अलघुकरणीय भिन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:




एक अलघुकरणीय अंश (या निम्नतम शब्दों में अंश, सरलतम रूप या घटा हुआ अंश) एक [[अंश (गणित)]] है जिसमें अंश और [[भाजक]] [[पूर्णांक]] होते हैं जिनमें 1 (और -1, जब ऋणात्मक संख्याओं पर विचार किया जाता है) के अलावा कोई अन्य सामान्य भाजक नहीं होता है।<ref>{{SpringerEOM|title=Fraction|id=Fraction|first=S. A.|last=Stepanov}}</ref> दूसरे शब्दों में, एक अंश {{sfrac|''a''|''b''}} अप्रासंगिक है यदि और केवल यदि a और b सहअभाज्य हैं, अर्थात, यदि a और b में 1 का सबसे बड़ा सामान्य विभाजक है। उच्च [[गणित]] में, "अलघुकरणीय अंश" परिमेय भिन्नों को भी संदर्भित कर सकता है, जैसे कि अंश और भाजक सह-अभाज्य बहुपद हैं।।<ref>E.g., see {{citation|title=The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, June 3-8, 2002|first1=Olav Arnfinn|last1=Laudal|first2=Ragni|last2=Piene|publisher=Springer|year=2004|page=155|isbn=9783540438267 |url=https://books.google.com/books?id=HiXwhBm42hcC&pg=PA155}}</ref> प्रत्येक धनात्मक परिमेय संख्या को ठीक एक तरह से एक अलघुकरणीय अंश के रूप में दर्शाया जा सकता है।<ref name="unique">{{citation|title=Elements of Arithmetic and Algebra: For the Use of the Royal Military College|volume=1|series=College text books, Sandhurst. Royal Military College|first=William|last=Scott|publisher=Longman, Brown, Green, and Longmans|year=1844|page=75}}.</ref>


एक समतुल्य परिभाषा कभी-कभी उपयोगी होती है: यदि a और b पूर्णांक हैं, तो भिन्न {{sfrac|''a''|''b''}} अप्रासंगिक है अगर और केवल अगर कोई अन्य समान अंश नहीं है {{sfrac|''c''|''d''}} ऐसा है कि {{nowrap|1={{abs|''c''}} < {{abs|''a''}}}} या {{nowrap|1={{abs|''d''}} < {{abs|''b''}}}}, जहाँ {{abs|''a''}} का अर्थ a का निरपेक्ष मान है।{{sfnp|Scott|1844|page=74}} (दो अंश {{sfrac|''a''|''b''}} और {{sfrac|''c''|''d''}} समान या समतुल्य हैं यदि और केवल यदि ''ad'' = ''bc''।)
 
 
एक अलघुकरणीय अंश (या निम्नतम शब्दों में अंश, सरलतम रूप या घटा हुआ अंश) एक [[अंश (गणित)]] है जिसमें अंश और [[भाजक]] [[पूर्णांक]] होते हैं जिनमें 1 (और -1, जब ऋणात्मक संख्याओं पर विचार किया जाता है) के अतिरिक्त कोई अन्य सामान्य भाजक नहीं होता है।<ref>{{SpringerEOM|title=Fraction|id=Fraction|first=S. A.|last=Stepanov}}</ref> दूसरे शब्दों में, एक अंश {{sfrac|''a''|''b''}} अप्रासंगिक है यदि और केवल यदि a और b सहअभाज्य हैं, अर्थात, यदि a और b में 1 का सबसे बड़ा सामान्य विभाजक है। उच्च [[गणित]] में, "अलघुकरणीय अंश" परिमेय भिन्नों को भी संदर्भित कर सकता है, जैसे कि अंश और भाजक सह-अभाज्य बहुपद हैं।।<ref>E.g., see {{citation|title=The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, June 3-8, 2002|first1=Olav Arnfinn|last1=Laudal|first2=Ragni|last2=Piene|publisher=Springer|year=2004|page=155|isbn=9783540438267 |url=https://books.google.com/books?id=HiXwhBm42hcC&pg=PA155}}</ref> प्रत्येक धनात्मक परिमेय संख्या को ठीक एक तरह से एक अलघुकरणीय अंश के रूप में दर्शाया जा सकता है।<ref name="unique">{{citation|title=Elements of Arithmetic and Algebra: For the Use of the Royal Military College|volume=1|series=College text books, Sandhurst. Royal Military College|first=William|last=Scott|publisher=Longman, Brown, Green, and Longmans|year=1844|page=75}}.</ref>
 
एक समतुल्य परिभाषा कभी-कभी उपयोगी होती है: यदि a और b पूर्णांक हैं, तो भिन्न {{sfrac|''a''|''b''}} अप्रासंगिक है यदि और केवल यदि कोई अन्य समान अंश नहीं है {{sfrac|''c''|''d''}} ऐसा है कि {{nowrap|1={{abs|''c''}} < {{abs|''a''}}}} या {{nowrap|1={{abs|''d''}} < {{abs|''b''}}}}, जहाँ {{abs|''a''}} का अर्थ a का निरपेक्ष मान (दो अंश {{sfrac|''a''|''b''}} और {{sfrac|''c''|''d''}} समान या समतुल्य हैं यदि और केवल यदि ''ad'' = ''bc''।) है।{{sfnp|Scott|1844|page=74}}


उदाहरण के लिए, {{sfrac|1|4}}, {{sfrac|5|6}}, और {{sfrac|−101|100}} सभी अलघुकरणीय अंश हैं। दूसरी ओर, {{sfrac|2|4}} कम करने योग्य है क्योंकि यह {{sfrac|1|2}} मान के बराबर है, और का अंश {{sfrac|1|2}} के {{sfrac|2|4}} अंश से कम है।
उदाहरण के लिए, {{sfrac|1|4}}, {{sfrac|5|6}}, और {{sfrac|−101|100}} सभी अलघुकरणीय अंश हैं। दूसरी ओर, {{sfrac|2|4}} कम करने योग्य है क्योंकि यह {{sfrac|1|2}} मान के बराबर है, और का अंश {{sfrac|1|2}} के {{sfrac|2|4}} अंश से कम है।


एक अंश जो कम करने योग्य है, अंश और हर दोनों को एक सामान्य कारक से विभाजित करके कम किया जा सकता है। यदि दोनों को उनके सबसे बड़े सामान्य विभाजक द्वारा विभाजित किया जाता है, तो इसे पूरी तरह से न्यूनतम शर्तों तक कम किया जा सकता है।<ref>{{citation|title=Integers, Fractions, and Arithmetic: A Guide for Teachers|volume=10|series=MSRI mathematical circles library|first1=Judith D.|last1=Sally|first2=Paul J., Jr.|last2=Sally|author2-link=Paul Sally|publisher=[[American Mathematical Society]]|year=2012|isbn=9780821887981|contribution=9.1. Reducing a fraction to lowest terms|pages=131–134|url=https://books.google.com/books?id=Ntjq07-FA_IC&pg=PA131}}.</ref> सबसे बड़ा सामान्य विभाजक खोजने के लिए, [[यूक्लिडियन एल्गोरिथ्म]] या अभाज्य गुणनखंड का उपयोग किया जा सकता है। यूक्लिडियन एल्गोरिथम को आमतौर पर पसंद किया जाता है क्योंकि यह अंश और भाजक के साथ अंशों को कम करने की अनुमति देता है जो आसानी से फैक्टर किए जाने के लिए बहुत बड़े हैं।<ref>{{citation|title=Learning Modern Algebra|series=Mathematical Association of America Textbooks|first1=Al|last1=Cuoco|first2=Joseph|last2=Rotman|publisher=[[Mathematical Association of America]]|year=2013|isbn=9781939512017|page=33|url=https://books.google.com/books?id=LelYGuQHResC&pg=PA33}}.</ref>
एक अंश जो कम करने योग्य है, अंश और हर दोनों को एक सामान्य कारक से विभाजित करके कम किया जा सकता है। यदि दोनों को उनके सबसे बड़े सामान्य विभाजक द्वारा विभाजित किया जाता है, तो इसे पूरी तरह से न्यूनतम शर्तों तक कम किया जा सकता है।<ref>{{citation|title=Integers, Fractions, and Arithmetic: A Guide for Teachers|volume=10|series=MSRI mathematical circles library|first1=Judith D.|last1=Sally|first2=Paul J., Jr.|last2=Sally|author2-link=Paul Sally|publisher=[[American Mathematical Society]]|year=2012|isbn=9780821887981|contribution=9.1. Reducing a fraction to lowest terms|pages=131–134|url=https://books.google.com/books?id=Ntjq07-FA_IC&pg=PA131}}.</ref> सबसे बड़ा सामान्य विभाजक खोजने के लिए, [[यूक्लिडियन एल्गोरिथ्म]] या अभाज्य गुणनखंड का उपयोग किया जा सकता है। यूक्लिडियन एल्गोरिथम को सामान्यतः पसंद किया जाता है क्योंकि यह अंश और भाजक के साथ अंशों को कम करने की अनुमति देता है जो आसानी से फैक्टर किए जाने के लिए बहुत बड़े हैं।<ref>{{citation|title=Learning Modern Algebra|series=Mathematical Association of America Textbooks|first1=Al|last1=Cuoco|first2=Joseph|last2=Rotman|publisher=[[Mathematical Association of America]]|year=2013|isbn=9781939512017|page=33|url=https://books.google.com/books?id=LelYGuQHResC&pg=PA33}}.</ref>




Line 15: Line 18:
पहले चरण में दोनों संख्याओं को 10 से विभाजित किया गया, जो कि 120 और 90 दोनों के लिए एक सामान्य कारक है। दूसरे चरण में, उन्हें 3 से विभाजित किया गया। अंतिम परिणाम, {{sfrac|4|3}}, एक अलघुकरणीय भिन्न है क्योंकि 4 और 3 में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखण्ड नहीं है।
पहले चरण में दोनों संख्याओं को 10 से विभाजित किया गया, जो कि 120 और 90 दोनों के लिए एक सामान्य कारक है। दूसरे चरण में, उन्हें 3 से विभाजित किया गया। अंतिम परिणाम, {{sfrac|4|3}}, एक अलघुकरणीय भिन्न है क्योंकि 4 और 3 में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखण्ड नहीं है।


मूल भिन्न 90 और 120 का महत्तम समापवर्तक, जो कि 30 है, इस का उपयोग करके एक ही चरण में घटाया जा सकता था। {{nowrap|1=120 ÷ 30 = 4}}, और {{nowrap|1=90 ÷ 30 = 3}}, के रूप में एक प्राप्त होता है
मूल भिन्न 90 और 120 का महत्तम समापवर्तक, जो कि 30 है, इस का उपयोग करके एक ही चरण में घटाया जा सकता था। {{nowrap|1=120 ÷ 30 = 4}}, और {{nowrap|1=90 ÷ 30 = 3}}, के रूप में एक प्राप्त होता है
:<math> \frac{120}{90}=\frac{4}{3}</math>
:<math> \frac{120}{90}=\frac{4}{3}</math>
हाथ से कौन सी विधि तेजी से होती है यह अंश पर निर्भर करता है और आसानी से सामान्य कारकों को देखा जाता है। इस मामले में भाजक और अंश रहता है जो यह सुनिश्चित करने के लिए बहुत बड़ा है कि वे निरीक्षण द्वारा कोप्राइम हैं, यह सुनिश्चित करने के लिए कि अंश वास्तव में अप्रासंगिक है, वैसे भी एक सबसे बड़ी सामान्य विभाजक गणना की आवश्यकता है।
हाथ से कौन सी विधि तेजी से होती है यह अंश पर निर्भर करता है और आसानी से सामान्य कारकों को देखा जाता है। इस स्थितियों में भाजक और अंश रहता है जो यह सुनिश्चित करने के लिए बहुत बड़ा है कि वे निरीक्षण द्वारा सहअभाज्य हैं, यह सुनिश्चित करने के लिए कि अंश वास्तव में अप्रासंगिक है, वैसे भी एक सबसे बड़ी सामान्य विभाजक गणना की आवश्यकता है।


== अद्वितीयता ==
== अद्वितीयता ==


प्रत्येक परिमेय संख्या में एक सकारात्मक विभाजक के साथ एक अलघुकरणीय अंश के रूप में एक अद्वितीय प्रतिनिधित्व होता है<ref name="unique"/> (हालाँकि {{sfrac|2|3}} = {{sfrac|−2|−3}} हालांकि दोनों अप्रासंगिक हैं)। विशिष्टता पूर्णांकों के अंकगणित के मौलिक प्रमेय का परिणाम है, क्योंकि {{nowrap|1={{sfrac|''a''|''b''}} = {{sfrac|''c''|''d''}}}} का तात्पर्य ad = bc है, और इसलिए बाद के दोनों पक्षों को एक ही अभाज्य गुणनखंड साझा करना चाहिए, फिर भी a और b कोई अभाज्य गुणनखंड साझा नहीं करते हैं, के प्रमुख कारकों का सेट (बहुलता के साथ) c और इसके विपरीत का एक उपसमुच्चय है जिसका अर्थ a = c और उसी तर्क से b = d है।
प्रत्येक परिमेय संख्या में एक सकारात्मक विभाजक के साथ एक अलघुकरणीय अंश के रूप में एक अद्वितीय प्रतिनिधित्व होता है<ref name="unique"/> (चूँकि {{sfrac|2|3}} = {{sfrac|−2|−3}} चूंकि दोनों अप्रासंगिक हैं)। विशिष्टता पूर्णांकों के अंकगणित के मौलिक प्रमेय का परिणाम है, क्योंकि {{nowrap|1={{sfrac|''a''|''b''}} = {{sfrac|''c''|''d''}}}} का तात्पर्य ad = bc है, और इसलिए बाद के दोनों पक्षों को एक ही अभाज्य गुणनखंड साझा करना चाहिए, फिर भी a और b कोई अभाज्य गुणनखंड साझा नहीं करते हैं, के प्रमुख कारकों का सेट (बहुलता के साथ) c और इसके विपरीत का एक उपसमुच्चय है जिसका अर्थ a = c और उसी तर्क से b = d है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 29: Line 32:
== सामान्यीकरण ==
== सामान्यीकरण ==


अलघुकरणीय अंश की धारणा किसी भी [[अद्वितीय गुणनखंड डोमेन]] के अंशों के क्षेत्र के लिए सामान्यीकृत होती है: ऐसे क्षेत्र के किसी भी तत्व को एक अंश के रूप में लिखा जा सकता है जिसमें भाजक और अंश दोनों को उनके सबसे बड़े सामान्य भाजक द्वारा विभाजित करके कोप्राइम होते हैं।<ref>{{citation|title=Abstract Algebra|first=Paul B.|last=Garrett|publisher=CRC Press|year=2007|isbn=9781584886907|page=183|url=https://books.google.com/books?id=CZzSBQAAQBAJ&pg=PA183}}.</ref> यह विशेष रूप से एक क्षेत्र पर तर्कसंगत अंश पर लागू होता है। किसी दिए गए तत्व के लिए अलघुकरणीय अंश एक ही व्युत्क्रमणीय तत्व द्वारा भाजक और अंश के गुणन तक अद्वितीय है। परिमेय संख्याओं के मामले में इसका मतलब यह है कि किसी भी संख्या में दो अलघुकरणीय अंश होते हैं, जो अंश और हर दोनों के चिन्ह में परिवर्तन से संबंधित होते हैं; भाजक को सकारात्मक होने की आवश्यकता के द्वारा इस अस्पष्टता को दूर किया जा सकता है। परिमेय फलनों के मामले में भाजक को एक [[मोनिक बहुपद]] होना आवश्यक हो सकता है।<ref>{{citation|title=Abstract Algebra|volume=242|series=Graduate Texts in Mathematics|first=Pierre Antoine|last=Grillet|publisher=Springer|year=2007|isbn=9780387715681|at=Lemma 9.2, p.&nbsp;183|url=https://books.google.com/books?id=CZzSBQAAQBAJ&pg=PA183}}.</ref>
अलघुकरणीय अंश की धारणा किसी भी [[अद्वितीय गुणनखंड डोमेन]] के अंशों के क्षेत्र के लिए सामान्यीकृत होती है: ऐसे क्षेत्र के किसी भी तत्व को एक अंश के रूप में लिखा जा सकता है जिसमें भाजक और अंश दोनों को उनके सबसे बड़े सामान्य भाजक द्वारा विभाजित करके सहअभाज्य होते हैं।<ref>{{citation|title=Abstract Algebra|first=Paul B.|last=Garrett|publisher=CRC Press|year=2007|isbn=9781584886907|page=183|url=https://books.google.com/books?id=CZzSBQAAQBAJ&pg=PA183}}.</ref> यह विशेष रूप से एक क्षेत्र पर तर्कसंगत अंश पर प्रायुक्त होता है। किसी दिए गए तत्व के लिए अलघुकरणीय अंश एक ही व्युत्क्रमणीय तत्व द्वारा भाजक और अंश के गुणन तक अद्वितीय है। परिमेय संख्याओं के स्थितियों में इसका अर्थ यह है कि किसी भी संख्या में दो अलघुकरणीय अंश होते हैं, जो अंश और हर दोनों के चिन्ह में परिवर्तन से संबंधित होते हैं; भाजक को सकारात्मक होने की आवश्यकता के द्वारा इस अस्पष्टता को दूर किया जा सकता है। परिमेय फलनों के स्थितियों में भाजक को एक [[मोनिक बहुपद]] होना आवश्यक हो सकता है।<ref>{{citation|title=Abstract Algebra|volume=242|series=Graduate Texts in Mathematics|first=Pierre Antoine|last=Grillet|publisher=Springer|year=2007|isbn=9780387715681|at=Lemma 9.2, p.&nbsp;183|url=https://books.google.com/books?id=CZzSBQAAQBAJ&pg=PA183}}.</ref>





Revision as of 11:23, 3 February 2023



एक अलघुकरणीय अंश (या निम्नतम शब्दों में अंश, सरलतम रूप या घटा हुआ अंश) एक अंश (गणित) है जिसमें अंश और भाजक पूर्णांक होते हैं जिनमें 1 (और -1, जब ऋणात्मक संख्याओं पर विचार किया जाता है) के अतिरिक्त कोई अन्य सामान्य भाजक नहीं होता है।[1] दूसरे शब्दों में, एक अंश a/b अप्रासंगिक है यदि और केवल यदि a और b सहअभाज्य हैं, अर्थात, यदि a और b में 1 का सबसे बड़ा सामान्य विभाजक है। उच्च गणित में, "अलघुकरणीय अंश" परिमेय भिन्नों को भी संदर्भित कर सकता है, जैसे कि अंश और भाजक सह-अभाज्य बहुपद हैं।।[2] प्रत्येक धनात्मक परिमेय संख्या को ठीक एक तरह से एक अलघुकरणीय अंश के रूप में दर्शाया जा सकता है।[3]

एक समतुल्य परिभाषा कभी-कभी उपयोगी होती है: यदि a और b पूर्णांक हैं, तो भिन्न a/b अप्रासंगिक है यदि और केवल यदि कोई अन्य समान अंश नहीं है c/d ऐसा है कि |c| < |a| या |d| < |b|, जहाँ |a| का अर्थ a का निरपेक्ष मान (दो अंश a/b और c/d समान या समतुल्य हैं यदि और केवल यदि ad = bc।) है।[4]

उदाहरण के लिए, 1/4, 5/6, और −101/100 सभी अलघुकरणीय अंश हैं। दूसरी ओर, 2/4 कम करने योग्य है क्योंकि यह 1/2 मान के बराबर है, और का अंश 1/2 के 2/4 अंश से कम है।

एक अंश जो कम करने योग्य है, अंश और हर दोनों को एक सामान्य कारक से विभाजित करके कम किया जा सकता है। यदि दोनों को उनके सबसे बड़े सामान्य विभाजक द्वारा विभाजित किया जाता है, तो इसे पूरी तरह से न्यूनतम शर्तों तक कम किया जा सकता है।[5] सबसे बड़ा सामान्य विभाजक खोजने के लिए, यूक्लिडियन एल्गोरिथ्म या अभाज्य गुणनखंड का उपयोग किया जा सकता है। यूक्लिडियन एल्गोरिथम को सामान्यतः पसंद किया जाता है क्योंकि यह अंश और भाजक के साथ अंशों को कम करने की अनुमति देता है जो आसानी से फैक्टर किए जाने के लिए बहुत बड़े हैं।[6]


उदाहरण

पहले चरण में दोनों संख्याओं को 10 से विभाजित किया गया, जो कि 120 और 90 दोनों के लिए एक सामान्य कारक है। दूसरे चरण में, उन्हें 3 से विभाजित किया गया। अंतिम परिणाम, 4/3, एक अलघुकरणीय भिन्न है क्योंकि 4 और 3 में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखण्ड नहीं है।

मूल भिन्न 90 और 120 का महत्तम समापवर्तक, जो कि 30 है, इस का उपयोग करके एक ही चरण में घटाया जा सकता था। 120 ÷ 30 = 4, और 90 ÷ 30 = 3, के रूप में एक प्राप्त होता है

हाथ से कौन सी विधि तेजी से होती है यह अंश पर निर्भर करता है और आसानी से सामान्य कारकों को देखा जाता है। इस स्थितियों में भाजक और अंश रहता है जो यह सुनिश्चित करने के लिए बहुत बड़ा है कि वे निरीक्षण द्वारा सहअभाज्य हैं, यह सुनिश्चित करने के लिए कि अंश वास्तव में अप्रासंगिक है, वैसे भी एक सबसे बड़ी सामान्य विभाजक गणना की आवश्यकता है।

अद्वितीयता

प्रत्येक परिमेय संख्या में एक सकारात्मक विभाजक के साथ एक अलघुकरणीय अंश के रूप में एक अद्वितीय प्रतिनिधित्व होता है[3] (चूँकि 2/3 = −2/−3 चूंकि दोनों अप्रासंगिक हैं)। विशिष्टता पूर्णांकों के अंकगणित के मौलिक प्रमेय का परिणाम है, क्योंकि a/b = c/d का तात्पर्य ad = bc है, और इसलिए बाद के दोनों पक्षों को एक ही अभाज्य गुणनखंड साझा करना चाहिए, फिर भी a और b कोई अभाज्य गुणनखंड साझा नहीं करते हैं, के प्रमुख कारकों का सेट (बहुलता के साथ) c और इसके विपरीत का एक उपसमुच्चय है जिसका अर्थ a = c और उसी तर्क से b = d है।

अनुप्रयोग

तथ्य यह है कि किसी भी परिमेय संख्या का एक अद्वितीय प्रतिनिधित्व होता है क्योंकि एक अलघुकरणीय अंश का उपयोग 2 के वर्गमूल और अन्य अपरिमेय संख्याओं की अपरिमेयता के विभिन्न प्रमाणों में किया जाता है। उदाहरण के लिए, एक प्रमाण नोट करता है कि यदि 2 पूर्णांकों के अनुपात के रूप में प्रदर्शित किया जा सकता है, तो इसमें विशेष रूप से पूर्ण रूप से घटा हुआ प्रतिनिधित्व a/b होता है जहां a और b सबसे छोटे संभव हैं; लेकिन गया है कि a/b 2 के बराबर है, इसलिए 2ba/ab (इससे क्रॉस-गुणा करने के बाद से a/b दिखाता है कि वे बराबर हैं) भी करता है। चूँकि a > b (क्योंकि 2 1 से बड़ा है), बाद वाला दो छोटे पूर्णांकों का अनुपात है। यह विरोधाभास द्वारा एक प्रमाण है, इसलिए आधार यह है कि दो पूर्णांकों के अनुपात के रूप में दो के वर्गमूल का प्रतिनिधित्व गलत है।

सामान्यीकरण

अलघुकरणीय अंश की धारणा किसी भी अद्वितीय गुणनखंड डोमेन के अंशों के क्षेत्र के लिए सामान्यीकृत होती है: ऐसे क्षेत्र के किसी भी तत्व को एक अंश के रूप में लिखा जा सकता है जिसमें भाजक और अंश दोनों को उनके सबसे बड़े सामान्य भाजक द्वारा विभाजित करके सहअभाज्य होते हैं।[7] यह विशेष रूप से एक क्षेत्र पर तर्कसंगत अंश पर प्रायुक्त होता है। किसी दिए गए तत्व के लिए अलघुकरणीय अंश एक ही व्युत्क्रमणीय तत्व द्वारा भाजक और अंश के गुणन तक अद्वितीय है। परिमेय संख्याओं के स्थितियों में इसका अर्थ यह है कि किसी भी संख्या में दो अलघुकरणीय अंश होते हैं, जो अंश और हर दोनों के चिन्ह में परिवर्तन से संबंधित होते हैं; भाजक को सकारात्मक होने की आवश्यकता के द्वारा इस अस्पष्टता को दूर किया जा सकता है। परिमेय फलनों के स्थितियों में भाजक को एक मोनिक बहुपद होना आवश्यक हो सकता है।[8]


यह भी देखें

  • विषम रद्दीकरण, एक त्रुटिपूर्ण अंकगणितीय प्रक्रिया जो मूल अघटित रूप के अंकों को रद्द करके सही इरेड्यूसेबल अंश उत्पन्न करती है।
  • डायोफैंटाइन सन्निकटन, परिमेय संख्याओं द्वारा वास्तविक संख्याओं का सन्निकटन।

संदर्भ

  1. Stepanov, S. A. (2001) [1994], "Fraction", Encyclopedia of Mathematics, EMS Press
  2. E.g., see Laudal, Olav Arnfinn; Piene, Ragni (2004), The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, June 3-8, 2002, Springer, p. 155, ISBN 9783540438267
  3. 3.0 3.1 Scott, William (1844), Elements of Arithmetic and Algebra: For the Use of the Royal Military College, College text books, Sandhurst. Royal Military College, vol. 1, Longman, Brown, Green, and Longmans, p. 75.
  4. Scott (1844), p. 74.
  5. Sally, Judith D.; Sally, Paul J., Jr. (2012), "9.1. Reducing a fraction to lowest terms", Integers, Fractions, and Arithmetic: A Guide for Teachers, MSRI mathematical circles library, vol. 10, American Mathematical Society, pp. 131–134, ISBN 9780821887981{{citation}}: CS1 maint: multiple names: authors list (link).
  6. Cuoco, Al; Rotman, Joseph (2013), Learning Modern Algebra, Mathematical Association of America Textbooks, Mathematical Association of America, p. 33, ISBN 9781939512017.
  7. Garrett, Paul B. (2007), Abstract Algebra, CRC Press, p. 183, ISBN 9781584886907.
  8. Grillet, Pierre Antoine (2007), Abstract Algebra, Graduate Texts in Mathematics, vol. 242, Springer, Lemma 9.2, p. 183, ISBN 9780387715681.


बाहरी कड़ियाँ