घन फलन: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{distinguish| | {{distinguish|घन समीकरण}} | ||
{{short description|Polynomial function of degree 3}} | {{short description|Polynomial function of degree 3}} | ||
{{one source|date=September 2019}} | {{one source|date=September 2019}} | ||
[[Image:Polynomialdeg3.svg|thumb|right|210px|3 वास्तविक | [[Image:Polynomialdeg3.svg|thumb|right|210px|3 वास्तविक मूल के साथ एक घन फलन का लेखाचित्र (जहां वक्र क्षैतिज अक्ष को पार करता है - दिखाए गए मामले में दो महत्वपूर्ण बिंदु हैं। यहाँ फलन f(x) = (x3 + 3x2 − 6x − 8)/4 है।]]गणित में, एक घन फलन रूप का एक फलन है <math>f(x)=ax^3+bx^2+cx+d</math> | ||
जहाँ गुणांक a, b, c और d सम्मिश्र संख्याएँ हैं, और चर x वास्तविक मान लेता है, और <math>a\neq 0</math>। दूसरे शब्दों में, यह डिग्री तीन का बहुपद फलन और वास्तविक फलन दोनों है।विशेष रूप से, डोमेन और कोडोमेन वास्तविक संख्याओं का समुच्चय हैं। | जहाँ गुणांक a, b, c और d सम्मिश्र संख्याएँ हैं, और चर x वास्तविक मान लेता है, और <math>a\neq 0</math>। दूसरे शब्दों में, यह उपाधि (डिग्री) तीन का बहुपद फलन और वास्तविक फलन दोनों है।विशेष रूप से, डोमेन और कोडोमेन वास्तविक संख्याओं का समुच्चय हैं। | ||
f(x) = 0 स्थापन करना प्रपत्र का घन समीकरण उत्पन्न करता है | f(x) = 0 स्थापन करना प्रपत्र का घन समीकरण उत्पन्न करता है | ||
:<math>ax^3+bx^2+cx+d=0,</math> | :<math>ax^3+bx^2+cx+d=0,</math> | ||
जिनके हल फलन के रूट्स कहलाते हैं। | जिनके हल फलन के मूल (रूट्स) कहलाते हैं। | ||
एक घन फलन के या तो एक या तीन वास्तविक | एक घन फलन के या तो एक या तीन वास्तविक मूल होते हैं (जो भिन्न नहीं हो सकते हैं);<ref>{{Cite book|last1=Bostock|first1=Linda|url=https://books.google.com/books?id=e2C3tFnAR-wC&q=A+cubic+function+has+either+one+or+three+real+roots&pg=PA462|title=शुद्ध गणित 2|last2=Chandler|first2=Suzanne|last3=Chandler|first3=F. S.|date=1979|publisher=Nelson Thornes|isbn=978-0-85950-097-5|pages=462|language=en|quote=इस प्रकार एक क्यूबिक समीकरण में या तो तीन वास्तविक जड़ें हैं ... या एक वास्तविक जड़ ...}} </ref> सभी विषम-उपाधि बहुपद का कम से कम एक वास्तविक मूल होता है। | ||
घन फलन के लेखाचित्र (ग्राफ़) में हमेशा एक ही विभक्ति बिंदु होता है। इसके दो महत्वपूर्ण बिंदु हो सकते हैं, एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम। अन्यथा, एक घन फलन एकदिष्ट (मोनोटोनिक) है। एक घन फलन का लेखाचित्र इसके विभक्ति बिंदु के संबंध में सममित है; यही है, अर्थात्, यह इस बिंदु के चारों ओर एक आधे चक्कर के घूर्णन के तहत अपरिवर्तनीय है। एक | घन फलन के लेखाचित्र (ग्राफ़) में हमेशा एक ही विभक्ति बिंदु होता है। इसके दो महत्वपूर्ण बिंदु हो सकते हैं, एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम। अन्यथा, एक घन फलन एकदिष्ट (मोनोटोनिक) है। एक घन फलन का लेखाचित्र इसके विभक्ति बिंदु के संबंध में सममित है; यही है, अर्थात्, यह इस बिंदु के चारों ओर एक आधे चक्कर के घूर्णन के तहत अपरिवर्तनीय है। एक अफाइन रूपांतरण तक, घन फलन के लिए केवल तीन संभावित लेखाचित्र हैं। | ||
घन प्रक्षेप के लिए घन फलन मौलिक हैं। | घन प्रक्षेप के लिए घन फलन मौलिक हैं। | ||
Line 36: | Line 36: | ||
[[File:Cubic function (different c).svg|thumb|प्रपत्र के घन फलन <math>y=x^3+cx.</math><br/>किसी भी घन फलन का लेखाचित्र ऐसे वक्र के समान होता है।]]घन फलन का लेखाचित्र एक घन वक्र है, हालांकि कई घन वक्र फलन के लेखाचित्र नहीं हैं। | [[File:Cubic function (different c).svg|thumb|प्रपत्र के घन फलन <math>y=x^3+cx.</math><br/>किसी भी घन फलन का लेखाचित्र ऐसे वक्र के समान होता है।]]घन फलन का लेखाचित्र एक घन वक्र है, हालांकि कई घन वक्र फलन के लेखाचित्र नहीं हैं। | ||
यद्यपि घन फलन चार मापदंडों पर निर्भर करते हैं, उनके लेखाचित्र में केवल बहुत कम आकार हो सकते हैं। वास्तव में, एक घन फलन का लेखाचित्र हमेशा प्रपत्र के | यद्यपि घन फलन चार मापदंडों पर निर्भर करते हैं, उनके लेखाचित्र में केवल बहुत कम आकार हो सकते हैं। वास्तव में, एक घन फलन का लेखाचित्र हमेशा प्रपत्र के फलन के लेखाचित्र के समान होता है | ||
:<math>y=x^3+px.</math> | :<math>y=x^3+px.</math> | ||
:इस समानता को निर्देशांक अक्षों के समानांतर अनुवादों की रचना के रूप में बनाया जा सकता है, एक समरूपता ( | :इस समानता को निर्देशांक अक्षों के समानांतर अनुवादों की रचना के रूप में बनाया जा सकता है, एक समरूपता (एकरूप शल्कन), और, संभवतः, y-अक्ष के संबंध में एक प्रतिबिंब (दर्पण छवि)। एक और गैर-एकरूप शल्कन लेखाचित्र को तीन घन फलन में से एक के लेखाचित्र में बदल सकती है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
y&=x^3+x\\ | y&=x^3+x\\ | ||
Line 45: | Line 45: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इसका मतलब यह है कि | इसका मतलब यह है कि अफाइन रूपांतरण तक घन फलन के केवल तीन लेखाचित्र हैं। | ||
सामान्य घन फलन से शुरू होने पर उपरोक्त ज्यामितीय परिवर्तनों को निम्न तरीके से बनाया जा सकता है | सामान्य घन फलन से शुरू होने पर उपरोक्त ज्यामितीय परिवर्तनों को निम्न तरीके से बनाया जा सकता है | ||
Line 57: | Line 57: | ||
चर y = y1 + q का परिवर्तन y-अक्ष के संबंध में अनुवाद के अनुरूप है, और प्रपत्र का एक फलन देता है | चर y = y1 + q का परिवर्तन y-अक्ष के संबंध में अनुवाद के अनुरूप है, और प्रपत्र का एक फलन देता है | ||
:<math>y_1=ax_1^3+px_1.</math> | :<math>y_1=ax_1^3+px_1.</math> | ||
चर <math>\textstyle x_1=\frac {x_2}\sqrt a, y_1=\frac {y_2}\sqrt a</math> का परिवर्तन एक | चर <math>\textstyle x_1=\frac {x_2}\sqrt a, y_1=\frac {y_2}\sqrt a</math> का परिवर्तन एक एकरूप शल्कन से मेल खाता है, और <math>\sqrt a,</math> द्वारा गुणन के बाद प्रपत्र का एक फलन देता है | ||
:<math>y_2=x_2^3+px_2,</math> | :<math>y_2=x_2^3+px_2,</math> | ||
जो सरलतम रूप है जो एक समानता द्वारा प्राप्त किया जा सकता है। | जो सरलतम रूप है जो एक समानता द्वारा प्राप्त किया जा सकता है। | ||
फिर, यदि p ≠ 0, | फिर, यदि p ≠ 0, गैर-एकरूप शल्कन <math>\textstyle x_2=x_3\sqrt{|p|},\quad y_2=y_3\sqrt{|p|^3}</math> देता है, <math>\textstyle \sqrt{|p|^3},</math> से विभाजन देने के बाद | ||
:<math>y_3 =x_3^3 + x_3\sgn(p),</math> | :<math>y_3 =x_3^3 + x_3\sgn(p),</math> | ||
जहां p के संकेत के आधार पर <math>\sgn(p)</math> का मान 1 या -1 है। यदि कोई <math>\sgn(0)=0,</math> परिभाषित करता है तो फलन के बाद वाला रूप सभी मामलों पर लागू होता है <math>x_2 = x_3</math> तथा <math>y_2 = y_3</math>)। | जहां p के संकेत के आधार पर <math>\sgn(p)</math> का मान 1 या -1 है। यदि कोई <math>\sgn(0)=0,</math> परिभाषित करता है तो फलन के बाद वाला रूप सभी मामलों पर लागू होता है <math>x_2 = x_3</math> तथा <math>y_2 = y_3</math>)। | ||
== समरूपता == | == समरूपता == | ||
प्रपत्र <math>y=x^3+px,</math> के घन फलन के लिए विभक्ति बिंदु इस प्रकार मूल है। जैसा कि ऐसा फलन एक विषम फलन है, इसका लेखाचित्र विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर आधे मोड़ के घूर्णन के तहत अपरिवर्तनीय है। | |||
एक घन फलन का लेखाचित्र अपने विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर एक आधे मोड़ के घूर्णन के तहत अपरिवर्तनीय है। | एक घन फलन का लेखाचित्र अपने विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर एक आधे मोड़ के घूर्णन के तहत अपरिवर्तनीय है। | ||
Line 77: | Line 77: | ||
यदि α एक वास्तविक संख्या है, तो बिंदु (α, ''f''(α)) पर ''f'' के ग्राफ की स्पर्शरेखा रेखा है | यदि α एक वास्तविक संख्या है, तो बिंदु (α, ''f''(α)) पर ''f'' के ग्राफ की स्पर्शरेखा रेखा है | ||
:{{math|{(''x'', ''f''(''α'') + (''x'' − ''α'')''f'' ′(''α'')) : ''x'' ∈ '''R'''}}}। | :{{math|{(''x'', ''f''(''α'') + (''x'' − ''α'')''f'' ′(''α'')) : ''x'' ∈ '''R'''}}}। | ||
तो, इस रेखा और ''f'' के | तो, इस रेखा और ''f'' के लेखाचित्र के बीच का प्रतिच्छेदन बिंदु समीकरण को हल करके प्राप्त किया जा सकता है {{math|''f''(''x'') {{=}} ''f''(''α'') + (''x'' − ''α'')''f'' ′(''α'')}}, वह है | ||
:<math>x^3+px=\alpha^3+p\alpha+ (x-\alpha)(3\alpha^2+p),</math> | :<math>x^3+px=\alpha^3+p\alpha+ (x-\alpha)(3\alpha^2+p),</math> | ||
जिसे फिर से लिखा जा सकता है | जिसे फिर से लिखा जा सकता है | ||
Line 87: | Line 87: | ||
तो, फलन जो लेखाचित्र के एक बिंदु (x, y) को दूसरे बिंदु पर मानचित्र करता है जहां स्पर्शरेखा लेखाचित्र का अवरोधन करती है | तो, फलन जो लेखाचित्र के एक बिंदु (x, y) को दूसरे बिंदु पर मानचित्र करता है जहां स्पर्शरेखा लेखाचित्र का अवरोधन करती है | ||
:<math>(x,y)\mapsto (-2x, -8y+6px).</math> | :<math>(x,y)\mapsto (-2x, -8y+6px).</math> | ||
यह एक | यह एक अफाइन रूपांतरण है जो समरेख बिंदुओं को समरेख बिंदुओं में बदल देता है। यह दावा किए गए परिणाम को साबित करता है। | ||
== घन प्रक्षेप == | == घन प्रक्षेप == | ||
Line 93: | Line 93: | ||
किसी फलन के मान और दो बिंदुओं पर उसके व्युत्पन्न को देखते हुए, ठीक एक घन फलन होता है जिसमें समान चार मान होते हैं, जिसे घन हर्मिट स्पलाइन कहा जाता है। | किसी फलन के मान और दो बिंदुओं पर उसके व्युत्पन्न को देखते हुए, ठीक एक घन फलन होता है जिसमें समान चार मान होते हैं, जिसे घन हर्मिट स्पलाइन कहा जाता है। | ||
इस तथ्य का उपयोग करने के दो मानक तरीके हैं। सबसे पहले, यदि कोई जानता है, उदाहरण के लिए भौतिक माप द्वारा, एक फलन के मान और कुछ नमूने बिंदुओं पर इसके व्युत्पन्न, एक निरंतर भिन्न फलन के साथ फलन को प्रक्षेपित कर सकता है, जो कि एक | इस तथ्य का उपयोग करने के दो मानक तरीके हैं। सबसे पहले, यदि कोई जानता है, उदाहरण के लिए भौतिक माप द्वारा, एक फलन के मान और कुछ नमूने बिंदुओं पर इसके व्युत्पन्न, एक निरंतर भिन्न फलन के साथ फलन को प्रक्षेपित कर सकता है, जो कि एक टुकड़ावार घन फलन है। | ||
यदि किसी फलन का मान कई बिंदुओं पर जाना जाता है, तो फलन प्रक्षेप में निरंतर भिन्न होने वाले फलन द्वारा फलन का अनुमान लगाया जाता है, जो कि | यदि किसी फलन का मान कई बिंदुओं पर जाना जाता है, तो फलन प्रक्षेप में निरंतर भिन्न होने वाले फलन द्वारा फलन का अनुमान लगाया जाता है, जो कि टुकड़ावार घन होता है। एक विशिष्ट रूप से परिभाषित प्रक्षेप होने के लिए, दो और बाधाओं को जोड़ा जाना चाहिए, जैसे कि समापन बिंदु पर व्युत्पन्न के मान, या समापन बिंदु पर शून्य वक्रता। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 17:40, 13 February 2023
This article relies largely or entirely on a single source. (September 2019) |
गणित में, एक घन फलन रूप का एक फलन है
जहाँ गुणांक a, b, c और d सम्मिश्र संख्याएँ हैं, और चर x वास्तविक मान लेता है, और । दूसरे शब्दों में, यह उपाधि (डिग्री) तीन का बहुपद फलन और वास्तविक फलन दोनों है।विशेष रूप से, डोमेन और कोडोमेन वास्तविक संख्याओं का समुच्चय हैं।
f(x) = 0 स्थापन करना प्रपत्र का घन समीकरण उत्पन्न करता है
जिनके हल फलन के मूल (रूट्स) कहलाते हैं।
एक घन फलन के या तो एक या तीन वास्तविक मूल होते हैं (जो भिन्न नहीं हो सकते हैं);[1] सभी विषम-उपाधि बहुपद का कम से कम एक वास्तविक मूल होता है।
घन फलन के लेखाचित्र (ग्राफ़) में हमेशा एक ही विभक्ति बिंदु होता है। इसके दो महत्वपूर्ण बिंदु हो सकते हैं, एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम। अन्यथा, एक घन फलन एकदिष्ट (मोनोटोनिक) है। एक घन फलन का लेखाचित्र इसके विभक्ति बिंदु के संबंध में सममित है; यही है, अर्थात्, यह इस बिंदु के चारों ओर एक आधे चक्कर के घूर्णन के तहत अपरिवर्तनीय है। एक अफाइन रूपांतरण तक, घन फलन के लिए केवल तीन संभावित लेखाचित्र हैं।
घन प्रक्षेप के लिए घन फलन मौलिक हैं।
इतिहास
महत्वपूर्ण और विभक्ति अंक
![](https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Cubic_graph_special_points.svg/langen-gb-272px-Cubic_graph_special_points.svg.png)
घन फलन के महत्वपूर्ण बिंदु इसके स्थिर बिंदु हैं, अर्थात वे बिंदु जहां फलन का ढलान शून्य है।[2] इस प्रकार घन फलन f के महत्वपूर्ण बिंदु द्वारा परिभाषित किया गया है
- f(x) = ax3 + bx2 + cx + d,
x के मानों पर होता है जैसे कि व्युत्पन्न
घन फलन का शून्य है।
इस समीकरण के समाधान महत्वपूर्ण बिंदुओं के x-मान हैं और द्विघात सूत्र का उपयोग करके दिए गए हैं।
वर्गमूल के अंदर अभिव्यक्ति का संकेत महत्वपूर्ण बिंदुओं की संख्या निर्धारित करता है। यदि यह सकारात्मक है, तो दो महत्वपूर्ण बिंदु हैं, एक स्थानीय अधिकतम और दूसरा स्थानीय न्यूनतम है। यदि b2 – 3ac = 0, फिर केवल एक महत्वपूर्ण बिंदु है, जो एक विभक्ति बिंदु है। यदि b2 – 3ac < 0, है, तो कोई (वास्तविक) महत्वपूर्ण बिंदु नहीं हैं। बाद के दो मामलों में, यानी, अगर b2 – 3ac गैर-सकारात्मक है, तो घन फलन सख्ती से एकदिष्ट है। केस Δ0 > 0 के उदाहरण के लिए चित्र देखें।
किसी फलन का विभक्ति बिंदु वह होता है जहां वह फलन अवतलता को बदलता है।[3] एक विभक्ति बिंदु तब होता है जब दूसरा व्युत्पन्न होता है शून्य है, और तीसरा व्युत्पन्न अशून्य है। इस प्रकार एक घन फलन में हमेशा एक ही विभक्ति बिंदु होता है, जो पर होता है
वर्गीकरण
घन फलन का लेखाचित्र एक घन वक्र है, हालांकि कई घन वक्र फलन के लेखाचित्र नहीं हैं।
यद्यपि घन फलन चार मापदंडों पर निर्भर करते हैं, उनके लेखाचित्र में केवल बहुत कम आकार हो सकते हैं। वास्तव में, एक घन फलन का लेखाचित्र हमेशा प्रपत्र के फलन के लेखाचित्र के समान होता है
- इस समानता को निर्देशांक अक्षों के समानांतर अनुवादों की रचना के रूप में बनाया जा सकता है, एक समरूपता (एकरूप शल्कन), और, संभवतः, y-अक्ष के संबंध में एक प्रतिबिंब (दर्पण छवि)। एक और गैर-एकरूप शल्कन लेखाचित्र को तीन घन फलन में से एक के लेखाचित्र में बदल सकती है
इसका मतलब यह है कि अफाइन रूपांतरण तक घन फलन के केवल तीन लेखाचित्र हैं।
सामान्य घन फलन से शुरू होने पर उपरोक्त ज्यामितीय परिवर्तनों को निम्न तरीके से बनाया जा सकता है
सबसे पहले, यदि कोई < 0 है, तो चर x →-x का परिवर्तन एक > 0 मान लेने की अनुमति देता है। चर के इस परिवर्तन के बाद, नया लेखाचित्र y-अक्ष के संबंध में पिछले वाले की दर्पण छवि है।
तब, चर x का परिवर्तन x = x1 – b/3a प्रपत्र का एक कार्य प्रदान करता है
यह x-अक्ष के समानांतर अनुवाद के अनुरूप है।
चर y = y1 + q का परिवर्तन y-अक्ष के संबंध में अनुवाद के अनुरूप है, और प्रपत्र का एक फलन देता है
चर का परिवर्तन एक एकरूप शल्कन से मेल खाता है, और द्वारा गुणन के बाद प्रपत्र का एक फलन देता है
जो सरलतम रूप है जो एक समानता द्वारा प्राप्त किया जा सकता है।
फिर, यदि p ≠ 0, गैर-एकरूप शल्कन देता है, से विभाजन देने के बाद
जहां p के संकेत के आधार पर का मान 1 या -1 है। यदि कोई परिभाषित करता है तो फलन के बाद वाला रूप सभी मामलों पर लागू होता है तथा )।
समरूपता
प्रपत्र के घन फलन के लिए विभक्ति बिंदु इस प्रकार मूल है। जैसा कि ऐसा फलन एक विषम फलन है, इसका लेखाचित्र विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर आधे मोड़ के घूर्णन के तहत अपरिवर्तनीय है।
एक घन फलन का लेखाचित्र अपने विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर एक आधे मोड़ के घूर्णन के तहत अपरिवर्तनीय है।
समरैखिकता
तीन समरेख बिंदुओं पर घन फलन के लेखाचित्र की स्पर्श रेखाएँ घन को फिर से संरेख बिंदुओं पर रोकती हैं।[4] इस प्रकार इसे देखा जा सकता है।
जैसा कि यह संपत्ति एक कठोर गति के तहत अपरिवर्तनीय है, कोई यह मान सकता है कि फलन का रूप है
यदि α एक वास्तविक संख्या है, तो बिंदु (α, f(α)) पर f के ग्राफ की स्पर्शरेखा रेखा है
- {(x, f(α) + (x − α)f ′(α)) : x ∈ R}।
तो, इस रेखा और f के लेखाचित्र के बीच का प्रतिच्छेदन बिंदु समीकरण को हल करके प्राप्त किया जा सकता है f(x) = f(α) + (x − α)f ′(α), वह है
जिसे फिर से लिखा जा सकता है
और गुणनखंडित किया जा सकता है
तो, स्पर्शरेखा घन का अवरोधन करती है
तो, फलन जो लेखाचित्र के एक बिंदु (x, y) को दूसरे बिंदु पर मानचित्र करता है जहां स्पर्शरेखा लेखाचित्र का अवरोधन करती है
यह एक अफाइन रूपांतरण है जो समरेख बिंदुओं को समरेख बिंदुओं में बदल देता है। यह दावा किए गए परिणाम को साबित करता है।
घन प्रक्षेप
किसी फलन के मान और दो बिंदुओं पर उसके व्युत्पन्न को देखते हुए, ठीक एक घन फलन होता है जिसमें समान चार मान होते हैं, जिसे घन हर्मिट स्पलाइन कहा जाता है।
इस तथ्य का उपयोग करने के दो मानक तरीके हैं। सबसे पहले, यदि कोई जानता है, उदाहरण के लिए भौतिक माप द्वारा, एक फलन के मान और कुछ नमूने बिंदुओं पर इसके व्युत्पन्न, एक निरंतर भिन्न फलन के साथ फलन को प्रक्षेपित कर सकता है, जो कि एक टुकड़ावार घन फलन है।
यदि किसी फलन का मान कई बिंदुओं पर जाना जाता है, तो फलन प्रक्षेप में निरंतर भिन्न होने वाले फलन द्वारा फलन का अनुमान लगाया जाता है, जो कि टुकड़ावार घन होता है। एक विशिष्ट रूप से परिभाषित प्रक्षेप होने के लिए, दो और बाधाओं को जोड़ा जाना चाहिए, जैसे कि समापन बिंदु पर व्युत्पन्न के मान, या समापन बिंदु पर शून्य वक्रता।
संदर्भ
- ↑ Bostock, Linda; Chandler, Suzanne; Chandler, F. S. (1979). शुद्ध गणित 2 (in English). Nelson Thornes. p. 462. ISBN 978-0-85950-097-5.
इस प्रकार एक क्यूबिक समीकरण में या तो तीन वास्तविक जड़ें हैं ... या एक वास्तविक जड़ ...
- ↑ Weisstein, Eric W. "स्थिर बिंदु". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Hughes-Hallett, Deborah; Lock, Patti Frazer; Gleason, Andrew M.; Flath, Daniel E.; Gordon, Sheldon P.; Lomen, David O.; Lovelock, David; McCallum, William G.; Osgood, Brad G. (2017-12-11). लागू कैलकुलस (in English). John Wiley & Sons. p. 181. ISBN 978-1-119-27556-5.
एक बिंदु जिस पर फ़ंक्शन F का ग्राफ बदल जाता है, CONCAVITY को F
- ↑ Whitworth, William Allen (1866), "Equations of the third degree", Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Cambridge: Deighton, Bell, and Co., p. 425, retrieved June 17, 2016
बाहरी संबंध
![](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/langen-gb-30px-Commons-logo.svg.png)