शंकु अनुकूलन: Difference between revisions
m (6 revisions imported from alpha:शंकु_अनुकूलन) |
No edit summary |
||
Line 42: | Line 42: | ||
* {{cite book|title=Convex Optimization|first1=Stephen P.|last1=Boyd|first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83378-3|url=https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |accessdate=October 15, 2011}} | * {{cite book|title=Convex Optimization|first1=Stephen P.|last1=Boyd|first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83378-3|url=https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |accessdate=October 15, 2011}} | ||
* [http://www.mosek.com MOSEK] Software capable of solving conic optimization problems. | * [http://www.mosek.com MOSEK] Software capable of solving conic optimization problems. | ||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:उत्तल अनुकूलन]] |
Latest revision as of 16:16, 17 February 2023
शंकु अनुकूलन उत्तल अनुकूलन का उपक्षेत्र है जो निर्गत उपक्षेत्र और उत्तल शंकु के अंतःखण्ड पर उत्तल फलन को कम करने वाली समस्याओं का अध्ययन करता है।
शंकु अनुकूलन समस्याओं के वर्ग में उत्तल अनुकूलन समस्याओं के कुछ सबसे प्रसिद्ध वर्ग सम्मलित हैं, अर्थात् रैखिक प्रोग्रामिंग और अर्ध निश्चित प्रोग्रामिंग।
परिभाषा
एक वास्तविक संख्या का मान सदिश X दिया गया है, जिसका उत्तल फलन, वास्तविक-मूल्यवान फलन (गणित)
उत्तल शंकु पर परिभाषित , और affine उप-स्थान एफाइन की रूपांतरण बाधाओं के समूह द्वारा के रूप में परिभाषित किया जाता हैं इस बिंदु को खोजने के लिए शंकु अनुकूलन समस्या है में के रूप में प्रर्दशित किया जाता हैं जिसके लिए संख्या का मान सबसे कम होता है।
इसके उदाहरण धनात्मक और्थैन्ट द्वारा सम्मलित करते हैं, धनात्मक-अर्ध-परिमित मैट्रिक्स आव्यूह और दूसरे क्रम का शंकु के लिए अधिकांशतः रेखीय फंक्शन का उपयोग किया जाता हैं, इस स्थिति में शांकव अनुकूलन समस्या क्रमशः रेखीय कार्यक्रम, अर्ध-निश्चित प्रोग्रामिंग और दूसरे क्रम के शंकु प्रोग्रामिंग में कम हो जाती है।
द्वैत
शंकु अनुकूलन समस्याओं के कुछ विशेष स्थितियों में उनकी दोहरी समस्याओं के उल्लेखनीय बंद-रूप अभिव्यक्तियां हैं।
शांकव एलपी
शंकु रैखिक कार्यक्रम का दोहरा
- के मान को कम किया जाता हैं
- जो का विषय है
- का अधिकतम मान उपयोग किया जाता हैं
- जो का विषय है
जहाँ के दोहरे शंकु को द्वारा दर्शाया जाता है।
जबकि कमजोर द्वैत शांकव रैखिक प्रोग्रामिंग में होता है, जिसके लिए मजबूत द्वैत आवश्यक नहीं है।[1]
अर्ध-परिमित कार्यक्रम
असमानता के रूप में अर्ध-निश्चित कार्यक्रम का दोहरा
- :के मान को कम करके द्वारा निर्गत विषय में अभिलिखित किया जाता हैं
- के अधिकतम मान को प्राप्त करने के लिए
- का मान निर्दिष्ट किया जाता हैं।
संदर्भ
- ↑ "Duality in Conic Programming" (PDF).
बाहरी संबंध
- Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (PDF). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 15, 2011.
- MOSEK Software capable of solving conic optimization problems.