड़]], फिर [[साइक्लोटोमिक क्षेत्र]] के पूर्णांकों का वलय <math>\Q(\zeta_n)</math> ठीक है <math>\Z[\zeta_n]</math>.
* यदि {{mvar|ζ<sub>n</sub>}} एकता का आदिम {{mvar|n}} मूल है तो [[साइक्लोटोमिक क्षेत्र]] के पूर्णांकों का वलय <math>\Q(\zeta_n)</math> और <math>\Z[\zeta_n]</math> स्पष्ट है।
* अगर {{mvar|α}} तब बीजगणितीय पूर्णांक है {{math|1=''β'' = {{radic|''α''|''n''}}}} एक और बीजगणितीय पूर्णांक है। के लिए बहुपद {{mvar|β}} प्रतिस्थापित करके प्राप्त किया जाता है {{math|''x<sup>n</sup>''}} के लिए बहुपद में {{mvar|α}}.
* यदि {{mvar|α}} तब बीजगणितीय पूर्णांक है {{math|1=''β'' = {{radic|''α''|''n''}}}} एक और बीजगणितीय पूर्णांक है। {{mvar|α}} के लिए बहुपद में {{math|''x<sup>n</sup>''}} को प्रतिस्थापित करके {{mvar|β}} प्राप्त किया जाता है।


== गैर-उदाहरण ==
== गैर-उदाहरण ==
* अगर {{math|''P''(''x'')}} आदिम बहुपद (रिंग थ्योरी) है जिसमें पूर्णांक गुणांक हैं लेकिन मोनिक नहीं है, और {{mvar|P}} [[अलघुकरणीय बहुपद]] से अधिक है <math>\mathbb{Q}</math>, फिर की कोई जड़ नहीं {{mvar|P}} बीजगणितीय पूर्णांक हैं (लेकिन बीजगणितीय संख्याएँ हैं)। यहाँ आदिम का उपयोग इस अर्थ में किया जाता है कि गुणांक का उच्चतम सामान्य कारक {{mvar|P}} 1 है; यह गुणांकों को जोड़ीदार अपेक्षाकृत प्रमुख होने की आवश्यकता से कमजोर है।
* यदि {{math|''P''(''x'')}} आदिम बहुपद (रिंग सिद्धांत) है जिसमें पूर्णांक गुणांक हैं किन्तु मोनिक नहीं है, <math>\mathbb{Q}</math> और {{mvar|P}} [[अलघुकरणीय बहुपद]] से अधिक है, फिर {{mvar|P}} की कोई मूल बीजगणितीय पूर्णांक नहीं हैं (किन्तु बीजगणितीय संख्याएँ हैं)। यहाँ आदिम का उपयोग इस अर्थ में किया जाता है कि गुणांक {{mvar|P}} का उच्चतम सामान्य कारक 1 है; यह गुणांकों को जोड़ीदार अपेक्षाकृत प्रमुख होने की आवश्यकता से दुर्बल है।


== तथ्य ==
== तथ्य ==
* दो बीजगणितीय पूर्णांकों का योग, अंतर और गुणनफल बीजगणितीय पूर्णांक होता है। सामान्य तौर पर उनका भागफल नहीं होता है। शामिल मोनिक बहुपद आम तौर पर मूल बीजगणितीय पूर्णांकों की तुलना में बहुपद के उच्च स्तर का होता है, और [[परिणामी]] और गुणनखण्ड लेकर पाया जा सकता है। उदाहरण के लिए, यदि {{math|1=''x''<sup>2</sup> − ''x'' − 1 = 0}}, {{math|1=''y''<sup>3</sup> − ''y'' − 1 = 0}} और {{math|''z'' {{=}} ''xy''}}, फिर हटाना {{mvar|x}} और {{mvar|y}} से {{math|1=''z'' − ''xy'' = 0}} और बहुपद संतुष्ट हैं {{mvar|x}} और {{mvar|y}} परिणामी का उपयोग करके देता है {{math|1=''z''<sup>6</sup> − 3''z''<sup>4</sup> − 4''z''<sup>3</sup> + ''z''<sup>2</sup> + ''z'' − 1 = 0}}, जो अलघुकरणीय है, और उत्पाद द्वारा संतुष्ट मोनिक समीकरण है। (यह देखने के लिए कि {{mvar|xy}} की जड़ है {{mvar|x}}- का परिणाम {{math|''z'' − ''xy''}} और {{math|''x''<sup>2</sup> − ''x'' − 1}}, कोई इस तथ्य का उपयोग कर सकता है कि परिणामी इसके दो इनपुट बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) में समाहित है।)
* दो बीजगणितीय पूर्णांकों का योग, अंतर और गुणनफल बीजगणितीय पूर्णांक होता है। सामान्य तौर पर उनका भागफल नहीं होता है। इसमें सम्मिलित मोनिक बहुपद सामान्य तौर पर मूल बीजगणितीय पूर्णांकों की तुलना में बहुपद के उच्च स्तर का होता है, और [[परिणामी]] और गुणनखण्ड लेकर पाया जा सकता है। उदाहरण के लिए, यदि {{math|1=''x''<sup>2</sup> − ''x'' − 1 = 0}}, {{math|1=''y''<sup>3</sup> − ''y'' − 1 = 0}} और {{math|''z'' {{=}} ''xy''}}, फिर {{math|1=''z'' − ''xy'' = 0}} से  {{mvar|x}} और {{mvar|y}} हटाना,  और परिणामी का उपयोग करके {{mvar|x}} और {{mvar|y}} से संतुष्ट बहुपद {{math|1=''z''<sup>6</sup> − 3''z''<sup>4</sup> − 4''z''<sup>3</sup> + ''z''<sup>2</sup> + ''z'' − 1 = 0}} देता है , जो अलघुकरणीय है, और उत्पाद द्वारा संतुष्ट मोनिक समीकरण है। (यह देखने के लिए कि {{mvar|xy}} की मूल है {{mvar|x}} का परिणाम {{math|''z'' − ''xy''}} और {{math|''x''<sup>2</sup> − ''x'' − 1}}, कोई इस तथ्य का उपयोग कर सकता है कि परिणामी इसके दो इनपुट बहुपदों द्वारा उत्पन्न आदर्श (रिंग सिद्धांत) में समाहित है।)
* जड़, जोड़ और गुणन वाले पूर्णांकों से निर्मित कोई भी संख्या इसलिए बीजगणितीय पूर्णांक है; लेकिन सभी बीजगणितीय पूर्णांक इतने रचनात्मक नहीं होते हैं: भोले अर्थ में, अलघुकरणीय पंचकों की अधिकांश जड़ें नहीं होती हैं। यह एबेल-रफ़िनी प्रमेय है।
* मूल, जोड़ और गुणन वाले पूर्णांकों से निर्मित कोई भी संख्या बीजगणितीय पूर्णांक है; किन्तु सभी बीजगणितीय पूर्णांक इतने रचनात्मक नहीं होते हैं: सामान्य अर्थ में, अलघुकरणीय पंचकों की अधिकांश मूलें नहीं होती हैं। यह एबेल-रफ़िनी प्रमेय है।
* मोनिक बहुपद की प्रत्येक जड़ जिसका गुणांक बीजगणितीय पूर्णांक है, स्वयं बीजगणितीय पूर्णांक है। दूसरे शब्दों में, बीजगणितीय पूर्णांक वलय बनाते हैं जो इसके किसी भी विस्तार में [[अभिन्न रूप से बंद डोमेन]] है।
* मोनिक बहुपद की प्रत्येक मूल जिसका गुणांक बीजगणितीय पूर्णांक होता है, स्वयं बीजगणितीय पूर्णांक है। दूसरे शब्दों में, बीजगणितीय पूर्णांक वलय बनाते हैं जो इसके किसी भी विस्तार में [[अभिन्न रूप से बंद डोमेन]] होता है।
* बीजगणितीय पूर्णांकों का वलय बेज़ाउट डोमेन है, जो [[प्रमुख आदर्श प्रमेय]] के परिणामस्वरूप है।
* बीजगणितीय पूर्णांकों का वलय बेज़ाउट डोमेन है, जो [[प्रमुख आदर्श प्रमेय]] के परिणामस्वरूप है।
* यदि बीजगणितीय पूर्णांक से जुड़े मोनिक बहुपद में निरंतर शब्द 1 या -1 है, तो उस बीजगणितीय पूर्णांक का गुणात्मक व्युत्क्रम भी बीजगणितीय पूर्णांक है, और इकाई (रिंग थ्योरी) है, जो कि इकाइयों के समूह का तत्व है। बीजगणितीय पूर्णांकों की अंगूठी।
* यदि बीजगणितीय पूर्णांक से जुड़े मोनिक बहुपद में निरंतर शब्द 1 या -1 है, तो उस बीजगणितीय पूर्णांक का गुणात्मक व्युत्क्रम भी बीजगणितीय पूर्णांक है, और इकाई (रिंग सिद्धांत) है, जो बीजगणितीय पूर्णांकों की अंगूठी की इकाइयों के समूह का एक तत्व है।
* प्रत्येक बीजगणितीय संख्या को बीजगणितीय पूर्णांक के अनुपात के रूप में गैर-शून्य बीजगणितीय पूर्णांक के रूप में लिखा जा सकता है। वास्तव में, भाजक को सदैव धनात्मक पूर्णांक के रूप में चुना जा सकता है। विशेष रूप से, अगर {{math|''x''}} बीजगणितीय संख्या है जो बहुपद की जड़ है {{math|''p''(''x'')}} पूर्णांक गुणांक और अग्रणी पद के साथ {{math|''a''<sub>''n''</sub>''x''<sup>''n''</sup>}} के लिए {{math|''a''<sub>''n''</sub> > 0}} तब {{math|''a''<sub>''n''</sub>''x'' / ''a''<sub>''n''</sub>}} वादा अनुपात है। विशेष रूप से, {{math|1=''y'' = ''a''<sub>''n''</sub>''x''}} बीजगणितीय पूर्णांक है क्योंकि यह का मूल है {{math|''a''{{su|b=''n''|p=''n''&nbsp;−&thinsp;1}}&thinsp;''p''(''y''&hairsp;/''a''<sub>''n''</sub>)}}, जो मोनिक बहुपद है {{math|''y''}} पूर्णांक गुणांक के साथ।
* प्रत्येक बीजगणितीय संख्या को बीजगणितीय पूर्णांक के अनुपात के रूप में गैर-शून्य बीजगणितीय पूर्णांक के रूप में लिखा जा सकता है। वास्तव में, भाजक को सदैव धनात्मक पूर्णांक के रूप में चुना जा सकता है। विशेष रूप से, यदि {{math|''x''}} बीजगणितीय संख्या है जो बहुपद {{math|''p''(''x'')}} की मूल पूर्णांक गुणांक और अग्रणी पद के साथ {{math|''a''<sub>''n''</sub>''x''<sup>''n''</sup>}} के लिए {{math|''a''<sub>''n''</sub> > 0}} तब {{math|''a''<sub>''n''</sub>''x'' / ''a''<sub>''n''</sub>}} वचन किया गया अनुपात है। विशेष रूप से, {{math|1=''y'' = ''a''<sub>''n''</sub>''x''}} बीजगणितीय पूर्णांक है क्योंकि यह {{math|''a''{{su|b=''n''|p=''n''&nbsp;−&thinsp;1}}&thinsp;''p''(''y''&hairsp;/''a''<sub>''n''</sub>)}} का मूल है {{math|''a''{{su|b=''n''|p=''n''&nbsp;−&thinsp;1}}&thinsp;''p''(''y''&hairsp;/''a''<sub>''n''</sub>)}}, जो {{math|''y''}} पूर्णांक गुणांक के साथ मोनिक बहुपद है।


== यह भी देखें ==
== यह भी देखें ==
Line 43: Line 41:
* गाऊसी पूर्णांक
* गाऊसी पूर्णांक
* [[आइज़ेंस्टीन पूर्णांक]]
* [[आइज़ेंस्टीन पूर्णांक]]
* एकता की जड़
* एकता की मूल
* डिरिक्लेट की इकाई प्रमेय
* डिरिक्लेट की इकाई प्रमेय
*[[मौलिक इकाई (संख्या सिद्धांत)]]
*[[मौलिक इकाई (संख्या सिद्धांत)]]
Line 52: Line 50:
* {{cite book|first=W. |last=Stein |title=Algebraic Number Theory: A Computational Approach |url=http://wstein.org/books/ant/ant.pdf}}
* {{cite book|first=W. |last=Stein |title=Algebraic Number Theory: A Computational Approach |url=http://wstein.org/books/ant/ant.pdf}}
{{refend}}
{{refend}}
{{Algebraic numbers}}
[[Category: बीजगणितीय संख्याएँ]] [[Category: पूर्णांकों]]


[[Category: Machine Translated Page]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:पूर्णांकों]]
[[Category:बीजगणितीय संख्याएँ]]

Latest revision as of 11:16, 16 February 2023

बीजगणितीय संख्या सिद्धांत में, बीजगणितीय पूर्णांक जटिल संख्या है जो जो पूर्णांकों पर अभिन्न तत्व है। अर्थात्, बीजगणितीय पूर्णांक कुछ मोनिक बहुपद (बहुपद जिसका प्रमुख गुणांक 1 है) का जटिल मूल है, जिसके गुणांक पूर्णांक हैं। सभी बीजगणितीय पूर्णांकों का समुच्चय A जोड़, घटाव और गुणा के अंतर्गत बंद है और इसलिए जटिल संख्याओं का क्रमविनिमेय उपसमूह है।

किसी संख्या क्षेत्र K के पूर्णांकों का वलय, जिसे OK द्वारा निरूपित किया जाता है, K और A का प्रतिच्छेदन है: इसे क्षेत्र (गणित) K के अधिकतम क्रम (रिंग सिद्धांत) के रूप में भी वर्णित किया जा सकता है K. प्रत्येक बीजगणितीय पूर्णांक किसी संख्या क्षेत्र के पूर्णांकों के वलय से संबंधित होता है। संख्या α बीजगणितीय पूर्णांक है यदि और केवल यदि रिंग एबेलियन समूह के रूप में अंतिम रूप से उत्पन्न एबेलियन समूह है, जिसे कहना है, एक के रूप में -मॉड्यूल (गणित)

परिभाषाएँ

निम्नलिखित बीजगणितीय पूर्णांक की समतुल्य परिभाषाएँ हैं। माना K संख्या क्षेत्र हो (अर्थात, का एक परिमित विस्तार , परिमेय संख्याओं का क्षेत्र), दूसरे शब्दों में, कुछ बीजगणितीय संख्या के लिए आदिम तत्व प्रमेय द्वारा।

  • αK बीजगणितीय पूर्णांक है यदि मोनिक बहुपद उपस्थित है ऐसा है कि f(α) = 0.
  • αK बीजगणितीय पूर्णांक है यदि α का न्यूनतम बहुपद (क्षेत्र सिद्धांत) का मोनिक बहुपद α ऊपर में है।
  • αK बीजगणितीय पूर्णांक है यदि निश्चित रूप से उत्पन्न होता है -मापांक।
  • αK बीजगणितीय पूर्णांक है यदि कोई गैर-शून्य अंतिम रूप से उत्पन्न होता है सबमॉड्यूल ऐसा है कि αMM.

बीजगणितीय पूर्णांक रिंग एक्सटेंशन के अभिन्न तत्वों का विशेष स्थिति है। विशेष रूप से, बीजगणितीय पूर्णांक परिमित विस्तार का अभिन्न तत्व है।

उदाहरण

  • एकमात्र बीजगणितीय पूर्णांक जो परिमेय संख्याओं के समुच्चय में पाए जाते हैं, पूर्णांक हैं। दूसरे शब्दों में, और A का प्रतिच्छेदन और A बिल्कुल सही है । तर्कसंगत संख्या a/b बीजगणितीय पूर्णांक नहीं है जब तक जब तक कि b, a को विभाजित नहीं करता। ध्यान दें कि बहुपद bxa का प्रमुख गुणांक bxa पूर्णांक b है। अन्य विशेष स्थिति के रूप में, वर्गमूल गैर-नकारात्मक पूर्णांक का n बीजगणितीय पूर्णांक है, किन्तु अपरिमेय संख्या है जब तक n वर्ग संख्या है।
  • यदि d वर्ग-मुक्त पूर्णांक है तो क्षेत्र विस्तार परिमेय संख्याओं का द्विघात क्षेत्र विस्तार है। बीजगणितीय पूर्णांकों के वलय में OK समाहित है चूंकि यह मोनिक बहुपद x2d का मूल है। x2d. इसके अतिरिक्त, यदि d ≡ 1 mod 4, फिर तत्व बीजगणितीय पूर्णांक भी है। यह बहुपद x2x + 1/4(1 − d) को संतुष्ट करता है x2x + 1/4(1 − d) जहां स्थिर शब्द 1/4(1 − d) पूर्णांक है। पूर्णांकों का पूरा वलय किसके द्वारा उत्पन्न होता है, क्रमशः या । अधिक के लिए द्विघात पूर्णांक देखें।
  • क्षेत्र के पूर्णांकों का वलय , α = 3m, का निम्नलिखित समाकल आधार है, लेखन m = hk2 दो वर्ग-मुक्त सह अभाज्य पूर्णांक h और k[1] के लिए:
  • यदि ζn एकता का आदिम n मूल है तो साइक्लोटोमिक क्षेत्र के पूर्णांकों का वलय और स्पष्ट है।
  • यदि α तब बीजगणितीय पूर्णांक है β = nα एक और बीजगणितीय पूर्णांक है। α के लिए बहुपद में xn को प्रतिस्थापित करके β प्राप्त किया जाता है।

गैर-उदाहरण

  • यदि P(x) आदिम बहुपद (रिंग सिद्धांत) है जिसमें पूर्णांक गुणांक हैं किन्तु मोनिक नहीं है, और P अलघुकरणीय बहुपद से अधिक है, फिर P की कोई मूल बीजगणितीय पूर्णांक नहीं हैं (किन्तु बीजगणितीय संख्याएँ हैं)। यहाँ आदिम का उपयोग इस अर्थ में किया जाता है कि गुणांक P का उच्चतम सामान्य कारक 1 है; यह गुणांकों को जोड़ीदार अपेक्षाकृत प्रमुख होने की आवश्यकता से दुर्बल है।

तथ्य

  • दो बीजगणितीय पूर्णांकों का योग, अंतर और गुणनफल बीजगणितीय पूर्णांक होता है। सामान्य तौर पर उनका भागफल नहीं होता है। इसमें सम्मिलित मोनिक बहुपद सामान्य तौर पर मूल बीजगणितीय पूर्णांकों की तुलना में बहुपद के उच्च स्तर का होता है, और परिणामी और गुणनखण्ड लेकर पाया जा सकता है। उदाहरण के लिए, यदि x2x − 1 = 0, y3y − 1 = 0 और z = xy, फिर zxy = 0 से x और y हटाना, और परिणामी का उपयोग करके x और y से संतुष्ट बहुपद z6 − 3z4 − 4z3 + z2 + z − 1 = 0 देता है , जो अलघुकरणीय है, और उत्पाद द्वारा संतुष्ट मोनिक समीकरण है। (यह देखने के लिए कि xy की मूल है x का परिणाम zxy और x2x − 1, कोई इस तथ्य का उपयोग कर सकता है कि परिणामी इसके दो इनपुट बहुपदों द्वारा उत्पन्न आदर्श (रिंग सिद्धांत) में समाहित है।)
  • मूल, जोड़ और गुणन वाले पूर्णांकों से निर्मित कोई भी संख्या बीजगणितीय पूर्णांक है; किन्तु सभी बीजगणितीय पूर्णांक इतने रचनात्मक नहीं होते हैं: सामान्य अर्थ में, अलघुकरणीय पंचकों की अधिकांश मूलें नहीं होती हैं। यह एबेल-रफ़िनी प्रमेय है।
  • मोनिक बहुपद की प्रत्येक मूल जिसका गुणांक बीजगणितीय पूर्णांक होता है, स्वयं बीजगणितीय पूर्णांक है। दूसरे शब्दों में, बीजगणितीय पूर्णांक वलय बनाते हैं जो इसके किसी भी विस्तार में अभिन्न रूप से बंद डोमेन होता है।
  • बीजगणितीय पूर्णांकों का वलय बेज़ाउट डोमेन है, जो प्रमुख आदर्श प्रमेय के परिणामस्वरूप है।
  • यदि बीजगणितीय पूर्णांक से जुड़े मोनिक बहुपद में निरंतर शब्द 1 या -1 है, तो उस बीजगणितीय पूर्णांक का गुणात्मक व्युत्क्रम भी बीजगणितीय पूर्णांक है, और इकाई (रिंग सिद्धांत) है, जो बीजगणितीय पूर्णांकों की अंगूठी की इकाइयों के समूह का एक तत्व है।
  • प्रत्येक बीजगणितीय संख्या को बीजगणितीय पूर्णांक के अनुपात के रूप में गैर-शून्य बीजगणितीय पूर्णांक के रूप में लिखा जा सकता है। वास्तव में, भाजक को सदैव धनात्मक पूर्णांक के रूप में चुना जा सकता है। विशेष रूप से, यदि x बीजगणितीय संख्या है जो बहुपद p(x) की मूल पूर्णांक गुणांक और अग्रणी पद के साथ anxn के लिए an > 0 तब anx / an वचन किया गया अनुपात है। विशेष रूप से, y = anx बीजगणितीय पूर्णांक है क्योंकि यह an − 1
    n
    p(y /an)
    का मूल है an − 1
    n
    p(y /an)
    , जो y पूर्णांक गुणांक के साथ मोनिक बहुपद है।

यह भी देखें

संदर्भ

  1. Marcus, Daniel A. (1977). Number Fields (3rd ed.). Berlin, New York: Springer-Verlag. ch. 2, p. 38 and ex. 41. ISBN 978-0-387-90279-1.