कोहोलॉजिकल आयाम: Difference between revisions

From Vigyanwiki
No edit summary
Line 12: Line 12:
== उदाहरण ==
== उदाहरण ==
उदाहरण के पहले समूह में, मान लीजिए गुणांकों की वलय R है : <math>\mathbb{Z}</math>.
उदाहरण के पहले समूह में, मान लीजिए गुणांकों की वलय R है : <math>\mathbb{Z}</math>.
* एक मुक्त समूह में सह-वैज्ञानिक आयाम एक होता है। जैसा कि [[जॉन स्टालिंग्स]] (अंतिम रूप से उत्पन्न समूह के लिए) और [[रिचर्ड स्वान]] (पूर्ण सामान्यता में) द्वारा दिखाया गया है, यह गुण [[मुक्त समूह]]ों की विशेषता है। इस परिणाम को स्टालिंग्स-स्वान प्रमेय के रूप में जाना जाता है।<ref>{{cite book|last=Baumslag|first=Gilbert|authorlink=Gilbert Baumslag|title=Topics in Combinatorial Group Theory|url=https://books.google.com/books?id=0T4BCAAAQBAJ&pg=PA16|year=2012|page=16|publisher=Springer Basel AG}}</ref> समूह G के लिए स्टैलिंग्स-स्वान प्रमेय कहता है कि G मुक्त है यदि और केवल यदि G द्वारा एबेलियन कर्नेल के साथ प्रत्येक [[समूह विस्तार]] को विभाजित किया गया है।<ref>{{cite journal|last=Gruenberg|first= Karl W.|authorlink=Karl W. Gruenberg|title=Review of ''Homology in group theory'' by Urs Stammbach|journal=[[Bulletin of the American Mathematical  Society]] |volume=81|year=1975|pages=851–854|doi=10.1090/S0002-9904-1975-13858-4|doi-access=free}}</ref>
* एक मुक्त समूह में सह-वैज्ञानिक आयाम एक होता है। जैसा कि [[जॉन स्टालिंग्स]] (अंतिम रूप से उत्पन्न समूह के लिए) और [[रिचर्ड स्वान]] (पूर्ण सामान्यता में) द्वारा दिखाया गया है, यह गुण [[मुक्त समूह]]ों की विशेषता है। इस तरह समरूप बीजगणित में आयाम की सामान्य परिभाषा के साथ एक संबंध स्थापित किया जाता है, इस परिणाम को स्टालिंग्स-स्वान प्रमेय के रूप में जाना जाता है।<ref>{{cite book|last=Baumslag|first=Gilbert|authorlink=Gilbert Baumslag|title=Topics in Combinatorial Group Theory|url=https://books.google.com/books?id=0T4BCAAAQBAJ&pg=PA16|year=2012|page=16|publisher=Springer Basel AG}}</ref> समूह G के लिए स्टैलिंग्स-स्वान प्रमेय कहता है कि G मुक्त है यदि और केवल यदि G द्वारा एबेलियन कर्नेल के साथ प्रत्येक [[समूह विस्तार]] को विभाजित किया गया है।<ref>{{cite journal|last=Gruenberg|first= Karl W.|authorlink=Karl W. Gruenberg|title=Review of ''Homology in group theory'' by Urs Stammbach|journal=[[Bulletin of the American Mathematical  Society]] |volume=81|year=1975|pages=851–854|doi=10.1090/S0002-9904-1975-13858-4|doi-access=free}}</ref>
* गोले के अलावा एक [[कॉम्पैक्ट जगह]], [[जुड़ा हुआ स्थान]], [[उन्मुखता]] [[रीमैन सतह]] के  [[मौलिक समूह]] में सह-वैज्ञानिक [[आयाम]] दो हैं।
* गोले के अलावा एक [[कॉम्पैक्ट जगह]], [[जुड़ा हुआ स्थान]], [[उन्मुखता]] [[रीमैन सतह]] के  [[मौलिक समूह]] में सह-वैज्ञानिक [[आयाम]] दो हैं।
* अधिक सामान्य रूप से,आयाम n के एक बंद, जुड़े हुए, ओरिएंटेबल [[एस्फेरिकल स्पेस]] [[कई गुना]] के मौलिक समूह में सह-वैज्ञानिक आयाम एन है। विशेष रूप से, एक बंद ओरिएंटेबल हाइपरबॉलिक एन-मैनिफोल्ड के मौलिक समूह में सह-वैज्ञानिक आयाम एन है।
* अधिक सामान्य रूप से,आयाम n के एक बंद, जुड़े हुए, ओरिएंटेबल [[एस्फेरिकल स्पेस]] [[कई गुना]] के मौलिक समूह में सह-वैज्ञानिक आयाम एन है। विशेष रूप से, एक बंद ओरिएंटेबल हाइपरबॉलिक एन-मैनिफोल्ड के मौलिक समूह में सह-वैज्ञानिक आयाम एन है।

Revision as of 14:23, 15 February 2023

अमूर्त बीजगणित में, सह-वैज्ञानिक आयाम एक समूह (गणित) का एक अपरिवर्तनीय है जो इसके प्रतिनिधित्व की समरूप जटिलता को मापता है। इसमें ज्यामितीय समूह सिद्धांत, टोपोलॉजी और बीजगणितीय संख्या सिद्धांत में महत्वपूर्ण अनुप्रयोग हैं।

एक समूह का कोहोलॉजिकल आयाम

अधिकांश सह-वैज्ञानिक अपरिवर्तन शीलताओं के रूप में, सह-वैज्ञानिक आयाम में "गुणांकों की अंगूठी" R का विकल्प शामिल होता है, जिसमें R = 'Z', पूर्णांकों की अंगूठी द्वारा दिए गए एक प्रमुख विशेष मामले के साथ होता है। G को एक असतत समूह R को एक इकाई के साथ गैर-शून्य वलय, और RG को समूह वलय होने दें। समूह G में 'सह-वैज्ञानिक आयाम n से कम या उसके बराबर है, जिसे निरूपित cd के रूप में दर्शाया गया है , R(जी) ≤ एन, यदि तुच्छ आरजी-मापांक आर में लंबाई एन का प्रक्षेपी संकल्प है, यानी प्रक्षेपी मॉड्यूल आरजी-मापांक पी हैं0, ..., पीn और आरजी-मापांक समरूपता डीk: पीkPk − 1 (के = 1, ..., एन) और डी0: पी0आर, जैसे कि डी की छविk d के कर्नेल के साथ मेल खाता हैk − 1 k = 1, ..., n और d की गिरी के लिए n कर्नेल तुच्छ है।

समतुल्य रूप से, सह-वैज्ञानिक आयाम n से कम या उसके बराबर है यदि एक मनमाने ढंग से आरजी-मापांक एम के लिए, M में गुणांक के साथ जी का समूह कोहोलॉजी डिग्री k > n, यानी एच में गायब हो जाता है k(G,M) = 0 जब भी k > n. अभाज्य p के लिए p-सह-वैज्ञानिक आयाम समान रूप से p-मरोड़ समूह Hk के संदर्भ में परिभाषित किया गया है।[1] सबसे छोटा n ऐसा है कि G का सह-वैज्ञानिक आयाम n से कम या उसके बराबर है, G का 'सह-वैज्ञानिक आयाम' है (गुणांक R के साथ), जिसे निरूपित किया जाता है .

एक मुक्त संकल्प एक अनुबंधित स्थान X पर समूह G की एक मुक्त कार्रवाई से प्राप्त किया जा सकता है। विशेष रूप से, यदि X एक असतत समूह G की मुक्त कार्रवाई के साथ आयाम n का एक अनुबंधित CW परिसर है जो कोशिकाओं को अनुमति देता है, तब .

उदाहरण

उदाहरण के पहले समूह में, मान लीजिए गुणांकों की वलय R है : .

  • एक मुक्त समूह में सह-वैज्ञानिक आयाम एक होता है। जैसा कि जॉन स्टालिंग्स (अंतिम रूप से उत्पन्न समूह के लिए) और रिचर्ड स्वान (पूर्ण सामान्यता में) द्वारा दिखाया गया है, यह गुण मुक्त समूहों की विशेषता है। इस तरह समरूप बीजगणित में आयाम की सामान्य परिभाषा के साथ एक संबंध स्थापित किया जाता है, इस परिणाम को स्टालिंग्स-स्वान प्रमेय के रूप में जाना जाता है।[2] समूह G के लिए स्टैलिंग्स-स्वान प्रमेय कहता है कि G मुक्त है यदि और केवल यदि G द्वारा एबेलियन कर्नेल के साथ प्रत्येक समूह विस्तार को विभाजित किया गया है।[3]
  • गोले के अलावा एक कॉम्पैक्ट जगह, जुड़ा हुआ स्थान, उन्मुखता रीमैन सतह के मौलिक समूह में सह-वैज्ञानिक आयाम दो हैं।
  • अधिक सामान्य रूप से,आयाम n के एक बंद, जुड़े हुए, ओरिएंटेबल एस्फेरिकल स्पेस कई गुना के मौलिक समूह में सह-वैज्ञानिक आयाम एन है। विशेष रूप से, एक बंद ओरिएंटेबल हाइपरबॉलिक एन-मैनिफोल्ड के मौलिक समूह में सह-वैज्ञानिक आयाम एन है।
  • गैर-तुच्छ परिमित समूहों में अनंत सह-वैज्ञानिक आयाम ओवर है . अधिक आम तौर पर, गैर-तुच्छ मरोड़ (बीजगणित) वाले समूहों के लिए सही है।

अब एक सामान्य वलय R के मामले पर विचार करें।

  • एक समूह G का कोहोमोलॉजिकल आयाम 0 है यदि और केवल यदि इसका समूह वलय RG सेमीसिम्पल बीजगणित है। इस प्रकार एक परिमित समूह में कोहोलॉजिकल आयाम 0 है यदि और केवल अगर इसका क्रम (या, समतुल्य, इसके तत्वों के क्रम) आर में उलटा होता है।
  • स्टैलिंग्स-स्वान प्रमेय का सामान्यीकरण , मार्टिन डनवुडी ने साबित किया कि एक समूह के मनमाना वलय R पर अधिक से अधिक एक कोहोमोलॉजिकल आयाम होता है, अगर केवल यह परिमित समूहों के एक जुड़े हुए ग्राफ का मौलिक समूह है, जिनके क्रम R में उलटा है।

एक क्षेत्र का कोहोलॉजिकल आयाम

एक क्षेत्र K का p-सह-वैज्ञानिक आयाम, K के एक वियोज्य बंद होने के Galois समूह का p-सह-वैज्ञानिक आयाम है।[4] K का सह-वैज्ञानिक आयाम सभी अभाज्य p पर p-सह-वैज्ञानिक आयाम का सर्वोच्च है।[5]


उदाहरण

  • गैर-शून्य विशेषता पी के प्रत्येक क्षेत्र में अधिक से अधिक 1 पी-सह-वैज्ञानिक आयाम होता है।[6]
  • प्रत्येक परिमित क्षेत्र में निरपेक्ष गैल्वा समूह समरूपी होता है और इसी तरह सह-वैज्ञानिक आयाम 1 है।[7]
  • औपचारिक लॉरेंट श्रृंखला का क्षेत्र गैर-शून्य विशेषता के बीजगणितीय रूप से बंद क्षेत्र k पर भी निरपेक्ष गैलोज़ समूह आइसोमोर्फिक है और और इसी तरह सह-वैज्ञानिक आयाम 1।[7]


यह भी देखें

संदर्भ

  1. Gille & Szamuely (2006) p.136
  2. Baumslag, Gilbert (2012). Topics in Combinatorial Group Theory. Springer Basel AG. p. 16.
  3. Gruenberg, Karl W. (1975). "Review of Homology in group theory by Urs Stammbach". Bulletin of the American Mathematical Society. 81: 851–854. doi:10.1090/S0002-9904-1975-13858-4.
  4. Shatz (1972) p.94
  5. Gille & Szamuely (2006) p.138
  6. Gille & Szamuely (2006) p.139
  7. 7.0 7.1 Gille & Szamuely (2006) p.140