साधारण समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Group without normal subgroups other than the trivial group and itself}}
{{Short description|Group without normal subgroups other than the trivial group and itself}}
{{Group theory sidebar |Basics}}
{{Group theory sidebar |Basics}}
गणित में, एक '''साधारण समूह''' एक गैर-[[तुच्छ समूह]] होता है जिसके केवल [[सामान्य उपसमूह]] तुच्छ समूह और स्वयं समूह होते हैं। एक समूह जो सरल नहीं है, उसे दो छोटे समूहों में विभाजित किया जा सकता है, अर्थात् एक गैर-तुच्छ सामान्य उपसमूह और संबंधित [[भागफल समूह]] इस प्रक्रिया को दोहराया जा सकता है और [[परिमित समूह|परिमित समूहों]] के लिए अंततः जॉर्डन-होल्डर प्रमेय द्वारा विशिष्ट रूप से निर्धारित सरल समूहों पर पहुंच जाता है।
गणित में, '''सहज समूह''' एक गैर-[[तुच्छ समूह]] होता है जिसके केवल [[सामान्य उपसमूह]] तुच्छ समूह और स्वयं समूह होते हैं। एक समूह जो सहज नहीं होता है उसे दो छोटे समूहों में विभाजित किया जा सकता है अर्थात् एक गैर-तुच्छ सामान्य उपसमूह और संबंधित [[भागफल समूह]] मे इस प्रक्रिया को दोहराया जा सकता है [[परिमित समूह|परिमित समूहों]] के लिए अंततः जॉर्डन-होल्डर प्रमेय द्वारा विशिष्ट रूप से निर्धारित सहज समूहों पर अभिगम्य किया जा जाता है। 2004 में पूर्ण परिमित सहज समूहों का पूर्ण वर्गीकरण, गणित के इतिहास में एक प्रमुख मील का पत्थर है।
 
2004 में पूर्ण परिमित सरल समूहों का पूर्ण वर्गीकरण, गणित के इतिहास में एक प्रमुख मील का पत्थर है।


== उदाहरण ==
== उदाहरण ==


=== परिमित सरल समूह ===
=== परिमित सहज समूह ===
[[चक्रीय समूह]] {{nowrap|1=''G'' = ('''Z'''/3'''Z''', +) = Z<sub>3</sub>}} सर्वांगसमता वर्ग modulo 3 (([[मॉड्यूलर अंकगणित]] देखें) सरल है। यदि H इस समूह का एक उपसमूह है, तो इसका क्रम (तत्वों की संख्या) G के क्रम का [[भाजक]] होना चाहिए जो कि 3 है। चूंकि 3 अभाज्य है, इसके केवल भाजक 1 और 3 हैं, इसलिए या तो H G है, या एच तुच्छ समूह है। दूसरी ओर, समूह G = ('Z'/12'Z', +) = Z<sub>12</sub> सरल नहीं है। 0, 4, और 8 मॉडुलो 12 के सर्वांगसमता वर्ग का सेट H क्रम 3 का एक उपसमूह है, और यह एक सामान्य उपसमूह है क्योंकि [[एबेलियन समूह]] का कोई भी उपसमूह सामान्य है। इसी प्रकार, पूर्णांकों {{nowrap|1=('''Z''', +)}} का योज्य समूह सरल नहीं है; सम [[पूर्णांक|पूर्णांको]] का समुच्चय एक गैर-तुच्छ उचित सामान्य उपसमूह है।<ref>Knapp (2006), [{{Google books|plainurl=y|id=KVeXG163BggC|page=170|text=Z is not simple, having the nontrivial subgroup 2Z}} p. 170]</ref>
[[चक्रीय समूह]] {{nowrap|1=''G'' = ('''Z'''/3'''Z''', +) = Z<sub>3</sub>}} सर्वांगसमता वर्ग सापेक्ष 3 ([[मॉड्यूलर अंकगणित]] देखें) सहज है। यदि ''H'' इस समूह का एक उपसमूह है, तो इसका क्रम तत्वों की संख्या G के क्रम का [[भाजक]] 3 है चूंकि 3 अभाज्य संख्या है इसीलिए इसके केवल भाजक 1 और 3 हैं या तो ''H, G'' या ''H'' तुच्छ समूह है। दूसरी ओर समूह G = ('Z'/12'Z', +) = Z<sub>12</sub> सहज नहीं है। 0, 4, और 8 मॉडुलो 12 के सर्वांगसमता वर्ग का समुच्चय ''H'' क्रम 3 का उपसमूह है और यह एक सामान्य उपसमूह है क्योंकि [[एबेलियन समूह]] का कोई भी उपसमूह सामान्य नही होता है। इसी प्रकार, पूर्णांकों {{nowrap|1=('''Z''', +)}} का योज्य समूह सहज नहीं होता है सम [[पूर्णांक|पूर्णांको]] का समुच्चय एक गैर-तुच्छ उपयुक्त सामान्य उपसमूह होता है।<ref>Knapp (2006), [{{Google books|plainurl=y|id=KVeXG163BggC|page=170|text=Z is not simple, having the nontrivial subgroup 2Z}} p. 170]</ref>


कोई भी एबेलियन समूह के लिए एक ही तरह के तर्क का उपयोग कर सकता है, यह समझने के लिए कि केवल साधारण एबेलियन समूह ही प्रमुख क्रम के चक्रीय समूह हैं। गैर-अबेलियन सरल समूहों का वर्गीकरण बहुत कम तुच्छ है। सबसे छोटा नॉनबेलियन सरल समूह क्रम 60 का [[वैकल्पिक समूह]] A5 है, और क्रम 60 का प्रत्येक सरल समूह A5 के लिए [[समूह समरूपता|समूह समरूप]] है।<ref>Rotman (1995), [{{Google books|plainurl=y|id=lYrsiaHSHKcC|page=226|text=simple groups of order 60 are isomorphic}} p. 226]</ref> दूसरा सबसे छोटा नॉनबेलियन सरल समूह क्रम 168 का प्रक्षेपी विशेष रैखिक समूह PSL(2,7) है, और क्रम 168 का प्रत्येक सरल समूह PSL(2,7) के लिए समरूप है।<ref>Rotman (1995), p. 281</ref><ref>Smith & Tabachnikova (2000), [{{Google books|plainurl=y|id=DD0TW28WjfQC|page=144|text=any two simple groups of order 168 are isomorphic}} p. 144]</ref>
कोई भी एबेलियन समूह के लिए एक ही प्रकार के तर्क का उपयोग कर सकता है यह समझने के लिए कि केवल सहज एबेलियन समूह ही प्रमुख क्रम के चक्रीय समूह हैं। गैर-एबेलियन सहज समूहों का वर्गीकरण बहुत कम तुच्छ है। सबसे छोटा नॉनबेलियन सहज समूह क्रम 60 का [[वैकल्पिक समूह]] ''A5'' है और क्रम 60 का प्रत्येक सहज समूह ''A5'' के लिए [[समूह समरूपता|समूह समरूप]] होता है।<ref>Rotman (1995), [{{Google books|plainurl=y|id=lYrsiaHSHKcC|page=226|text=simple groups of order 60 are isomorphic}} p. 226]</ref> दूसरा सबसे छोटा नॉनबेलियन सहज समूह क्रम 168 का प्रक्षेपी विशेष रैखिक समूह पीएसएल (2,7) होता है और क्रम 168 का प्रत्येक सहज समूह पीएसएल (2,7) के लिए समरूप होता है।<ref>Rotman (1995), p. 281</ref><ref>Smith & Tabachnikova (2000), [{{Google books|plainurl=y|id=DD0TW28WjfQC|page=144|text=any two simple groups of order 168 are isomorphic}} p. 144]</ref>
=== अनंत सरल समूह ===
=== अपरिमित सहज समूह ===
अनंत वैकल्पिक समूह, यानी पूर्णांकों के समान रूप से समर्थित क्रमपरिवर्तनों का समूह, A∞ सरल है। इस समूह को मानक एम्बेडिंग {{nowrap|A<sub>''n''</sub> → A<sub>''n''+1</sub>}} के संबंध में परिमित सरल समूहों An के बढ़ते मिलन के रूप में लिखा जा सकता है। अनंत सरल समूहों के उदाहरणों का एक अन्य परिवार PSLn(F) द्वारा दिया गया है, जहां F एक अनंत क्षेत्र है और {{nowrap|''n'' ≥ 2}} है।
अपरिमित वैकल्पिक समूह, अर्थात पूर्णांकों के समान रूप से समर्थित क्रमपरिवर्तनों का समूह A∞ सहज समूह है। इस समूह को मानक अंतः स्थापित {{nowrap|A<sub>''n''</sub> → A<sub>''n''+1</sub>}} के संबंध में परिमित सहज समूहों An के वर्द्धमान संघ के रूप में लिखा जा सकता है। अपरिमित सहज समूहों के उदाहरणों का एक अन्य समूह PSL<sub>''n''</sub>(''F'') द्वारा दिया गया है, जहां F और {{nowrap|''n'' ≥ 2}} एक अपरिमित क्षेत्र है।


सूक्ष्म रूप से उत्पन्न अनंत सरल समूहों का निर्माण करना अधिक कठिन है। पहला अस्तित्व परिणाम गैर-स्पष्ट है; यह [[ग्राहम हिगमैन]] के कारण है और इसमें हिगमैन समूह के सरल अंश शामिल हैं।<ref>{{Citation | last1=Higman | first1=Graham | author1-link=Graham Higman | title=A finitely generated infinite simple group | doi=10.1112/jlms/s1-26.1.59  |mr=0038348 | year=1951 | journal=Journal of the London Mathematical Society |series=Second Series | issn=0024-6107 | volume=26 | issue=1 | pages=61–64}}</ref> स्पष्ट उदाहरण, जो अंत में प्रस्तुत किए जाते हैं, में अनंत [[थॉम्पसन समूह]] टी और वी शामिल हैं। बर्गर और मोज़ेस द्वारा परिमित रूप से प्रस्तुत [[मरोड़ (बीजगणित)]]-मुक्त अनंत सरल समूह बनाए गए थे।<ref>{{cite journal | last1 = Burger | first1 = M. | last2 = Mozes | first2 = S. | year = 2000 | title = Lattices in product of trees | journal = Publ. Math. IHES | volume = 92 | pages = 151–194 | doi=10.1007/bf02698916}}</ref>
सूक्ष्म रूप से उत्पन्न अपरिमित सहज समूहों का निर्माण करना अधिक कठिन होता है। [[ग्राहम हिगमैन]] के कारण पहला अस्तित्व परिणाम गैर-स्पष्ट है और इसमें हिगमैन समूह के सहज अंश सम्मिलित हैं।<ref>{{Citation | last1=Higman | first1=Graham | author1-link=Graham Higman | title=A finitely generated infinite simple group | doi=10.1112/jlms/s1-26.1.59  |mr=0038348 | year=1951 | journal=Journal of the London Mathematical Society |series=Second Series | issn=0024-6107 | volume=26 | issue=1 | pages=61–64}}</ref> जो सूक्ष्म रूप से प्रस्तुत किए जाते हैं उनमें अपरिमित [[थॉम्पसन समूह]] ''T'' और ''V'' सम्मिलित हैं। बर्गर और मोज़ेस द्वारा परिमित रूप से प्रस्तुत [[मरोड़ (बीजगणित)|आघूर्ण बल]] अपरिमित सहज समूह के रूप बनाए गए थे।<ref>{{cite journal | last1 = Burger | first1 = M. | last2 = Mozes | first2 = S. | year = 2000 | title = Lattices in product of trees | journal = Publ. Math. IHES | volume = 92 | pages = 151–194 | doi=10.1007/bf02698916}}</ref>
== वर्गीकरण ==
== वर्गीकरण ==
सामान्य (अनंत) सरल समूहों के लिए अभी तक कोई ज्ञात वर्गीकरण नहीं है, और ऐसा कोई वर्गीकरण अपेक्षित नहीं है।
सामान्य अपरिमित सहज समूहों के लिए अभी तक कोई ज्ञात वर्गीकरण नहीं है और ऐसा कोई वर्गीकरण आक्षित नहीं होता है।
 
=== परिमित सहज समूह ===
{{main|परिमित सहज समूहों की सूची}}
{{details|परिमित सहज समूहों का वर्गीकरण}}
[[परिमित सरल समूहों की सूची|परिमित सहज समूहों की सूची]] महत्वपूर्ण होती हैं क्योंकि एक निश्चित अर्थ में वे सभी परिमित समूहों के "मूल निर्माण खंड" होते हैं, कुछ सीमा तक उसी प्रकार के जैसे कि अभाज्य संख्याएँ पूर्णांकों के मूल निर्माण खंड हैं। यह जॉर्डन-होल्डर प्रमेय द्वारा व्यक्त किया गया है जिसमें कहा गया है कि किसी दिए गए समूह की किन्हीं दो [[रचना श्रृंखला|संरचना]] श्रृंखलाओं की समान लंबाई और समान कारक हैं, क्रम [[परिवर्तन]] और समरूपता एक विशाल सहयोगात्मक प्रयास से 1983 में [[डेनियल गोरेंस्टीन]] द्वारा परिमित सहज समूहों के वर्गीकरण को पूर्ण घोषित किया गया था हालांकि कुछ समस्याओ का सामना करना पड़ा विशेष रूप से [[क्वासिथिन समूह|क्वासिथिन समूहों]] के वर्गीकरण में, जिन्हें 2004 में निर्धारित किया गया था।


=== परिमित सरल समूह ===
संक्षेप में, परिमित सहज समूहों को 18 समूहों में से या 26 अपवादों में से एक के रूप में वर्गीकृत किया गया है:
{{main|परिमित सरल समूहों की सूची}}
* Z<sub>''p''</sub> - मुख्य अनुक्रम का चक्रीय समूह
{{details|परिमित सरल समूहों का वर्गीकरण}}
* A<sub>''n''</sub> - ''n'' ≥ 5 के लिए वैकल्पिक समूह
[[परिमित सरल समूहों की सूची]] महत्वपूर्ण है क्योंकि एक निश्चित अर्थ में वे सभी परिमित समूहों के मूल निर्माण खंड हैं, कुछ हद [[तक]] समान हैं जिस तरह से अभाज्य संख्याएँ पूर्णांकों के मूल निर्माण खंड हैं। यह जॉर्डन-होल्डर प्रमेय द्वारा व्यक्त किया गया है जिसमें कहा गया है कि किसी दिए गए समूह की किन्हीं दो सं[[रचना श्रृंखला]]ओं की समान लंबाई और समान कारक हैं, क्रम[[परिवर्तन]] और समरूपता तक। एक विशाल सहयोगात्मक प्रयास में, 1983 में [[डेनियल गोरेंस्टीन]] द्वारा परिमित सरल समूहों के वर्गीकरण को पूरा घोषित किया गया था, हालांकि कुछ समस्याएं सामने आईं (विशेष रूप से [[क्वासिथिन समूह]]ों के वर्गीकरण में, जिन्हें 2004 में प्लग किया गया था)।
*: वैकल्पिक समूहों को [[एक तत्व के साथ क्षेत्र]] में [[झूठ प्रकार के समूह|स्थित समूह]] के रूप में माना जा सकता है जो इस समूह को आगामी समूह के साथ संयुक्त करता है और इस प्रकार गैर-अबेलियन परिमित सहज समूहों के सभी समूहों को स्थित समूह माना जा सकता है।


संक्षेप में, परिमित सरल समूहों को 18 परिवारों में से एक या 26 अपवादों में से एक के रूप में वर्गीकृत किया गया है:
* स्थित समूहों के 16 समूहों में से एक को समान्यतः [[स्तन समूह|टिट्स समूह]] रूप में माना जाता है, हालांकि ये पूर्ण रूप से स्थित समूह नहीं होते है, बल्कि स्थित समूहों में सूचकांक 2 होते है।
* झ<sub>''p''</sub> - प्राइम ऑर्डर का चक्रीय समूह
* 26 अपवादों में से एक [[छिटपुट समूह|विकीर्ण समूह]] जिनमें से 20 [[राक्षस समूह|मोन्सटर समूह]] के उपसमूह या उपश्रेणी हैं जिन्हे स्वतंत्र समूह कहा जाता है, जबकि शेष 6 को पारिया समूह कहा जाता है।
* ए<sub>''n''</sub> - एन ≥ 5 के लिए वैकल्पिक समूह
*: वैकल्पिक समूहों को [[एक तत्व के साथ क्षेत्र]] में [[झूठ प्रकार के समूह]] के रूप में माना जा सकता है, जो इस परिवार को अगले के साथ जोड़ता है, और इस प्रकार गैर-अबेलियन परिमित सरल समूहों के सभी परिवारों को झूठ प्रकार का माना जा सकता है।
* झूठ प्रकार के समूहों के 16 परिवारों में से एक
*: [[स्तन समूह]] को आम तौर पर इस रूप में माना जाता है, हालांकि सख्ती से बोलना यह झूठ प्रकार का नहीं है, बल्कि झूठ प्रकार के समूह में सूचकांक 2 है।
* 26 अपवादों में से एक, [[छिटपुट समूह]], जिनमें से 20 [[राक्षस समूह]] के उपसमूह या उपश्रेणी हैं और उन्हें खुशहाल परिवार कहा जाता है, जबकि शेष 6 को पारिया समूह कहा जाता है।


== परिमित सरल समूहों की संरचना ==
== परिमित सहज समूहों की संरचना ==
[[वाल्टर फीट]] और जॉन जी थॉम्पसन के प्रसिद्ध फीट-थॉम्पसन प्रमेय में कहा गया है कि विषम क्रम का प्रत्येक समूह [[हल करने योग्य समूह]] है। इसलिए, प्रत्येक परिमित सरल समूह में सम कोटि होती है जब तक कि वह अभाज्य कोटि का चक्रीय न हो।
[[वाल्टर फीट]] और जॉन जी थॉम्पसन के प्रसिद्ध फीट-थॉम्पसन प्रमेय में कहा गया है कि विषम क्रम का प्रत्येक समूह हल करने [[हल करने योग्य समूह|योग्य समूह]] है जब तक कि वह अभाज्य कोटि का चक्रीय न हो तब तक प्रत्येक परिमित सहज समूह में सम कोटि होती है।


[[श्रेयर अनुमान]] का दावा है कि प्रत्येक परिमित सरल समूह के [[बाहरी ऑटोमोर्फिज्म]] का समूह हल करने योग्य है। यह वर्गीकरण प्रमेय का उपयोग करके सिद्ध किया जा सकता है।
[[श्रेयर अनुमान]] का कहना है कि प्रत्येक परिमित सहज समूह के [[बाहरी ऑटोमोर्फिज्म|बाह्य स्वाकारिता]] का समूह हल करने योग्य समूह है। यह वर्गीकरण प्रमेय का उपयोग करके सिद्ध किया जा सकता है।


== परिमित सरल समूहों के लिए इतिहास ==
== परिमित सहज समूहों के लिए इतिहास ==
परिमित सरल समूहों के इतिहास में दो धागे हैं - विशिष्ट सरल समूहों और परिवारों की खोज और निर्माण, जो 1820 के दशक में गैलोज़ के काम से लेकर 1981 में मॉन्स्टर के निर्माण तक हुआ; और सबूत है कि यह सूची पूर्ण थी, जो 19वीं शताब्दी में शुरू हुई, सबसे महत्वपूर्ण रूप से 1955 से 1983 तक हुई (जब शुरुआत में जीत घोषित की गई थी), लेकिन आम तौर पर केवल 2004 में समाप्त होने पर सहमति हुई थी। {{as of|2010}}, सबूतों और समझ को बेहतर बनाने का काम जारी है; देखना {{Harv|Silvestri|1979}} 19वीं सदी के साधारण समूहों के इतिहास के लिए।
परिमित सहज समूहों के इतिहास में दो सूत्र होते हैं - 1820 के दशक में गाल्वा के कार्य से लेकर 1981 में मॉन्स्टर के निर्माण तक विशिष्ट सहज समूहों की खोज और निर्माण हुआ और यह सिद्ध हुआ कि यह सूची पूर्ण थी जो 19वीं शताब्दी में सबसे महत्वपूर्ण रूप से 1955 से 1983 (जब प्रारम्भिक जीत घोषित की गई थी) तक प्रारम्भ हुई, लेकिन सामान्यतः केवल 2004 में समाप्त होने पर सहमति हुई थी। प्रमाणों और समझ को अपेक्षाकृत अच्छा बनाने का कार्य प्रारम्भ किया गया था 19वीं शताब्दी के सहज समूहों के इतिहास के लिए {{Harv|सिल्वेस्ट्री|1979}} देखें।


=== निर्माण ===
=== निर्माण ===
सरल समूहों का अध्ययन कम से कम प्रारंभिक गैल्वा सिद्धांत के बाद से किया गया है, जहां एवरिस्ट गैलोइस ने महसूस किया कि तथ्य यह है कि पांच या अधिक बिंदुओं पर वैकल्पिक समूह सरल हैं (और इसलिए हल करने योग्य नहीं हैं), जिसे उन्होंने 1831 में सिद्ध किया था, यही कारण था कि कोई नहीं कर सका मूलांक में पंचक को हल करें। गाल्वा ने एक प्रमुख परिमित क्षेत्र पर एक विमान के [[प्रक्षेपी विशेष रैखिक समूह]] का भी निर्माण किया, {{nowrap|PSL(2,''p'')}}, और टिप्पणी की कि वे p नहीं 2 या 3 के लिए सरल थे। यह शेवेलियर को लिखे उनके अंतिम पत्र में निहित है,<ref name="chevalier-letter">{{Citation
सहज समूहों का अध्ययन कम से कम प्रारंभिक गैल्वा सिद्धांत के बाद से किया गया है, जहां एवरिस्ट गैलोइस ने महसूस किया कि तथ्य यह है कि पांच या अधिक बिंदुओं पर वैकल्पिक समूह सहज हैं और इसलिए हल करने योग्य नहीं हैं जिसे उन्होंने 1831 में सिद्ध किया था, यही कारण था कि कोई मूलांक में क्विनिसीन को हल नहीं कर सकता था। गाल्वा ने एक प्रमुख परिमित क्षेत्र पीएसएल(2,p) पर एक समतल के [[प्रक्षेपी विशेष रैखिक समूह]] का भी निर्माण किया और टिप्पणी की। कि वे p के लिए नहीं 2 या 3 के लिए सहज थे। यह शेवेलियर के लिखे उनके अंतिम पत्र में निहित है और परिमित सहज समूहों के अन्य उदाहरण हैं।<ref name="raw">{{citation
| last = Galois
| first = Évariste
| year = 1846
| title = Lettre de Galois à M. Auguste Chevalier
| journal = [[Journal de Mathématiques Pures et Appliquées]]
| volume = XI
| pages = 408–415
| url = http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-16390&I=416&M=tdm
| access-date = 2009-02-04
| postscript =, PSL(2,''p'') and simplicity discussed on p. 411; exceptional action on 5, 7, or 11 points discussed on pp. 411–412; GL(''ν'',''p'') discussed on p. 410}}</ref> और परिमित सरल समूहों का अगला उदाहरण हैं।<ref name="raw">{{citation
|first=Robert
|first=Robert
|last=Wilson
|last=Wilson
Line 58: Line 46:
|chapter=Chapter 1: Introduction
|chapter=Chapter 1: Introduction
|chapter-url=http://www.maths.qmul.ac.uk/~raw/fsgs_files/intro.ps
|chapter-url=http://www.maths.qmul.ac.uk/~raw/fsgs_files/intro.ps
}}</ref>
}}</ref> दूसरी खोज 1870 में [[केमिली जॉर्डन]] द्वारा की गई थी।<ref>{{citation
अगली खोज 1870 में [[केमिली जॉर्डन]] द्वारा की गई।<ref>{{citation
|first=Camille
|first=Camille
|last=Jordan
|last=Jordan
Line 65: Line 52:
|title=[[List of important publications in mathematics#Trait.C3.A9 des substitutions et des .C3.A9quations alg.C3.A9briques|Traité des substitutions et des équations algébriques]]
|title=[[List of important publications in mathematics#Trait.C3.A9 des substitutions et des .C3.A9quations alg.C3.A9briques|Traité des substitutions et des équations algébriques]]
|year=1870
|year=1870
}}</ref> जॉर्डन ने प्राइम ऑर्डर के [[परिमित क्षेत्र]]ों पर सरल मैट्रिक्स समूहों के 4 परिवार पाए थे, जिन्हें अब [[शास्त्रीय समूह]]ों के रूप में जाना जाता है।
}}</ref> जॉर्डन ने मुख्य समूह के [[परिमित क्षेत्र|परिमित क्षेत्रों]] पर सहज आव्यूह समूहों के 4 समूहों को प्राप्त किया जिन्हें अब [[शास्त्रीय समूह|पारम्परिक समूहों]] के रूप में जाना जाता है।


लगभग उसी समय, यह दिखाया गया था कि पाँच समूहों का एक परिवार, जिसे [[मैथ्यू समूह]] कहा जाता है और पहली बार 1861 और 1873 में एमिल लियोनार्ड मैथ्यू द्वारा वर्णित किया गया था, वह भी सरल था। चूंकि इन पांच समूहों का निर्माण उन तरीकों से किया गया था जो असीम रूप से कई संभावनाएं पैदा नहीं करते थे, उन्हें [[विलियम बर्नसाइड]] ने अपनी 1897 की पाठ्यपुस्तक में छिटपुट समूह कहा था।
लगभग उसी समय, यह प्रदर्शित गया था कि पाँच समूहों का एक समूह जिसे [[मैथ्यू समूह]] कहा जाता है पहली बार 1861 और 1873 में एमिल लियोनार्ड मैथ्यू द्वारा वर्णित किया गया था कि वह भी सहज थे। चूंकि इन पांच समूहों का निर्माण उन तरीकों से किया गया था जो अपरिमित रूप से कई संभावनाएं नहीं देते थे, उन्हें [[विलियम बर्नसाइड]] ने अपनी 1897 की पाठ्यपुस्तक में "विकीर्ण" कहा था।


बाद में शास्त्रीय समूहों पर जॉर्डन के परिणामों को [[विल्हेम हत्या]] द्वारा जटिल सरल लाई बीजगणित के वर्गीकरण के बाद, [[लियोनार्ड डिक्सन]] द्वारा मनमाना परिमित क्षेत्रों के लिए सामान्यीकृत किया गया। डिक्सन ने टाइप जी के अपवाद समूहों का भी निर्माण किया<sub>2</sub> और E6 (गणित)|E<sub>6</sub>साथ ही, लेकिन F प्रकार का नहीं<sub>4</sub>, और<sub>7</sub>, या <sub>8</sub> {{harv|Wilson|2009|p=2}}. 1950 के दशक में लाई प्रकार के समूहों पर काम जारी रखा गया था, जिसमें [[क्लाउड चेवेली]] ने 1955 के पेपर में शास्त्रीय समूहों और असाधारण प्रकार के समूहों का एक समान निर्माण किया था। इसने कुछ ज्ञात समूहों (प्रक्षेपी एकात्मक समूहों) को छोड़ दिया, जो कि शेवेलली निर्माण को घुमाकर प्राप्त किए गए थे। लाई प्रकार के शेष समूह स्टाइनबर्ग, टिट्स और हर्ज़िग द्वारा निर्मित किए गए (जिन्होंने उत्पादन किया <sup>3</sup>डी<sub>4</sub>(क्यू) और <sup>2</सुप>ई<sub>6</sub>(क्यू)) और सुजुकी और री (सुजुकी-री समूह) द्वारा।
बाद में पारम्परिक समूहों पर जॉर्डन के परिणामों को [[विल्हेम हत्या|विल्हेम किलिंग]] द्वारा जटिल सहज-लाई बीजगणित के वर्गीकरण के बाद, [[लियोनार्ड डिक्सन]] द्वारा अपेक्षाकृत परिमित क्षेत्रों के लिए सामान्यीकृत किया गया। डिक्सन ने G<sub>2</sub> और E<sub>6</sub> प्रकार के अपवाद समूहों का भी निर्माण किया, लेकिन {{harv|विल्सन|2009|p=2}} F<sub>4</sub>, E<sub>7</sub>, या E<sub>8</sub> प्रकार का नहीं किया। 1950 के दशक में लाई प्रकार के समूहों पर कार्य प्रारम्भ रखा गया था, जिसमें [[क्लाउड चेवेली]] ने 1955 के पेपर में पारम्परिक समूहों और असहज प्रकार के समूहों का एक समान निर्माण किया था। इसने कुछ ज्ञात समूहों (प्रक्षेपी एकात्मक समूहों) को छोड़ दिया, जो कि शेवेलली निर्माण के "व्यावर्तन" से प्राप्त किए गए थे। लाइ-प्रकार के शेष समूह स्टाइनबर्ग, टिट्स और हर्ज़िग जिन्होंने 3D4(q) और 2E6(q) का उत्पादन किया और सुज़ुकी और री सुज़ुकी-री समूह द्वारा निर्मित किए गए थे।


इन समूहों (लाइ प्रकार के समूह, चक्रीय समूहों, वैकल्पिक समूहों और पांच असाधारण मैथ्यू समूहों के साथ) को एक पूरी सूची माना जाता था, लेकिन 1964 में मैथ्यू के काम के बाद से लगभग एक सदी की खामोशी के बाद, पहले [[जांको समूह]] की खोज की गई थी, और शेष 20 छिटपुट समूहों की खोज या अनुमान 1965-1975 में लगाया गया था, जिसका समापन 1981 में हुआ, जब [[रॉबर्ट ग्रिस]] ने घोषणा की कि उन्होंने बर्न फिशर (गणितज्ञ) के मॉन्स्टर समूह का निर्माण किया था। मॉन्स्टर 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 के ऑर्डर वाला सबसे बड़ा छिटपुट सरल समूह है। मॉन्स्टर का 196,884-आयामी ग्रिज बीजगणित में एक वफादार 196,883-आयामी प्रतिनिधित्व है, जिसका अर्थ है कि राक्षस के प्रत्येक तत्व को 196,883 गुणा 196,883 मैट्रिक्स के रूप में व्यक्त किया जा सकता है।
इन समूहों (लाइ-प्रकार के समूह, चक्रीय समूहों, वैकल्पिक समूहों और पांच असहज मैथ्यू समूहों के साथ) को एक पूर्ण सूची के रूप मे जाना जाता था लेकिन 1964 में मैथ्यू के कार्य के बाद से लगभग एक शताब्दी के बाद पहले [[जांको समूह]] की खोज की गई थी और शेष 20 विकीर्ण समूहों की खोज या अनुमान 1965-1975 में लगाया गया था जिसका समापन 1981 में हुआ, जब [[रॉबर्ट ग्रिस|रॉबर्ट ग्रिएस]] ने घोषणा की कि उन्होंने बर्न.फिशर के "मॉन्स्टर ग्रुप" का निर्माण किया था। मॉन्स्टर के अनुक्रम 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 वाला सबसे बड़ा विकीर्ण सहज समूह है। मॉन्स्टर का 196,884 आयामी ग्रीज बीजगणित में 196,883-आयामी प्रतिनिधित्व है, जिसका अर्थ है कि मॉन्स्टर के प्रत्येक तत्व को 196,883 गुणा 196,883 आव्यूह के रूप में व्यक्त किया जा सकता है।


=== वर्गीकरण ===
=== वर्गीकरण ===
पूर्ण वर्गीकरण को आम तौर पर 1962-63 के फीट-थॉम्पसन प्रमेय से शुरू होने के रूप में स्वीकार किया जाता है, जो मोटे तौर पर 1983 तक चलता है, लेकिन केवल 2004 में समाप्त हो रहा है।
पूर्ण वर्गीकरण को समान्यतः 1962-63 के फीट-थॉम्पसन प्रमेय से प्रारम्भ होने के रूप में स्वीकृत किया जाता है, जो सामान्य रूप से 1983 तक चल सकता है लेकिन यह 2004 में समाप्त हो रहा है। 1981 में मॉन्स्टर के निर्माण के तुरंत बाद, 10,000 से अधिक पृष्ठों का एक प्रमाण दिया गया था कि समूह सिद्धांतकारों ने सभी परिमित सहज समूहों को सफलतापूर्वक सूचीबद्ध किया था 1983 में डैनियल गोरेनस्टीन द्वारा घोषित जीत के साथ जो कि समय से पहले था - कुछ अंतराल बाद में खोजे गए, विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में जिन्हें अंततः 2004 में क्वासिथिन समूहों के 1,300 पृष्ठ वर्गीकरण द्वारा प्रतिस्थापित किया गया था, जिसे अब समान्यतः पूर्ण रूप से स्वीकृत किया जाता है।
 
1981 में मॉन्स्टर के निर्माण के तुरंत बाद, 10,000 से अधिक पृष्ठों का एक प्रमाण प्रदान किया गया था कि समूह सिद्धांतकारों ने 1983 में डैनियल गोरेनस्टीन द्वारा घोषित जीत के साथ परिमित सरल समूहों की सूची सफलतापूर्वक बनाई थी। यह समय से पहले था - कुछ अंतराल बाद में खोजे गए, विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में, जिन्हें अंततः 2004 में क्वासिथिन समूहों के 1,300 पृष्ठ वर्गीकरण द्वारा प्रतिस्थापित किया गया था, जिसे अब आम तौर पर पूर्ण रूप से स्वीकार किया जाता है।


== सरलता के लिए टेस्ट ==
== सहजता के लिए परीक्षण ==
साइलो प्रमेय # उदाहरण अनुप्रयोग | साइलो का परीक्षण: चलो n एक सकारात्मक पूर्णांक है जो अभाज्य नहीं है, और p को n का एक प्रधान भाजक होने दें। यदि 1 n का एकमात्र विभाजक है जो 1 सापेक्ष p के अनुरूप है, तो क्रम n का एक साधारण समूह मौजूद नहीं है।
'''साइलो का परीक्षण''': मान कि n एक धनात्मक पूर्णांक है जो अभाज्य नहीं है और p, n का अभाज्य भाजक है। यदि 1, n का एकमात्र विभाजक है जो 1 सापेक्ष p के अनुरूप है तो अनुक्रम n का एक सहज समूह सम्मिलित नहीं होता है।


प्रमाण: यदि n एक प्रधान-शक्ति है, तो क्रम n के समूह में एक गैर-तुच्छ [[केंद्र (समूह सिद्धांत)]] है<ref>See the proof in [[p-group|''p''-group]], for instance.</ref> और इसलिए सरल नहीं है। यदि n एक प्रमुख शक्ति नहीं है, तो प्रत्येक साइलो उपसमूह उचित है, और, साइलो प्रमेय | साइलो के तीसरे प्रमेय द्वारा, हम जानते हैं कि क्रम n के समूह के साइलो पी-उपसमूहों की संख्या 1 मॉड्यूलो पी के बराबर है और एन को विभाजित करती है . चूंकि 1 एकमात्र ऐसी संख्या है, साइलो पी-उपसमूह अद्वितीय है, और इसलिए यह सामान्य है। चूंकि यह एक उचित, गैर-पहचान उपसमूह है, समूह सरल नहीं है।
'''प्रमाण:''' यदि n एक मुख्य घात है तो अनुक्रम n के एक समूह का [[केंद्र (समूह सिद्धांत)|गैर-तुच्छ केंद्र समूह सिद्धांत]] है<ref>See the proof in [[p-group|''p''-group]], for instance.</ref> और इसलिए सहज नहीं होता है। यदि n एक मुख्य घात नहीं है, तो प्रत्येक साइलो उपसमूह उपयुक्त होता है और साइलो के तीसरे प्रमेय द्वारा, हम जानते हैं कि अनुक्रम n के समूह के साइलो P उपसमूहों की संख्या 1 मॉड्यूलो P के बराबर है और n को विभाजित करती है। चूंकि 1 एकमात्र ऐसी संख्या है और साइलो P उपसमूह अद्वितीय है इसलिए यह सामान्य है। चूंकि यह एक उपयुक्त गैर-पहचान उपसमूह है जो समूह सहज नहीं होते है।


बर्नसाइड: एक गैर-एबेलियन परिमित सरल समूह का क्रम कम से कम तीन अलग-अलग प्राइम्स से विभाज्य है। यह बर्नसाइड के प्रमेय से आता है।
'''बर्नसाइड:''' एक गैर-एबेलियन परिमित सहज समूह का अनुक्रम कम से कम तीन अलग-अलग अभाज्यों से विभाज्य होता है। जो बर्नसाइड के प्रमेय से प्राप्त होता है।


== यह भी देखें ==
== यह भी देखें ==
* [[लगभग साधारण समूह]]
* [[लगभग साधारण समूह|लगभग सहज समूह]]
* [[चारित्रिक रूप से सरल समूह]]
* [[चारित्रिक रूप से सरल समूह|चारित्रिक रूप से सहज समूह]]
* [[[[अर्धसरल समूह]]]]
* [[अर्धसरल समूह|अर्धसहज समूह]]
* अर्धसरल समूह
* परिमित सहज समूहों की सूची
* परिमित सरल समूहों की सूची


==संदर्भ==
==संदर्भ==
=== टिप्पणियाँ ===
=== टिप्पणियाँ ===
{{reflist}}
{{reflist}}
Line 125: Line 105:
श्रेणी:समूहों के गुण
श्रेणी:समूहों के गुण


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 16:45, 17 February 2023

गणित में, सहज समूह एक गैर-तुच्छ समूह होता है जिसके केवल सामान्य उपसमूह तुच्छ समूह और स्वयं समूह होते हैं। एक समूह जो सहज नहीं होता है उसे दो छोटे समूहों में विभाजित किया जा सकता है अर्थात् एक गैर-तुच्छ सामान्य उपसमूह और संबंधित भागफल समूह मे इस प्रक्रिया को दोहराया जा सकता है परिमित समूहों के लिए अंततः जॉर्डन-होल्डर प्रमेय द्वारा विशिष्ट रूप से निर्धारित सहज समूहों पर अभिगम्य किया जा जाता है। 2004 में पूर्ण परिमित सहज समूहों का पूर्ण वर्गीकरण, गणित के इतिहास में एक प्रमुख मील का पत्थर है।

उदाहरण

परिमित सहज समूह

चक्रीय समूह G = (Z/3Z, +) = Z3 सर्वांगसमता वर्ग सापेक्ष 3 (मॉड्यूलर अंकगणित देखें) सहज है। यदि H इस समूह का एक उपसमूह है, तो इसका क्रम तत्वों की संख्या G के क्रम का भाजक 3 है चूंकि 3 अभाज्य संख्या है इसीलिए इसके केवल भाजक 1 और 3 हैं या तो H, G या H तुच्छ समूह है। दूसरी ओर समूह G = ('Z'/12'Z', +) = Z12 सहज नहीं है। 0, 4, और 8 मॉडुलो 12 के सर्वांगसमता वर्ग का समुच्चय H क्रम 3 का उपसमूह है और यह एक सामान्य उपसमूह है क्योंकि एबेलियन समूह का कोई भी उपसमूह सामान्य नही होता है। इसी प्रकार, पूर्णांकों (Z, +) का योज्य समूह सहज नहीं होता है सम पूर्णांको का समुच्चय एक गैर-तुच्छ उपयुक्त सामान्य उपसमूह होता है।[1]

कोई भी एबेलियन समूह के लिए एक ही प्रकार के तर्क का उपयोग कर सकता है यह समझने के लिए कि केवल सहज एबेलियन समूह ही प्रमुख क्रम के चक्रीय समूह हैं। गैर-एबेलियन सहज समूहों का वर्गीकरण बहुत कम तुच्छ है। सबसे छोटा नॉनबेलियन सहज समूह क्रम 60 का वैकल्पिक समूह A5 है और क्रम 60 का प्रत्येक सहज समूह A5 के लिए समूह समरूप होता है।[2] दूसरा सबसे छोटा नॉनबेलियन सहज समूह क्रम 168 का प्रक्षेपी विशेष रैखिक समूह पीएसएल (2,7) होता है और क्रम 168 का प्रत्येक सहज समूह पीएसएल (2,7) के लिए समरूप होता है।[3][4]

अपरिमित सहज समूह

अपरिमित वैकल्पिक समूह, अर्थात पूर्णांकों के समान रूप से समर्थित क्रमपरिवर्तनों का समूह A∞ सहज समूह है। इस समूह को मानक अंतः स्थापित An → An+1 के संबंध में परिमित सहज समूहों An के वर्द्धमान संघ के रूप में लिखा जा सकता है। अपरिमित सहज समूहों के उदाहरणों का एक अन्य समूह PSLn(F) द्वारा दिया गया है, जहां F और n ≥ 2 एक अपरिमित क्षेत्र है।

सूक्ष्म रूप से उत्पन्न अपरिमित सहज समूहों का निर्माण करना अधिक कठिन होता है। ग्राहम हिगमैन के कारण पहला अस्तित्व परिणाम गैर-स्पष्ट है और इसमें हिगमैन समूह के सहज अंश सम्मिलित हैं।[5] जो सूक्ष्म रूप से प्रस्तुत किए जाते हैं उनमें अपरिमित थॉम्पसन समूह T और V सम्मिलित हैं। बर्गर और मोज़ेस द्वारा परिमित रूप से प्रस्तुत आघूर्ण बल अपरिमित सहज समूह के रूप बनाए गए थे।[6]

वर्गीकरण

सामान्य अपरिमित सहज समूहों के लिए अभी तक कोई ज्ञात वर्गीकरण नहीं है और ऐसा कोई वर्गीकरण आक्षित नहीं होता है।

परिमित सहज समूह

परिमित सहज समूहों की सूची महत्वपूर्ण होती हैं क्योंकि एक निश्चित अर्थ में वे सभी परिमित समूहों के "मूल निर्माण खंड" होते हैं, कुछ सीमा तक उसी प्रकार के जैसे कि अभाज्य संख्याएँ पूर्णांकों के मूल निर्माण खंड हैं। यह जॉर्डन-होल्डर प्रमेय द्वारा व्यक्त किया गया है जिसमें कहा गया है कि किसी दिए गए समूह की किन्हीं दो संरचना श्रृंखलाओं की समान लंबाई और समान कारक हैं, क्रम परिवर्तन और समरूपता एक विशाल सहयोगात्मक प्रयास से 1983 में डेनियल गोरेंस्टीन द्वारा परिमित सहज समूहों के वर्गीकरण को पूर्ण घोषित किया गया था हालांकि कुछ समस्याओ का सामना करना पड़ा विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में, जिन्हें 2004 में निर्धारित किया गया था।

संक्षेप में, परिमित सहज समूहों को 18 समूहों में से या 26 अपवादों में से एक के रूप में वर्गीकृत किया गया है:

  • Zp - मुख्य अनुक्रम का चक्रीय समूह
  • An - n ≥ 5 के लिए वैकल्पिक समूह
    वैकल्पिक समूहों को एक तत्व के साथ क्षेत्र में स्थित समूह के रूप में माना जा सकता है जो इस समूह को आगामी समूह के साथ संयुक्त करता है और इस प्रकार गैर-अबेलियन परिमित सहज समूहों के सभी समूहों को स्थित समूह माना जा सकता है।
  • स्थित समूहों के 16 समूहों में से एक को समान्यतः टिट्स समूह रूप में माना जाता है, हालांकि ये पूर्ण रूप से स्थित समूह नहीं होते है, बल्कि स्थित समूहों में सूचकांक 2 होते है।
  • 26 अपवादों में से एक विकीर्ण समूह जिनमें से 20 मोन्सटर समूह के उपसमूह या उपश्रेणी हैं जिन्हे स्वतंत्र समूह कहा जाता है, जबकि शेष 6 को पारिया समूह कहा जाता है।

परिमित सहज समूहों की संरचना

वाल्टर फीट और जॉन जी थॉम्पसन के प्रसिद्ध फीट-थॉम्पसन प्रमेय में कहा गया है कि विषम क्रम का प्रत्येक समूह हल करने योग्य समूह है जब तक कि वह अभाज्य कोटि का चक्रीय न हो तब तक प्रत्येक परिमित सहज समूह में सम कोटि होती है।

श्रेयर अनुमान का कहना है कि प्रत्येक परिमित सहज समूह के बाह्य स्वाकारिता का समूह हल करने योग्य समूह है। यह वर्गीकरण प्रमेय का उपयोग करके सिद्ध किया जा सकता है।

परिमित सहज समूहों के लिए इतिहास

परिमित सहज समूहों के इतिहास में दो सूत्र होते हैं - 1820 के दशक में गाल्वा के कार्य से लेकर 1981 में मॉन्स्टर के निर्माण तक विशिष्ट सहज समूहों की खोज और निर्माण हुआ और यह सिद्ध हुआ कि यह सूची पूर्ण थी जो 19वीं शताब्दी में सबसे महत्वपूर्ण रूप से 1955 से 1983 (जब प्रारम्भिक जीत घोषित की गई थी) तक प्रारम्भ हुई, लेकिन सामान्यतः केवल 2004 में समाप्त होने पर सहमति हुई थी। प्रमाणों और समझ को अपेक्षाकृत अच्छा बनाने का कार्य प्रारम्भ किया गया था 19वीं शताब्दी के सहज समूहों के इतिहास के लिए (सिल्वेस्ट्री 1979) देखें।

निर्माण

सहज समूहों का अध्ययन कम से कम प्रारंभिक गैल्वा सिद्धांत के बाद से किया गया है, जहां एवरिस्ट गैलोइस ने महसूस किया कि तथ्य यह है कि पांच या अधिक बिंदुओं पर वैकल्पिक समूह सहज हैं और इसलिए हल करने योग्य नहीं हैं जिसे उन्होंने 1831 में सिद्ध किया था, यही कारण था कि कोई मूलांक में क्विनिसीन को हल नहीं कर सकता था। गाल्वा ने एक प्रमुख परिमित क्षेत्र पीएसएल(2,p) पर एक समतल के प्रक्षेपी विशेष रैखिक समूह का भी निर्माण किया और टिप्पणी की। कि वे p के लिए नहीं 2 या 3 के लिए सहज थे। यह शेवेलियर के लिखे उनके अंतिम पत्र में निहित है और परिमित सहज समूहों के अन्य उदाहरण हैं।[7] दूसरी खोज 1870 में केमिली जॉर्डन द्वारा की गई थी।[8] जॉर्डन ने मुख्य समूह के परिमित क्षेत्रों पर सहज आव्यूह समूहों के 4 समूहों को प्राप्त किया जिन्हें अब पारम्परिक समूहों के रूप में जाना जाता है।

लगभग उसी समय, यह प्रदर्शित गया था कि पाँच समूहों का एक समूह जिसे मैथ्यू समूह कहा जाता है पहली बार 1861 और 1873 में एमिल लियोनार्ड मैथ्यू द्वारा वर्णित किया गया था कि वह भी सहज थे। चूंकि इन पांच समूहों का निर्माण उन तरीकों से किया गया था जो अपरिमित रूप से कई संभावनाएं नहीं देते थे, उन्हें विलियम बर्नसाइड ने अपनी 1897 की पाठ्यपुस्तक में "विकीर्ण" कहा था।

बाद में पारम्परिक समूहों पर जॉर्डन के परिणामों को विल्हेम किलिंग द्वारा जटिल सहज-लाई बीजगणित के वर्गीकरण के बाद, लियोनार्ड डिक्सन द्वारा अपेक्षाकृत परिमित क्षेत्रों के लिए सामान्यीकृत किया गया। डिक्सन ने G2 और E6 प्रकार के अपवाद समूहों का भी निर्माण किया, लेकिन (विल्सन 2009, p. 2) F4, E7, या E8 प्रकार का नहीं किया। 1950 के दशक में लाई प्रकार के समूहों पर कार्य प्रारम्भ रखा गया था, जिसमें क्लाउड चेवेली ने 1955 के पेपर में पारम्परिक समूहों और असहज प्रकार के समूहों का एक समान निर्माण किया था। इसने कुछ ज्ञात समूहों (प्रक्षेपी एकात्मक समूहों) को छोड़ दिया, जो कि शेवेलली निर्माण के "व्यावर्तन" से प्राप्त किए गए थे। लाइ-प्रकार के शेष समूह स्टाइनबर्ग, टिट्स और हर्ज़िग जिन्होंने 3D4(q) और 2E6(q) का उत्पादन किया और सुज़ुकी और री सुज़ुकी-री समूह द्वारा निर्मित किए गए थे।

इन समूहों (लाइ-प्रकार के समूह, चक्रीय समूहों, वैकल्पिक समूहों और पांच असहज मैथ्यू समूहों के साथ) को एक पूर्ण सूची के रूप मे जाना जाता था लेकिन 1964 में मैथ्यू के कार्य के बाद से लगभग एक शताब्दी के बाद पहले जांको समूह की खोज की गई थी और शेष 20 विकीर्ण समूहों की खोज या अनुमान 1965-1975 में लगाया गया था जिसका समापन 1981 में हुआ, जब रॉबर्ट ग्रिएस ने घोषणा की कि उन्होंने बर्न.फिशर के "मॉन्स्टर ग्रुप" का निर्माण किया था। मॉन्स्टर के अनुक्रम 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 वाला सबसे बड़ा विकीर्ण सहज समूह है। मॉन्स्टर का 196,884 आयामी ग्रीज बीजगणित में 196,883-आयामी प्रतिनिधित्व है, जिसका अर्थ है कि मॉन्स्टर के प्रत्येक तत्व को 196,883 गुणा 196,883 आव्यूह के रूप में व्यक्त किया जा सकता है।

वर्गीकरण

पूर्ण वर्गीकरण को समान्यतः 1962-63 के फीट-थॉम्पसन प्रमेय से प्रारम्भ होने के रूप में स्वीकृत किया जाता है, जो सामान्य रूप से 1983 तक चल सकता है लेकिन यह 2004 में समाप्त हो रहा है। 1981 में मॉन्स्टर के निर्माण के तुरंत बाद, 10,000 से अधिक पृष्ठों का एक प्रमाण दिया गया था कि समूह सिद्धांतकारों ने सभी परिमित सहज समूहों को सफलतापूर्वक सूचीबद्ध किया था 1983 में डैनियल गोरेनस्टीन द्वारा घोषित जीत के साथ जो कि समय से पहले था - कुछ अंतराल बाद में खोजे गए, विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में जिन्हें अंततः 2004 में क्वासिथिन समूहों के 1,300 पृष्ठ वर्गीकरण द्वारा प्रतिस्थापित किया गया था, जिसे अब समान्यतः पूर्ण रूप से स्वीकृत किया जाता है।

सहजता के लिए परीक्षण

साइलो का परीक्षण: मान कि n एक धनात्मक पूर्णांक है जो अभाज्य नहीं है और p, n का अभाज्य भाजक है। यदि 1, n का एकमात्र विभाजक है जो 1 सापेक्ष p के अनुरूप है तो अनुक्रम n का एक सहज समूह सम्मिलित नहीं होता है।

प्रमाण: यदि n एक मुख्य घात है तो अनुक्रम n के एक समूह का गैर-तुच्छ केंद्र समूह सिद्धांत है[9] और इसलिए सहज नहीं होता है। यदि n एक मुख्य घात नहीं है, तो प्रत्येक साइलो उपसमूह उपयुक्त होता है और साइलो के तीसरे प्रमेय द्वारा, हम जानते हैं कि अनुक्रम n के समूह के साइलो P उपसमूहों की संख्या 1 मॉड्यूलो P के बराबर है और n को विभाजित करती है। चूंकि 1 एकमात्र ऐसी संख्या है और साइलो P उपसमूह अद्वितीय है इसलिए यह सामान्य है। चूंकि यह एक उपयुक्त गैर-पहचान उपसमूह है जो समूह सहज नहीं होते है।

बर्नसाइड: एक गैर-एबेलियन परिमित सहज समूह का अनुक्रम कम से कम तीन अलग-अलग अभाज्यों से विभाज्य होता है। जो बर्नसाइड के प्रमेय से प्राप्त होता है।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Knapp (2006), p. 170
  2. Rotman (1995), p. 226
  3. Rotman (1995), p. 281
  4. Smith & Tabachnikova (2000), p. 144
  5. Higman, Graham (1951), "A finitely generated infinite simple group", Journal of the London Mathematical Society, Second Series, 26 (1): 61–64, doi:10.1112/jlms/s1-26.1.59, ISSN 0024-6107, MR 0038348
  6. Burger, M.; Mozes, S. (2000). "Lattices in product of trees". Publ. Math. IHES. 92: 151–194. doi:10.1007/bf02698916.
  7. Wilson, Robert (October 31, 2006), "Chapter 1: Introduction", The finite simple groups
  8. Jordan, Camille (1870), Traité des substitutions et des équations algébriques
  9. See the proof in p-group, for instance.


पाठ्यपुस्तकें

  • Knapp, Anthony W. (2006), Basic algebra, Springer, ISBN 978-0-8176-3248-9
  • Rotman, Joseph J. (1995), An introduction to the theory of groups, Graduate texts in mathematics, vol. 148, Springer, ISBN 978-0-387-94285-8
  • Smith, Geoff; Tabachnikova, Olga (2000), Topics in group theory, Springer undergraduate mathematics series (2 ed.), Springer, ISBN 978-1-85233-235-8


कागजात

  • Silvestri, R. (September 1979), "Simple groups of finite order in the nineteenth century", Archive for History of Exact Sciences, 20 (3–4): 313–356, doi:10.1007/BF00327738

श्रेणी:समूहों के गुण