ऊर्जा संचयन: Difference between revisions
No edit summary |
No edit summary |
||
Line 160: | Line 160: | ||
== भविष्य की दिशाएं == | == भविष्य की दिशाएं == | ||
विद्युत सक्रिय पॉलिमर (ईएपी) को ऊर्जा कटाई के लिए प्रस्तावित किया गया है। इन पॉलिमर का एक बड़ा तनाव, लोचदार ऊर्जा घनत्व, और उच्च ऊर्जा रूपांतरण क्षमता है। ईएपी (इलेक्ट्रोएक्टिव पॉलीमर) पर आधारित सिस्टम का कुल वजन पीजोइलेक्ट्रिक सामग्री पर आधारित सिस्टम की तुलना में काफी कम होना प्रस्तावित है। | |||
नैनोजेनरेटर | नैनोजेनरेटर जैसे कि जॉर्जिया टेक द्वारा बनाया गया, बैटरी के बिना विद्युत चलाने वाले उपकरणों के लिए एक नया तरीका उपलब्ध करा सकता है।<ref>[http://www.gatech.edu/newsroom/release.html?id=1326 Georgia tech Nanogenerator]</ref> वर्ष 2008 तक, यह केवल कुछ दर्जन नैनोवाट उत्पन्न करता है, जो किसी भी व्यावहारिक अनुप्रयोग के लिए बहुत कम है। | ||
शोर इटली में एनआईपीएस प्रयोगशाला द्वारा एक गैर-रैखिक गतिशील तंत्र के माध्यम से व्यापक स्पेक्ट्रम कम पैमाने के कंपन को फसल करने के प्रस्ताव का विषय रहा है जो परंपरागत रैखिक हार्वेस्टर की तुलना में एक कारक 4 तक हारवेस्टर दक्षता में सुधार कर सकता है।<ref>[http://physicsworld.com/cws/article/news/38102 Noise harvesting]</ref> | |||
विभिन्न प्रकार के<ref>X. Kang et al. ''[https://ieeexplore.ieee.org/document/6800126/ Cost Minimization for Fading Channels With Energy Harvesting and Conventional Energy],'' in IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4586–4598, Aug. 2014.</ref> ऊर्जा हारवेटरों के संयोजन, बैटरियों पर निर्भरता को कम कर सकते हैं, विशेषकर वातावरणों में जहां उपलब्ध परिवेश ऊर्जा के प्रकार समय-समय पर बदलते रहते हैं। इस प्रकार के पूरक संतुलित ऊर्जा संचयन में बेतार संवेदक प्रणालियों की संरचनात्मक स्वास्थ्य निगरानी की विश्वसनीयता बढ़ाने की क्षमता है।<ref>{{cite journal |last1=Verbelen |first1=Yannick |last2=Braeken |first2=An |last3=Touhafi |first3=Abdellah |date=2014 |title=Towards a complementary balanced energy harvesting solution for low power embedded systems |journal=Microsystem Technologies |volume=20 |issue=4 |pages=1007–1021 |doi=10.1007/s00542-014-2103-1 |doi-access=free }}</ref> | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:15, 12 February 2023
ऊर्जा संचयन (ईएच ,जिसे विद्युत संचयन या ऊर्जा संमार्जन या परिवेश शक्ति के रूप में भी जाना जाता है) वह प्रक्रिया है जिसके द्वारा ऊर्जा बाह्य स्रोतों से प्राप्त होती है (उदाहरण के लिए, सौर ऊर्जा, पवन ऊर्जा, लवणता श्रेणी, और गतिज ऊर्जा, जिसे परिवेश ऊर्जा के रूप में भी जाना जाता है), और फिर कब्जा किया जाता है और छोटे, बेतार स्वायत्त उपकरणों के लिए भंडारित, जो परिवहनीय इलेक्ट्रॉनिक्स और वायरलेस सेंसर नेटवर्क में उपयोग किया जाता है।[1]
ऊर्जा हारवेस्टर सामान्यतः कम ऊर्जा वाले इलेक्ट्रॉनिक्स को बहुत कम बिजली प्रदान करते हैं। जबकि कुछ बड़े पैमाने पर उत्पादन लागत संसाधनों (तेल, कोयला, आदि) के लिए इनपुट ईंधन, ऊर्जा हार्वेस्टर के लिए ऊर्जा स्रोत परिवेश पृष्ठभूमि के रूप में मौजूद है। उदाहरण के लिए, तापमान अनुपात दहन इंजन के प्रचालन से होता है और शहरी क्षेत्रों में रेडियो और टेलीविजन प्रसारण के कारण वातावरण में बड़ी मात्रा में विद्युत चुम्बकीय ऊर्जा मौजूद होती है।
परिवेश विद्युत चुम्बकीय विकिरण (ईएमआर) से एकत्र परिवेश शक्ति के सबसे पहले अनुप्रयोगों में से एक क्रिस्टल रेडियो है।
परिवेशी ईएमआर से ऊर्जा संचयन के सिद्धांतों को बुनियादी घटकों के साथ प्रदर्शित किया जा सकता है।[2]
ऑपरेशन
रिवेश ऊर्जा को विद्युत ऊर्जा में बदलने वाले ऊर्जा संचयन उपकरणों ने सैन्य और वाणिज्यिक दोनों क्षेत्रों में काफी रुचि ली है। कुछ प्रणालियाँ स्वायत्त संचालन के लिए समुद्र संबंधी निगरानी सेंसर द्वारा उपयोग की जाने वाली गति, जैसे कि समुद्र की लहरों को बिजली में परिवर्तित करती हैं। भावी अनुप्रयोगों में बड़े सिस्टम के लिए विश्वसनीय विद्युत स्टेशन के रूप में काम करने के लिए दूरस्थ स्थानों पर तैनात उच्च विद्युत उत्पादन डिवाइस (या ऐसे उपकरणों के सरफेस) को शामिल किया जा सकता है। एक अन्य अनुप्रयोग पहनने योग्य इलेक्ट्रॉनिक्स में है जहां ऊर्जा कटाई के उपकरण मोबाइल कंप्यूटर, रेडियो संचार उपकरण आदि की शक्ति या रीचार्ज कर सकते हैं। इन सभी उपकरणों को पर्याप्त रूप से मजबूत होना चाहिए ताकि इन्हें लंबे समय तक प्रतिकूल वातावरण का सामना करना पड़े और इस तरंग के सभी स्तरों का दोहन करने के लिए गतिशीलता की एक विस्तृत रेंज हो।
ऊर्जा संचित करना
माइक्रोइलेक्ट्रॉनिक सिस्टम का उपयोग करके विकसित किए गए छोटे स्वायत्त सेंसर को बिजली देने के लिए ऊर्जा का भी उपयोग किया जा सकता है। ये प्रणालियां अक्सर बहुत छोटी होती हैं और इनके लिए बहुत कम शक्ति की आवश्यकता होती है, लेकिन इनके अनुप्रयोग बैटरी शक्ति पर निर्भरता द्वारा सीमित होते हैं। परिवेश कंपन, हवा, गर्मी या प्रकाश से ऊर्जा को कम करने से स्मार्ट सेंसर अनिश्चित काल तक कार्यात्मक हो सकते हैं।
एमईएमएस प्रौद्योगिकी का उपयोग करके विकसित किए गए छोटे स्वायत्त सेंसरों को बिजली देने के लिए ऊर्जा का भी उपयोग किया जा सकता है।
ऊर्जा संचयन उपकरणों से उपलब्ध विशिष्ट ऊर्जा घनत्व विशिष्ट अनुप्रयोग (जनरेटर के आकार को प्रभावित करने वाले) और संचयन जनरेटर के स्वयं के डिजाइन पर अत्यधिक निर्भर हैं। सामान्य तौर पर, गति संचालित उपकरणों के लिए, विशिष्ट मान कुछ μW/cm होते हैं3 मानव शरीर संचालित अनुप्रयोगों और सैकड़ों μW/cm के लिए3 मशीनरी से संचालित जनरेटर के लिए।[3] पहनने योग्य इलेक्ट्रॉनिक्स के लिए अधिकांश ऊर्जा अपमार्जक उपकरण बहुत कम शक्ति उत्पन्न करते हैं।[4][verification needed]
शक्ति का भंडारण
सामान्य तौर पर, ऊर्जा को संधारित्र, सुपर कैपेसिटर या बैटरी (बिजली) में संग्रहित किया जा सकता है। कैपेसिटर का उपयोग तब किया जाता है जब एप्लिकेशन को विशाल ऊर्जा स्पाइक्स प्रदान करने की आवश्यकता होती है। बैटरी कम ऊर्जा का रिसाव करती हैं और इसलिए इसका उपयोग तब किया जाता है जब उपकरण को ऊर्जा का एक स्थिर प्रवाह प्रदान करने की आवश्यकता होती है। बैटरी के ये पहलू उपयोग किए जाने वाले प्रकार पर निर्भर करते हैं। इस उद्देश्य के लिए उपयोग की जाने वाली एक सामान्य प्रकार की बैटरी लीड एसिड या लिथियम आयन बैटरी है, हालांकि निकल धातु हाइड्राइड जैसे पुराने प्रकार आज भी व्यापक रूप से उपयोग किए जाते हैं। बैटरी की तुलना में, सुपर कैपेसिटर में वस्तुतः असीमित चार्ज-डिस्चार्ज चक्र होते हैं और इसलिए IoT और वायरलेस सेंसर उपकरणों में रखरखाव-मुक्त संचालन को सक्षम करने के लिए हमेशा के लिए काम कर सकते हैं।[5]
शक्ति का प्रयोग
कम बिजली ऊर्जा संचयन में वर्तमान रुचि स्वतंत्र सेंसर नेटवर्क के लिए है। इन अनुप्रयोगों में एक ऊर्जा संचयन योजना एक कैपेसिटर में संग्रहीत शक्ति को माइक्रोप्रोसेसर में उपयोग के लिए दूसरे स्टोरेज कैपेसिटर या बैटरी में बढ़ाया/विनियमित करती है।[6] या डेटा ट्रांसमिशन में।[7] शक्ति का उपयोग आमतौर पर एक सेंसर एप्लिकेशन में किया जाता है और डेटा संग्रहीत या संभवतः एक वायरलेस विधि के माध्यम से प्रेषित होता है।[8]
प्रेरणा
ऊर्जा संचयन का इतिहास पवनचक्की और जलचक्र से जुड़ा हुआ है। लोगों ने कई दशकों से गर्मी और कंपन से ऊर्जा को स्टोर करने के तरीके खोजे हैं। नए ऊर्जा संचयन उपकरणों की खोज के पीछे एक प्रेरणा शक्ति सेंसर नेटवर्क और बैटरी के बिना मोबाइल उपकरणों की इच्छा है। जलवायु परिवर्तन और ग्लोबल वार्मिंग के मुद्दे को दूर करने की इच्छा से ऊर्जा संचयन भी प्रेरित होता है।
ऊर्जा स्रोत
कई छोटे पैमाने के ऊर्जा स्रोत हैं जिन्हें आम तौर पर औद्योगिक आकार के सौर, पवन या तरंग शक्ति के तुलनीय उत्पादन के मामले में औद्योगिक आकार तक नहीं बढ़ाया जा सकता है:
- कुछ कलाई घड़ियाँ गतिज ऊर्जा (स्वचालित घड़ियाँ कहलाती हैं) द्वारा संचालित होती हैं, इस मामले में हाथ की गति का उपयोग किया जाता है। आर्म मूवमेंट इसके प्रेरणा की वाइंडिंग का कारण बनता है। Seiko के काइनेटिक जैसे अन्य डिजाइन, बिजली उत्पन्न करने के लिए एक ढीले आंतरिक स्थायी चुंबक मोटर का उपयोग करते हैं।
- फोटोवोल्टिक सौर विकिरण (घर के अंदर और बाहर दोनों) को फोटोवोल्टिक प्रभाव प्रदर्शित करने वाले अर्धचालकों का उपयोग करके प्रत्यक्ष विद्युत में परिवर्तित करके विद्युत शक्ति उत्पन्न करने की एक विधि है। फोटोवोल्टिक विद्युत उत्पादन एक फोटोवोल्टिक सामग्री वाले कई कोशिकाओं से बने सौर पैनलों को नियोजित करता है। ध्यान दें कि फोटोवोल्टिक को औद्योगिक आकार तक बढ़ा दिया गया है और बड़े सौर फार्म मौजूद हैं।
- शीतलक जेनरेटर (टीईजी) में दो असमान सामग्रियों के जंक्शन और थर्मल ढाल की उपस्थिति होती है। कई जंक्शनों को विद्युत रूप से श्रृंखला में और तापीय रूप से समानांतर में जोड़कर बड़े वोल्टेज आउटपुट संभव हैं। विशिष्ट प्रदर्शन 100–300 μV/K प्रति जंक्शन है। इनका उपयोग औद्योगिक उपकरणों, संरचनाओं और यहां तक कि मानव शरीर से mW.s ऊर्जा प्राप्त करने के लिए किया जा सकता है। तापमान प्रवणता में सुधार के लिए वे आम तौर पर हीट सिंक के साथ युग्मित होते हैं।
- सूक्ष्म पवन टर्बाइनों का उपयोग वायरलेस सेंसर नोड्स जैसे कम बिजली वाले इलेक्ट्रॉनिक उपकरणों को शक्ति प्रदान करने के लिए गतिज ऊर्जा के रूप में पर्यावरण में आसानी से उपलब्ध पवन ऊर्जा को प्राप्त करने के लिए किया जाता है। जब टरबाइन के ब्लेड से हवा बहती है, तो ब्लेड के ऊपर और नीचे हवा की गति के बीच शुद्ध दबाव अंतर विकसित हो जाता है। इसके परिणामस्वरूप उत्थापन बल उत्पन्न होगा जो बदले में ब्लेड को घुमाएगा। फोटोवोल्टिक के समान, पवन फार्मों का निर्माण एक औद्योगिक पैमाने पर किया गया है और इसका उपयोग पर्याप्त मात्रा में विद्युत ऊर्जा उत्पन्न करने के लिए किया जा रहा है।
- पीजोइलेक्ट्रिसिटी क्रिस्टल या फाइबर जब भी यांत्रिक रूप से विकृत होते हैं तो एक छोटा वोल्टेज उत्पन्न करते हैं। आंतरिक दहन इंजन से कंपन पीजोइलेक्ट्रिक सामग्री को उत्तेजित कर सकता है, जैसे जूते की एड़ी, या बटन को धक्का दे सकता है।
- विशेष एंटीना (इलेक्ट्रॉनिक्स) आवारा रेडियो तरंगों से ऊर्जा एकत्र कर सकता है,[9] यह एक रेक्टेना के साथ भी किया जा सकता है और सैद्धांतिक रूप से एक नैन्टेना के साथ उच्च आवृत्ति वाले विद्युत चुम्बकीय विकिरण पर भी किया जा सकता है।
- किसी पोर्टेबल इलेक्ट्रॉनिक उपकरण या रिमोट कंट्रोलर के उपयोग के दौरान चुंबक और कॉइल या पीजोइलेक्ट्रिक ऊर्जा कन्वर्टर्स का उपयोग करने के दौरान दबाए गए चाबियों से बिजली का उपयोग डिवाइस को बिजली देने में मदद के लिए किया जा सकता है।[10]
- वाइब्रेशन एनर्जी हार्वेस्टिंग, इलेक्ट्रोमैग्नेटिक इंडक्शन पर आधारित है, जो एक करंट पैदा करने के लिए सबसे सरल संस्करणों में एक चुंबक और एक कॉपर कॉइल का उपयोग करता है जिसे बिजली में परिवर्तित किया जा सकता है।
परिवेश-विकिरण स्रोत
ऊर्जा का एक संभावित स्रोत सर्वव्यापी रेडियो ट्रांसमीटर से आता है। ऐतिहासिक रूप से, इस स्रोत से उपयोगी शक्ति स्तर प्राप्त करने के लिए या तो एक बड़े संग्रह क्षेत्र या विकिरण वाले वायरलेस ऊर्जा हस्तांतरण स्रोत के निकट निकटता की आवश्यकता होती है। नैन्टेना एक प्रस्तावित विकास है जो प्रचुर विकिरण ऊर्जा (जैसे सौर विकिरण) का उपयोग करके इस सीमा को पार करेगा।
एक विचार जानबूझकर आरएफ ऊर्जा को शक्ति में प्रसारित करना और दूरस्थ उपकरणों से जानकारी एकत्र करना है:[7]निष्क्रिय रेडियो-आवृत्ति पहचान (RFID) प्रणालियों में यह अब आम बात है, लेकिन सुरक्षा और अमेरिकी संघीय संचार आयोग (और दुनिया भर में समकक्ष निकाय) उस अधिकतम शक्ति को सीमित करते हैं जिसे नागरिक उपयोग के लिए इस तरह प्रेषित किया जा सकता है। वायरलेस सेंसर नेटवर्क में अलग-अलग नोड्स को पावर देने के लिए इस पद्धति का उपयोग किया गया है[11][5]
द्रव प्रवाह
This section contains content that is written like an advertisement. (March 2020) (Learn how and when to remove this template message) |
विभिन्न टर्बाइन और गैर-टरबाइन जनरेटर प्रौद्योगिकियों द्वारा एयरफ्लो काटा जा सकता है। मीनार वाली पवन टर्बाइन और हवाई पवन ऊर्जा प्रणालियाँ (AWES) हवा के प्रवाह का पता लगाती हैं। इस क्षेत्र में कई कंपनियां हैं, जिनमें से एक उदाहरण Zephyr Energy Corporation का पेटेंट विंडबीम माइक्रो जनरेटर बैटरी और बिजली इलेक्ट्रॉनिक उपकरणों को रिचार्ज करने के लिए एयरफ्लो से ऊर्जा प्राप्त करता है। विंडबीम का नया डिज़ाइन इसे 2 मील प्रति घंटे जितनी कम हवा की गति में चुपचाप संचालित करने की अनुमति देता है। जनरेटर में एक बाहरी फ्रेम के भीतर टिकाऊ लंबे समय तक चलने वाले स्प्रिंग्स द्वारा निलंबित एक हल्का बीम होता है। कई द्रव प्रवाह घटनाओं के प्रभाव के कारण एयरफ्लो के संपर्क में आने पर बीम तेजी से दोलन करता है। एक लीनियर अल्टरनेटर असेंबली ऑसिलेटिंग बीम मोशन को प्रयोग करने योग्य विद्युत ऊर्जा में परिवर्तित करती है। बियरिंग और गियर की कमी से घर्षण अक्षमता और शोर समाप्त हो जाता है। जनरेटर सौर पैनलों (जैसे एचवीएसी नलिकाओं) के लिए अनुपयुक्त कम रोशनी वाले वातावरण में काम कर सकता है और कम लागत वाले घटकों और सरल निर्माण के कारण सस्ती है। किसी दिए गए एप्लिकेशन की ऊर्जा आवश्यकताओं और डिज़ाइन बाधाओं को पूरा करने के लिए स्केलेबल तकनीक को अनुकूलित किया जा सकता है।[12] बिजली के उपकरणों के लिए रक्त के प्रवाह का भी उपयोग किया जा सकता है। उदाहरण के लिए, बर्न विश्वविद्यालय में विकसित पेसमेकर, रक्त प्रवाह का उपयोग एक वसंत को घुमाने के लिए करता है जो बदले में एक विद्युत सूक्ष्म जनरेटर चलाता है।[13] उच्च ऊर्जा रूपांतरण दक्षता और उच्च शक्ति घनत्व के साथ जल ऊर्जा संचयन ट्रांजिस्टर जैसी वास्तुकला वाले जनरेटर के डिजाइन द्वारा प्राप्त किया गया था।[14][15]
फोटोवोल्टिक
फोटोवोल्टिक (पीवी) ऊर्जा संचयन वायरलेस तकनीक वायर्ड या पूरी तरह से बैटरी चालित सेंसर समाधानों पर महत्वपूर्ण लाभ प्रदान करती है: कम या कोई प्रतिकूल पर्यावरणीय प्रभावों के साथ शक्ति के वस्तुतः अटूट स्रोत। इंडोर पीवी हार्वेस्टिंग समाधानों को आज तक विशेष रूप से ट्यून किए गए अनाकार सिलिकॉन (एएसआई) द्वारा संचालित किया गया है, जो सौर कैलकुलेटर में सबसे अधिक उपयोग की जाने वाली तकनीक है। हाल के वर्षों में डाई-संवेदीकृत सौर सेल (डाई-सेंसिटाइज़्ड सोलर सेल) जैसी ऊर्जा संचयन में नई पीवी प्रौद्योगिकियाँ सामने आई हैं। रंजक प्रकाश को अवशोषित करते हैं जैसे पौधों में क्लोरोफिल करता है। प्रभाव पर छोड़े गए इलेक्ट्रॉन टीआईओ की परत से निकल जाते हैं2 और वहां से इलेक्ट्रोलाइट के माध्यम से फैलता है, क्योंकि डाई को दृश्यमान स्पेक्ट्रम में ट्यून किया जा सकता है, बहुत अधिक शक्ति का उत्पादन किया जा सकता है। पर 200 lux एक डीएसएससी प्रदान कर सकता है 10 μW प्रति सेमी2</उप>।
पीजोइलेक्ट्रिक
पीजोइलेक्ट्रिक प्रभाव यांत्रिक तनाव (सामग्री विज्ञान) को विद्युत प्रवाह या वोल्टेज में परिवर्तित करता है। यह तनाव कई अलग-अलग स्रोतों से आ सकता है। मानव गति, कम आवृत्ति वाले भूकंपीय कंपन और ध्वनिक शोर रोज़मर्रा के उदाहरण हैं। दुर्लभ उदाहरणों को छोड़कर, पीजोइलेक्ट्रिक प्रभाव एसी में संचालित होता है, जिसके लिए कुशल होने के लिए यांत्रिक अनुनाद पर समय-भिन्न इनपुट की आवश्यकता होती है।
अधिकांश पीजोइलेक्ट्रिक बिजली स्रोत मिलिवाट के आदेश पर बिजली का उत्पादन करते हैं, जो सिस्टम एप्लिकेशन के लिए बहुत छोटा है, लेकिन कुछ व्यावसायिक रूप से उपलब्ध स्व-घुमावदार कलाई घड़ी जैसे हाथ से पकड़े जाने वाले उपकरणों के लिए पर्याप्त है। एक प्रस्ताव यह है कि उनका उपयोग सूक्ष्म पैमाने के उपकरणों के लिए किया जाता है, जैसे कि सूक्ष्म-हाइड्रोलिक ऊर्जा का संचयन करने वाले उपकरण में। इस उपकरण में, दबाव वाले हाइड्रोलिक द्रव का प्रवाह तीन पीजोइलेक्ट्रिक तत्वों द्वारा समर्थित एक प्रत्यागामी पिस्टन को चलाता है जो दबाव के उतार-चढ़ाव को एक प्रत्यावर्ती धारा में परिवर्तित करता है।
चूंकि 1990 के दशक के अंत से ही पीजो ऊर्जा संचयन की जांच की गई है,[16][17] यह एक उभरती हुई तकनीक बनी हुई है। फिर भी, आईएनएसए स्कूल ऑफ इंजीनियरिंग में स्व-संचालित इलेक्ट्रॉनिक स्विच के साथ कुछ दिलचस्प सुधार किए गए, जिसे स्पिन-ऑफ अरवेनी द्वारा कार्यान्वित किया गया। 2006 में, बैटरी-रहित वायरलेस डोरबेल पुश बटन की अवधारणा का प्रमाण बनाया गया था, और हाल ही में, एक उत्पाद ने दिखाया कि शास्त्रीय वायरलेस वॉलस्विच को पीजो हारवेस्टर द्वारा संचालित किया जा सकता है। अन्य औद्योगिक अनुप्रयोग 2000 और 2005 के बीच दिखाई दिए,[18] कंपन से ऊर्जा प्राप्त करना और उदाहरण के लिए सेंसर की आपूर्ति करना, या झटके से ऊर्जा प्राप्त करना।[19] पीजोइलेक्ट्रिक सिस्टम मानव शरीर से गति को विद्युत शक्ति में परिवर्तित कर सकता है। DARPA ने इम्प्लांटेबल या पहनने योग्य सेंसर के लिए निम्न स्तर की शक्ति के लिए पैर और बांह की गति, जूते के प्रभाव और रक्तचाप से ऊर्जा का दोहन करने के प्रयासों को वित्त पोषित किया है। नैनोब्रश पीजोइलेक्ट्रिक एनर्जी हारवेस्टर का एक और उदाहरण हैं।[20] उन्हें कपड़ों में एकीकृत किया जा सकता है। ऊर्जा-संचय उपकरण बनाने के लिए कई अन्य नैनोस्ट्रक्चर का उपयोग किया गया है, उदाहरण के लिए, एक एकल क्रिस्टल पीएमएन-पीटी नैनोबेल्ट को 2016 में एक पीजोइलेक्ट्रिक ऊर्जा हारवेस्टर में गढ़ा और इकट्ठा किया गया था।[21] उपयोगकर्ता की परेशानी को कम करने के लिए सावधानीपूर्वक डिजाइन की आवश्यकता है। ये ऊर्जा संचयन स्रोत संघ द्वारा शरीर को प्रभावित करते हैं। कंपन ऊर्जा अपमार्जन परियोजना[22] एक अन्य परियोजना है जो पर्यावरणीय कंपन और आंदोलनों से विद्युत ऊर्जा को निकालने की कोशिश करने के लिए स्थापित की गई है। श्वसन से बिजली इकट्ठा करने के लिए माइक्रोबेल्ट का उपयोग किया जा सकता है।[23] इसके अलावा, चूंकि मानव से गति का कंपन तीन दिशाओं में आता है, एक एकल पीजोइलेक्ट्रिक कैंटिलीवर आधारित ओमनी-डायरेक्शनल एनर्जी हारवेस्टर 1:2 आंतरिक अनुनाद का उपयोग करके बनाया जाता है।[24] अंत में, एक मिलीमीटर-स्केल पीजोइलेक्ट्रिक एनर्जी हारवेस्टर भी पहले ही बनाया जा चुका है।[25] पीजो तत्वों को वॉकवे में एम्बेड किया जा रहा है[26][27][28] लोगों की पदचाप की ऊर्जा को पुनर्प्राप्त करने के लिए। इन्हें जूतों में भी लगाया जा सकता है[29] चलने की ऊर्जा को पुनर्प्राप्त करने के लिए। MIT के शोधकर्ताओं ने 2005 में पतली फिल्म PZT का उपयोग करके पहला माइक्रो-स्केल पीजोइलेक्ट्रिक एनर्जी हारवेस्टर विकसित किया।[30] अरमान हाजती और सांग-गूक किम ने डबल क्लैम्प्ड माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम (एमईएमएस) गुंजयमान यंत्र की नॉनलाइनियर कठोरता का दोहन करके अल्ट्रा वाइड-बैंडविड्थ माइक्रो-स्केल पीजोइलेक्ट्रिक एनर्जी हार्वेस्टिंग डिवाइस का आविष्कार किया। डबल क्लैम्प्ड बीम में स्ट्रेचिंग स्ट्रेन एक नॉनलाइनियर कठोरता दिखाता है, जो एक निष्क्रिय प्रतिक्रिया प्रदान करता है और आयाम-कठोर डफिंग मोड अनुनाद में परिणाम देता है।[31] आमतौर पर, पीजोइलेक्ट्रिक कैंटिलीवर को उपर्युक्त ऊर्जा संचयन प्रणाली के लिए अपनाया जाता है। एक दोष यह है कि पीजोइलेक्ट्रिक कैंटिलीवर में ग्रेडिएंट स्ट्रेन डिस्ट्रीब्यूशन है, यानी पीजोइलेक्ट्रिक ट्रांसड्यूसर का पूरी तरह से उपयोग नहीं किया जाता है। इस मुद्दे को हल करने के लिए, समान तनाव वितरण के लिए त्रिकोण आकार और एल आकार के कैंटिलीवर प्रस्तावित हैं।[32][33][34] 2018 में, सोचो विश्वविद्यालय के शोधकर्ताओं ने एक आपसी इलेक्ट्रोड साझा करके एक ट्राइबोइलेक्ट्रिक प्रभाव नैनो जनरेटर और एक सिलिकॉन सौर सेल को संकरणित करने की सूचना दी। यह उपकरण सौर ऊर्जा एकत्र कर सकता है या बारिश की बूंदों की यांत्रिक ऊर्जा को बिजली में परिवर्तित कर सकता है।[35] ब्रिटेन की टेलीकॉम कंपनी ऑरेंज यूके ने एनर्जी हार्वेस्टिंग टी-शर्ट और बूट्स बनाए हैं।[when?] दूसरी कंपनियों ने भी ऐसा ही किया है।[36][37][importance?]
स्मार्ट सड़कों और पीजोइलेक्ट्रिकिटी से ऊर्जा
ब्रदर्स पियरे क्यूरी और जैक्स क्यूरी ने 1880 में पीजोइलेक्ट्रिक प्रभाव की अवधारणा दी।[38] पीजोइलेक्ट्रिक प्रभाव यांत्रिक तनाव को वोल्टेज या विद्युत प्रवाह में परिवर्तित करता है और गति, वजन, कंपन और तापमान परिवर्तन से विद्युत ऊर्जा उत्पन्न करता है जैसा कि चित्र में दिखाया गया है।
पतली फिल्म लेड जिरकोनेट टाइटेनेट में पीजोइलेक्ट्रिक प्रभाव को ध्यान में रखते हुए PZT, माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम (MEMS) पावर जनरेटिंग डिवाइस विकसित किया गया है। पीजोइलेक्ट्रिक प्रौद्योगिकी में हाल के सुधार के दौरान, अक्सा अब्बासी [39][40][41][42][43]) विभेदित दो विधाएँ कहलाती हैं और कंपन कन्वर्टर्स में और एक बाहरी कंपन ऊर्जा स्रोत से विशिष्ट आवृत्तियों पर प्रतिध्वनित करने के लिए फिर से डिज़ाइन किया गया, जिससे इलेक्ट्रोमैकेनिकल डैम्प्ड मास का उपयोग करके पीजोइलेक्ट्रिक प्रभाव के माध्यम से विद्युत ऊर्जा का निर्माण होता है।[44] हालांकि, अक्सा ने बीम-संरचित इलेक्ट्रोस्टैटिक उपकरणों को और विकसित किया है जो पीजेडटी एमईएमएस उपकरणों की तुलना में बनाना अधिक कठिन है क्योंकि सामान्य सिलिकॉन प्रसंस्करण में कई और मुखौटा चरण शामिल होते हैं जिन्हें पीजेडटी फिल्म की आवश्यकता नहीं होती है। piezoelectric टाइप सेंसर और प्रवर्तक में एक कैंटिलीवर बीम संरचना होती है जिसमें एक मेम्ब्रेन बॉटम इलेक्ट्रोड, फिल्म, पीजोइलेक्ट्रिक फिल्म और टॉप इलेक्ट्रोड होते हैं। इससे अधिक (3~5 masks) बहुत कम प्रेरित वोल्टेज होने पर प्रत्येक परत के पैटर्निंग के लिए मुखौटा चरणों की आवश्यकता होती है। पाइरोइलेक्ट्रिक क्रिस्टल जिसमें एक अद्वितीय ध्रुवीय अक्ष होता है और सहज ध्रुवीकरण होता है, जिसके साथ सहज ध्रुवीकरण मौजूद होता है। ये कक्षाओं के क्रिस्टल हैं 6mm, 4mm, mm2, 6, 4, 3m, 3,2, m. विशेष ध्रुवीय अक्ष-क्रिस्टलोफिजिकल अक्ष X3 - कुल्हाड़ियों के साथ मेल खाता है L6,L4, L3, और L2 क्रिस्टल के या अद्वितीय सीधे विमान में स्थित है P (class "m"). नतीजतन, धनात्मक और ऋणात्मक आवेशों के विद्युत केंद्र एक प्रारंभिक सेल के संतुलन की स्थिति से विस्थापित हो जाते हैं, अर्थात, क्रिस्टल परिवर्तनों का सहज ध्रुवीकरण। इसलिए, सभी माना क्रिस्टल में सहज ध्रुवीकरण होता है . तब से पाइरोइलेक्ट्रिक क्रिस्टल में पीजोइलेक्ट्रिक प्रभाव बाहरी प्रभावों (विद्युत क्षेत्र, यांत्रिक तनाव) के तहत उनके सहज ध्रुवीकरण में परिवर्तन के परिणामस्वरूप उत्पन्न होता है। विस्थापन के परिणामस्वरूप, अक्सा अब्बासी ने घटकों में परिवर्तन किया तीनों अक्षों के साथ . लगता है कि पहले सन्निकटन में पैदा होने वाले यांत्रिक तनावों के समानुपाती होता है, जिसके परिणामस्वरूप होता है कहाँ पे Tkl यांत्रिक तनाव का प्रतिनिधित्व करता है और dikl पीजोइलेक्ट्रिक मॉड्यूल का प्रतिनिधित्व करता है।[44]
PZT पतली फिल्मों ने बल सेंसर, accelerometers, जायरोस्कोप एक्ट्यूएटर्स, ट्यूनेबल ऑप्टिक्स, माइक्रो पंप, फेरोइलेक्ट्रिक रैम, डिस्प्ले सिस्टम और स्मार्ट रोड जैसे अनुप्रयोगों के लिए ध्यान आकर्षित किया है।[44]जब ऊर्जा स्रोत सीमित होते हैं, तो ऊर्जा संचयन पर्यावरण में महत्वपूर्ण भूमिका निभाता है। स्मार्ट सड़कों में बिजली उत्पादन में महत्वपूर्ण भूमिका निभाने की क्षमता है। सड़क में पीजोइलेक्ट्रिक सामग्री एम्बेड करने से वाहनों को वोल्टेज और करंट में ले जाकर दबाव डाला जा सकता है।[44]
स्मार्ट परिवहन बुद्धिमान प्रणाली
पीजोइलेक्ट्रिक सेंसर स्मार्ट-रोड प्रौद्योगिकियों में सबसे उपयोगी होते हैं जिनका उपयोग ऐसे सिस्टम बनाने के लिए किया जा सकता है जो बुद्धिमान हैं और लंबे समय में उत्पादकता में सुधार करते हैं। राजमार्गों की कल्पना करें जो ट्रैफिक जाम के बनने से पहले मोटर चालकों को सतर्क करते हैं। या पुल जो रिपोर्ट करते हैं जब उनके गिरने का खतरा होता है, या एक इलेक्ट्रिक ग्रिड जो ब्लैकआउट होने पर खुद को ठीक करता है। कई दशकों से, वैज्ञानिकों और विशेषज्ञों ने तर्क दिया है कि भीड़ से लड़ने का सबसे अच्छा तरीका बुद्धिमान परिवहन प्रणाली है, जैसे यातायात को मापने के लिए सड़क के किनारे सेंसर और वाहनों के प्रवाह को नियंत्रित करने के लिए सिंक्रनाइज़ ट्रैफिक लाइट। लेकिन इन तकनीकों का प्रसार लागत द्वारा सीमित किया गया है। कुछ अन्य स्मार्ट-प्रौद्योगिकी फावड़ा तैयार परियोजनाएं भी हैं जिन्हें काफी तेजी से तैनात किया जा सकता है, लेकिन अधिकांश प्रौद्योगिकियां अभी भी विकास के चरण में हैं और व्यावहारिक रूप से पांच साल या उससे अधिक के लिए उपलब्ध नहीं हो सकती हैं।[45] [needs update]
पायरोइलेक्ट्रिक
पाइरोइलेक्ट्रिक प्रभाव तापमान परिवर्तन को विद्युत प्रवाह या वोल्टेज में परिवर्तित करता है। यह पीजोइलेक्ट्रिक प्रभाव के अनुरूप है, जो फेरोइलेक्ट्रिक व्यवहार का एक अन्य प्रकार है। पाइरोइलेक्ट्रिकिटी को समय-भिन्न आदानों की आवश्यकता होती है और इसकी कम परिचालन आवृत्तियों के कारण ऊर्जा संचयन अनुप्रयोगों में छोटे बिजली उत्पादनों से पीड़ित होता है। हालांकि, थर्मोइलेक्ट्रिक्स पर पाइरोइलेक्ट्रिक्स का एक प्रमुख लाभ यह है कि कई पाइरोइलेक्ट्रिक सामग्री 1200 डिग्री सेल्सियस या उससे अधिक तक स्थिर होती हैं, जिससे उच्च तापमान स्रोतों से ऊर्जा संचयन होता है और इस प्रकार थर्मोडायनामिक दक्षता बढ़ती है।
अपशिष्ट ऊष्मा को सीधे बिजली में परिवर्तित करने का एक तरीका पाइरोइलेक्ट्रिक सामग्री पर ऑलसेन चक्र को क्रियान्वित करना है। ऑलसेन चक्र में विद्युत विस्थापन-विद्युत क्षेत्र (डी-ई) आरेख में दो समतापीय और दो समविद्युत क्षेत्र प्रक्रियाएं होती हैं। ऑलसेन चक्र का सिद्धांत एक संधारित्र को कम विद्युत क्षेत्र के तहत ठंडा करके चार्ज करना और उच्च विद्युत क्षेत्र में गर्म करने के तहत इसका निर्वहन करना है। चालन का उपयोग करके ऑलसेन चक्र को लागू करने के लिए कई पायरोइलेक्ट्रिक प्रभाव विकसित किए गए हैं,[46] संवहन,[47][48][49][50] या विकिरण।[51] यह भी सैद्धांतिक रूप से स्थापित किया गया है कि एक दोलनशील कार्यशील द्रव और ऑलसेन चक्र का उपयोग करके ताप पुनर्जनन पर आधारित पाइरोइलेक्ट्रिक रूपांतरण एक गर्म और ठंडे ताप जलाशय के बीच कार्नोट दक्षता तक पहुंच सकता है।[52] इसके अलावा, हाल के अध्ययनों ने पॉलीविनाइलिडीन फ्लोराइड ट्राइफ्लोरोएथिलीन [P(VDF-TrFE)] पॉलिमर की स्थापना की है[53] और लेड लेण्टेनियुम जिरकोनेट टाइटेनेट (PLZT) सिरेमिक[54] कम तापमान पर उत्पन्न होने वाली उनकी बड़ी ऊर्जा घनत्व के कारण ऊर्जा कन्वर्टर्स में उपयोग करने के लिए पायरोइलेक्ट्रिक सामग्री का वादा किया जाता है। इसके अतिरिक्त, एक पाइरोइलेक्ट्रिक मैला ढोने वाला उपकरण जिसे समय-भिन्न इनपुट की आवश्यकता नहीं होती है, हाल ही में पेश किया गया था। ऊर्जा-संचयन उपकरण क्रिस्टल-चेहरों से जुड़ी दो प्लेटों से विद्युत प्रवाह खींचने के बजाय ऊष्मा ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करने के लिए एक गर्म पायरोइलेक्ट्रिक के किनारे-विध्रुवण विद्युत क्षेत्र का उपयोग करता है।[55]
थर्मोइलेक्ट्रिक्स
1821 में, थॉमस जोहान सीबेक ने पाया कि दो अलग-अलग कंडक्टरों के बीच एक थर्मल ढाल एक वाल्टेज पैदा करता है। थर्मोइलेक्ट्रिक प्रभाव के केंद्र में तथ्य यह है कि एक चालक सामग्री में तापमान प्रवणता के परिणामस्वरूप गर्मी का प्रवाह होता है; इसका परिणाम आवेश वाहकों के प्रसार में होता है। बदले में गर्म और ठंडे क्षेत्रों के बीच आवेश वाहकों का प्रवाह एक वोल्टेज अंतर पैदा करता है। 1834 में, जीन चार्ल्स अथानेसे पेल्टियर ने पाया कि दो भिन्न कंडक्टरों के जंक्शन के माध्यम से एक विद्युत प्रवाह चलाना, वर्तमान की दिशा के आधार पर, इसे हीटर या कूलर के रूप में कार्य करने का कारण बन सकता है। अवशोषित या उत्पादित ऊष्मा धारा के समानुपाती होती है, और आनुपातिकता स्थिरांक को पेल्टियर गुणांक के रूप में जाना जाता है। आज, सीबेक और पेल्टियर प्रभावों के ज्ञान के कारण, थर्मोइलेक्ट्रिक सामग्री का उपयोग हीटर, कूलर और थर्मोजेनरेटर (टीईजी) के रूप में किया जा सकता है।
आदर्श थर्मोइलेक्ट्रिक सामग्री में उच्च सीबेक गुणांक, उच्च विद्युत चालकता और कम तापीय चालकता होती है। जंक्शन पर उच्च तापीय प्रवणता बनाए रखने के लिए कम तापीय चालकता आवश्यक है। आज निर्मित मानक थर्मोइलेक्ट्रिक मॉड्यूल में पी- और एन-डोप्ड बिस्मथ-टेलुराइड अर्धचालक होते हैं जो दो धातुकृत सिरेमिक प्लेटों के बीच सैंडविच होते हैं। सिरेमिक प्लेटें सिस्टम में कठोरता और विद्युत इन्सुलेशन जोड़ती हैं। अर्धचालक विद्युत रूप से श्रृंखला में और तापीय रूप से समानांतर में जुड़े होते हैं।
लघु थर्मोक्यूल्स विकसित किए गए हैं जो शरीर की गर्मी को बिजली में परिवर्तित करते हैं और 5-डिग्री के साथ 3 वोल्ट पर 40 माइक्रो-|μ वाट उत्पन्न करते हैं तापमान ढाल, जबकि पैमाने के दूसरे छोर पर, परमाणु रेडियो आइसोटोप थर्मोइलेक्ट्रिक जनरेटर बैटरी में बड़े थर्मोकपल का उपयोग किया जाता है।
व्यावहारिक उदाहरण होल्स्ट सेंटर द्वारा फिंगर-हार्टट्रेमीटर और फ्राउनहोफर-गेसेलशाफ्ट द्वारा थर्मोजेनरेटर हैं।[56][57] थर्मोइलेक्ट्रिक्स के लाभ:
- कोई हिलता हुआ भाग कई वर्षों तक निरंतर संचालन की अनुमति नहीं देता है।
- थर्मोइलेक्ट्रिक्स में ऐसी कोई सामग्री नहीं होती है जिसे फिर से भरना चाहिए।
- ताप और शीतलन को उलटा किया जा सकता है।
थर्मोइलेक्ट्रिक ऊर्जा रूपांतरण का एक नकारात्मक पक्ष कम दक्षता (वर्तमान में 10% से कम) है। ऐसी सामग्रियों का विकास जो उच्च तापमान प्रवणताओं में संचालित करने में सक्षम हैं, और जो गर्मी का संचालन किए बिना भी अच्छी तरह से बिजली का संचालन कर सकती हैं (ऐसा कुछ जो हाल ही में असंभव माना जाता था)[citation needed]), दक्षता में वृद्धि होगी।
थर्मोइलेक्ट्रिक्स में भविष्य का काम व्यर्थ गर्मी को परिवर्तित करना हो सकता है, जैसे कि ऑटोमोबाइल इंजन दहन में, बिजली में।
इलेक्ट्रोस्टैटिक (कैपेसिटिव)
इस प्रकार की कटाई कंपन-निर्भर कैपेसिटर की बदलती धारिता पर आधारित है। कंपन एक आवेशित चर संधारित्र की प्लेटों को अलग करते हैं, और यांत्रिक ऊर्जा विद्युत ऊर्जा में परिवर्तित हो जाती है। इलेक्ट्रोस्टैटिक एनर्जी हार्वेस्टर को काम करने और यांत्रिक ऊर्जा को कंपन से बिजली में बदलने के लिए एक ध्रुवीकरण स्रोत की आवश्यकता होती है। ध्रुवीकरण स्रोत कुछ सैकड़ों वोल्ट के क्रम में होना चाहिए; यह बिजली प्रबंधन सर्किट को बहुत जटिल बनाता है। एक अन्य समाधान में इलेक्ट्रेट का उपयोग करना शामिल है, जो विद्युत रूप से चार्ज किए गए डाइलेक्ट्रिक्स हैं जो कैपेसिटर पर ध्रुवीकरण को वर्षों तक बनाए रखने में सक्षम हैं। शास्त्रीय इलेक्ट्रोस्टैटिक इंडक्शन जनरेटर से संरचनाओं को अनुकूलित करना संभव है, जो इस उद्देश्य के लिए चर समाई से ऊर्जा भी निकालते हैं। परिणामी उपकरण स्व-पक्षपाती हैं, और सीधे बैटरी चार्ज कर सकते हैं, या स्टोरेज कैपेसिटर पर तेजी से बढ़ते वोल्टेज का उत्पादन कर सकते हैं, जिससे समय-समय पर डीसी / डीसी कन्वर्टर्स द्वारा ऊर्जा निकाली जा सकती है।[58]
चुंबकीय प्रेरण
चुंबकीय प्रेरण एक बदलते चुंबकीय क्षेत्र में वैद्युतवाहक बल (यानी वोल्टेज) के उत्पादन को संदर्भित करता है। यह बदलते चुंबकीय क्षेत्र को गति द्वारा बनाया जा सकता है, या तो रोटेशन (यानी विगेंड प्रभाव और विगैंड सेंसर) या रैखिक गति (यानी कंपन)।[59] कैंटिलीवर पर डगमगाने वाले चुंबक छोटे-छोटे कंपनों के प्रति भी संवेदनशील होते हैं और फैराडे के प्रेरण के नियम के कारण कंडक्टरों के सापेक्ष गति करके माइक्रोक्यूरेंट्स उत्पन्न करते हैं। 2007 में इस तरह के एक लघु उपकरण को विकसित करके, साउथेम्प्टन विश्वविद्यालय की एक टीम ने ऐसे वातावरण में ऐसे उपकरण का रोपण संभव बनाया जो बाहरी दुनिया से किसी भी तरह के बिजली के कनेक्शन को रोकता है। दुर्गम स्थानों में सेंसर अब अपनी शक्ति उत्पन्न कर सकते हैं और डेटा को बाहरी रिसीवरों तक पहुंचा सकते हैं।[60] साउथेम्प्टन विश्वविद्यालय में विकसित चुंबकीय कंपन ऊर्जा हारवेस्टर की प्रमुख सीमाओं में से एक जनरेटर का आकार है, इस मामले में लगभग एक घन सेंटीमीटर, जो आज की मोबाइल प्रौद्योगिकियों में एकीकृत करने के लिए बहुत बड़ा है। सर्किट्री सहित पूरा जनरेटर 4 सेमी x 4 सेमी x 1 सेमी का विशाल है[60]आईपोड नैनो जैसे कुछ मोबाइल उपकरणों के आकार के लगभग समान। कैंटिलीवर बीम घटक के रूप में नई और अधिक लचीली सामग्रियों के एकीकरण के माध्यम से आयामों में और कमी संभव है। 2012 में, नॉर्थवेस्टर्न यूनिवर्सिटी के एक समूह ने वसंत के रूप में बहुलक से कंपन-संचालित जनरेटर विकसित किया।[61] यह डिवाइस साउथेम्प्टन विश्वविद्यालय के सिलिकॉन आधारित डिवाइस के समान आवृत्तियों को लक्षित करने में सक्षम था, लेकिन बीम घटक के एक तिहाई आकार के साथ।
फेरोफ्लुइड्स का उपयोग करके चुंबकीय प्रेरण आधारित ऊर्जा संचयन के लिए एक नया दृष्टिकोण भी प्रस्तावित किया गया है। जर्नल लेख, इलेक्ट्रोमैग्नेटिक फेरोफ्लुइड-आधारित एनर्जी हारवेस्टर, ~80 mW प्रति ग्राम के पावर आउटपुट के साथ 2.2 Hz पर कम आवृत्ति कंपन ऊर्जा प्राप्त करने के लिए फेरोफ्लुइड्स के उपयोग पर चर्चा करता है।[62] हाल ही में, तनाव के अनुप्रयोग के साथ डोमेन वॉल पैटर्न में बदलाव को चुंबकीय प्रेरण का उपयोग करके ऊर्जा की कटाई के तरीके के रूप में प्रस्तावित किया गया है। इस अध्ययन में, लेखकों ने दिखाया है कि लागू तनाव माइक्रोवेयर्स में डोमेन पैटर्न को बदल सकता है। परिवेश कंपन माइक्रोवायरों में तनाव पैदा कर सकता है, जो डोमेन पैटर्न में बदलाव को प्रेरित कर सकता है और इसलिए प्रेरण को बदल सकता है। शक्ति, uW/cm2 के क्रम की रिपोर्ट की गई है।[63] चुंबकीय प्रेरण पर आधारित व्यावसायिक रूप से सफल कंपन ऊर्जा हार्वेस्टर अभी भी अपेक्षाकृत कम संख्या में हैं। उदाहरणों में स्वीडिश कंपनी ReVibe Energy द्वारा विकसित उत्पाद शामिल हैं, जो साब समूह की एक प्रौद्योगिकी स्पिन-आउट है। एक अन्य उदाहरण पेरपेटुम द्वारा साउथेम्प्टन प्रोटोटाइप के शुरुआती विश्वविद्यालय से विकसित उत्पाद हैं। वायरलेस सेंसर नोड्स (WSN) द्वारा आवश्यक शक्ति उत्पन्न करने के लिए इन्हें पर्याप्त रूप से बड़ा होना चाहिए, लेकिन M2M अनुप्रयोगों में यह सामान्य रूप से कोई समस्या नहीं है। ये हार्वेस्टर अब GE और Emerson जैसी कंपनियों द्वारा बनाए गए WSN को बिजली देने के लिए और Perpetuum द्वारा बनाए गए ट्रेन बेयरिंग मॉनिटरिंग सिस्टम के लिए भी बड़ी मात्रा में आपूर्ति किए जा रहे हैं। वायरलेस पावरलाइन सेंसर चुंबकीय प्रेरण का उपयोग सीधे उस कंडक्टर से ऊर्जा प्राप्त करने के लिए कर सकता है जिसकी वे निगरानी कर रहे हैं।[64][65]
रक्त शर्करा
रक्त शर्करा के ऑक्सीकरण के माध्यम से ऊर्जा संचयन का एक अन्य तरीका है। इन एनर्जी हार्वेस्टर को बायोबैटरी कहा जाता है। उनका उपयोग प्रत्यारोपित इलेक्ट्रॉनिक उपकरणों (जैसे, पेसमेकर, मधुमेह रोगियों के लिए प्रत्यारोपित बायोसेंसर, प्रत्यारोपित सक्रिय आरएफआईडी उपकरण, आदि) के लिए किया जा सकता है। वर्तमान में, सेंट लुइस यूनिवर्सिटी के मिंटियर ग्रुप ने ऐसे एंजाइम बनाए हैं जिनका उपयोग रक्त शर्करा से शक्ति उत्पन्न करने के लिए किया जा सकता है। हालाँकि, कुछ वर्षों के बाद भी एंजाइमों को बदलने की आवश्यकता होगी।[66] 2012 में, एक पेसमेकर को डॉ. एवगेनी काट्ज़ के नेतृत्व में क्लार्कसन विश्वविद्यालय में प्रत्यारोपण योग्य जैव ईंधन कोशिकाओं द्वारा संचालित किया गया था।[67]
ट्री-आधारित
ट्री मेटाबॉलिक एनर्जी हार्वेस्टिंग एक प्रकार की बायो-एनर्जी हार्वेस्टिंग है। वोल्ट्री ने पेड़ों से ऊर्जा प्राप्त करने की एक विधि विकसित की है। जंगल में आग और मौसम की निगरानी के लिए दीर्घकालिक परिनियोजन प्रणाली के आधार के रूप में इन ऊर्जा हार्वेस्टर का उपयोग रिमोट सेंसर और जाल नेटवर्क को बिजली देने के लिए किया जा रहा है। वोल्ट्री की वेबसाइट के अनुसार, ऐसे उपकरण का उपयोगी जीवन केवल उस पेड़ के जीवनकाल तक ही सीमित होना चाहिए जिससे वह जुड़ा हुआ है। एक छोटा परीक्षण नेटवर्क हाल ही में यूएस नेशनल पार्क फ़ॉरेस्ट में तैनात किया गया था।[68] पेड़ों से ऊर्जा के अन्य स्रोतों में एक जनरेटर में पेड़ की भौतिक गति को कैप्चर करना शामिल है। ऊर्जा के इस स्रोत का सैद्धांतिक विश्लेषण छोटे इलेक्ट्रॉनिक उपकरणों को शक्ति देने में कुछ वादा दिखाता है।[69] इस सिद्धांत पर आधारित एक व्यावहारिक उपकरण बनाया गया है और एक वर्ष के लिए सेंसर नोड को सफलतापूर्वक संचालित किया गया है।[70]
मेटामटेरियल
मेटामटेरियल-आधारित डिवाइस वायरलेस रूप से 900 मेगाहर्ट्ज माइक्रोवेव सिग्नल को 7.3 वोल्ट एकदिश धारा (यूएसबी डिवाइस से अधिक) में परिवर्तित करता है। डिवाइस को वाई-फाई सिग्नल, सैटेलाइट सिग्नल, या यहां तक कि ध्वनि सिग्नल सहित अन्य संकेतों को काटने के लिए ट्यून किया जा सकता है। प्रायोगिक उपकरण में पांच शीसे रेशा और तांबे के कंडक्टरों की एक श्रृंखला का उपयोग किया गया था। रूपांतरण दक्षता 37 प्रतिशत तक पहुंच गई। जब पारंपरिक एंटेना अंतरिक्ष में एक दूसरे के करीब होते हैं तो वे एक दूसरे के साथ हस्तक्षेप करते हैं।[71][72][73] लेकिन चूँकि RF शक्ति दूरी के घन से कम हो जाती है, इसलिए शक्ति की मात्रा बहुत कम होती है। जबकि 7.3 वोल्ट का दावा बड़ा है, माप एक खुले सर्किट के लिए है। चूंकि बिजली इतनी कम है, जब कोई भार जुड़ा होता है तो लगभग कोई करंट नहीं हो सकता है।
वायुमंडलीय दबाव में परिवर्तन
तापमान परिवर्तन और मौसम के पैटर्न से समय के साथ वातावरण का दबाव स्वाभाविक रूप से बदलता है। सीलबंद कक्ष वाले उपकरण ऊर्जा निकालने के लिए इन दबाव अंतरों का उपयोग कर सकते हैं। इसका उपयोग यांत्रिक घड़ियों जैसे एटमोस घड़ी के लिए शक्ति प्रदान करने के लिए किया गया है।
महासागरीय ऊर्जा
ऊर्जा उत्पादन की एक अपेक्षाकृत नई अवधारणा महासागरों से ऊर्जा उत्पन्न करना है। ग्रह पर पानी का विशाल द्रव्यमान मौजूद है जो अपने साथ बड़ी मात्रा में ऊर्जा ले जाता है। इस मामले में ऊर्जा ज्वार की धाराओं, समुद्र की लहरों, लवणता में अंतर और तापमान में अंतर से उत्पन्न हो सकती है। As of 2018[update], इस तरह से ऊर्जा का संचयन करने के प्रयास चल रहे हैं। यूनाइटेड स्टेट्स नेवी हाल ही में समुद्र में मौजूद तापमान में अंतर का उपयोग करके बिजली उत्पन्न करने में सक्षम थी।[74] महासागर में थर्मोकलाइन के विभिन्न स्तरों पर तापमान के अंतर का उपयोग करने का एक तरीका थर्मल एनर्जी हारवेस्टर का उपयोग करना है जो एक ऐसी सामग्री से लैस है जो विभिन्न तापमान क्षेत्रों में चरण बदलता है। यह आमतौर पर एक बहुलक-आधारित सामग्री है जो प्रतिवर्ती ताप उपचारों को संभाल सकती है। जब सामग्री चरण बदल रही है, ऊर्जा अंतर यांत्रिक ऊर्जा में परिवर्तित हो जाता है।[75] थर्मोकलाइन पानी के नीचे की स्थिति के आधार पर, उपयोग की जाने वाली सामग्रियों को चरणों को तरल से ठोस में बदलने में सक्षम होने की आवश्यकता होगी।[76] तापीय ऊर्जा संचयन इकाइयों के भीतर ये चरण परिवर्तन सामग्री एक मानव रहित पानी के नीचे के वाहन (यूयूवी) को रिचार्ज या पावर करने का एक आदर्श तरीका होगा क्योंकि यह पानी के बड़े निकायों में पहले से मौजूद गर्म और ठंडे पानी पर निर्भर करेगा; मानक बैटरी रिचार्जिंग की आवश्यकता को कम करना। इस ऊर्जा पर कब्जा करने से लंबी अवधि के मिशन की अनुमति मिल जाएगी क्योंकि संग्रह करने या चार्ज करने के लिए वापस आने की आवश्यकता को समाप्त किया जा सकता है।[77] यह भी पानी के नीचे के वाहनों को बिजली देने का एक बहुत ही पर्यावरण के अनुकूल तरीका है। चरण परिवर्तन तरल पदार्थ का उपयोग करने से कोई उत्सर्जन नहीं होता है, और मानक बैटरी की तुलना में इसकी लंबी अवधि की संभावना होगी।
भविष्य की दिशाएं
विद्युत सक्रिय पॉलिमर (ईएपी) को ऊर्जा कटाई के लिए प्रस्तावित किया गया है। इन पॉलिमर का एक बड़ा तनाव, लोचदार ऊर्जा घनत्व, और उच्च ऊर्जा रूपांतरण क्षमता है। ईएपी (इलेक्ट्रोएक्टिव पॉलीमर) पर आधारित सिस्टम का कुल वजन पीजोइलेक्ट्रिक सामग्री पर आधारित सिस्टम की तुलना में काफी कम होना प्रस्तावित है।
नैनोजेनरेटर जैसे कि जॉर्जिया टेक द्वारा बनाया गया, बैटरी के बिना विद्युत चलाने वाले उपकरणों के लिए एक नया तरीका उपलब्ध करा सकता है।[78] वर्ष 2008 तक, यह केवल कुछ दर्जन नैनोवाट उत्पन्न करता है, जो किसी भी व्यावहारिक अनुप्रयोग के लिए बहुत कम है।
शोर इटली में एनआईपीएस प्रयोगशाला द्वारा एक गैर-रैखिक गतिशील तंत्र के माध्यम से व्यापक स्पेक्ट्रम कम पैमाने के कंपन को फसल करने के प्रस्ताव का विषय रहा है जो परंपरागत रैखिक हार्वेस्टर की तुलना में एक कारक 4 तक हारवेस्टर दक्षता में सुधार कर सकता है।[79]
विभिन्न प्रकार के[80] ऊर्जा हारवेटरों के संयोजन, बैटरियों पर निर्भरता को कम कर सकते हैं, विशेषकर वातावरणों में जहां उपलब्ध परिवेश ऊर्जा के प्रकार समय-समय पर बदलते रहते हैं। इस प्रकार के पूरक संतुलित ऊर्जा संचयन में बेतार संवेदक प्रणालियों की संरचनात्मक स्वास्थ्य निगरानी की विश्वसनीयता बढ़ाने की क्षमता है।[81]
यह भी देखें
- हवाई पवन ऊर्जा
- ऑटोमोटिव थर्मोइलेक्ट्रिक जनरेटर
- एनओसियन
- भविष्य ऊर्जा विकास
- IEEE 802.15 अल्ट्रा वाइड बैंड (UWB)
- ऊर्जा संसाधनों की सूची
- ऊर्जा की रूपरेखा
- परजीवी भार (बहुविकल्पी)
- रीयल-टाइम लोकेटिंग सिस्टम (आरटीएल)
- रिचार्जेबल बैटरी
- रेक्टेना
- सौर ऊजॅा से चॉर्ज करने वाला
- थर्मोअकॉस्टिक हीट इंजन
- थर्मोइलेक्ट्रिक जनरेटर
- सर्वव्यापी सेंसर नेटवर्क
- मानव रहित हवाई वाहनों को ऊर्जा संचयन द्वारा संचालित किया जा सकता है
- वायरलेस पावर ट्रांसफर
संदर्भ
- ↑ Guler U, Sendi M.S.E, Ghovanloo, M, dual-mode passive rectifier for wide-range input power flow, IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2017.
- ↑ Tate, Joseph (1989). "The Amazing Ambient Power Module". Ambient Research. Retrieved 16 January 2008.
- ↑ "Architectures for Vibration-Driven Micropower Generators, P. D. Mitcheson, T. C. Green, E. M. Yeatman, A. S. Holmes"
- ↑ ik, batterij by Erick Vermeulen, NatuurWetenschap & Techniek January 2008
- ↑ 5.0 5.1 Munir, Bilal; Vladimir Dyo (2018). "On the Impact of Mobility on Battery-Less RF Energy Harvesting System Performance". Sensors. 18 (11): 3597. Bibcode:2018Senso..18.3597M. doi:10.3390/s18113597. PMC 6263956. PMID 30360501.
- ↑ Energy Harvester Produces Power from Local Environment, Eliminating Batteries in Wireless Sensors
- ↑ 7.0 7.1 X. Kang et al. Full-Duplex Wireless-Powered Communication Network With Energy Causality, in IEEE Transactions on Wireless Communications, vol.14, no.10, pp.5539–5551, Oct. 2015.
- ↑ Wireless Power Transmission for Consumer Electronics and Electric Vehicles 2012–2022. IDTechEx. Retrieved on 9 December 2013.
- ↑ Inventor Joe Tate's Ambient Power Module converts radio frequencies to usable electrical power (albeit only milliwatts) sufficient to operate clocks, smoke alarms, Ni-Cd battery chargers, &c.
- ↑ Electronic Device Which is Powered By Actuation Of Manual Inputs, US Patent no. 5,838,138
- ↑ Percy, Steven; Chris Knight; Francis Cooray; Ken Smart (2012). "Supplying the Power Requirements to a Sensor Network Using Radio Frequency Power Transfer". Sensors. 12 (7): 8571–8585. Bibcode:2012Senso..12.8571P. doi:10.3390/s120708571. PMC 3444064. PMID 23012506.
- ↑ "Zephyr Energy | Windbeam | | Zephyr Energy Corporation's patented Windbeam micro generator captures energy from airflow to recharge batteries and power electronic devices.Zephyr Energy | Windbeam | | Zephyr Energy Corporation's patented Windbeam micro generator captures energy from airflow to recharge batteries and power electronic devices".
- ↑ Clockwork pacemaker
- ↑ Xu, Wanghuai; Zheng, Huanxi; Liu, Yuan; Zhou, Xiaofeng; Zhang, Chao; Song, Yuxin; Deng, Xu; Leung, Michael; Yang, Zhengbao; Xu, Ronald X.; Wang, Zhong Lin (2020-02-20). "A droplet-based electricity generator with high instantaneous power density". Nature (in English). 578 (7795): 392–396. Bibcode:2020Natur.578..392X. doi:10.1038/s41586-020-1985-6. ISSN 0028-0836. PMID 32025037. S2CID 211039203.
- ↑ Xu, Wanghuai; Wang, Zuankai (2020-12-16). "Fusion of Slippery Interfaces and Transistor-Inspired Architecture for Water Kinetic Energy Harvesting". Joule (in English). 4 (12): 2527–2531. doi:10.1016/j.joule.2020.09.007. ISSN 2542-4785. S2CID 225133444.
- ↑ White, N.M.; Glynne-Jones, P.; Beeby, S.P. (2001). "A novel thick-film piezoelectric micro-generator" (PDF). Smart Materials and Structures. 10 (4): 850–852. Bibcode:2001SMaS...10..850W. doi:10.1088/0964-1726/10/4/403. S2CID 250886430.
- ↑ Kymissis, John (1998). "Parasitic power harvesting in shoes". Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215). pp. 132–139. CiteSeerX 10.1.1.11.6175. doi:10.1109/ISWC.1998.729539. ISBN 978-0-8186-9074-7. S2CID 56992.
{{cite book}}
:|journal=
ignored (help) - ↑ energy harvesting industrial realisations
- ↑ Horsley, E.L.; Foster, M.P.; Stone, D.A. (September 2007). "State-of-the-art Piezoelectric Transformer technology". 2007 European Conference on Power Electronics and Applications: 1–10. doi:10.1109/EPE.2007.4417637. S2CID 15071261.
- ↑ Zhong Lin Wang's nanobrushes
- ↑ Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan (1 March 2016). "Energy scavenging based on a single-crystal PMN-PT nanobelt". Scientific Reports (in English). 6: 22513. Bibcode:2016NatSR...622513W. doi:10.1038/srep22513. ISSN 2045-2322. PMC 4772540. PMID 26928788.
- ↑ VIBES Project
- ↑ Electricity from the nose
- ↑ Xu, J.; Tang, J. (23 November 2015). "Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance". Applied Physics Letters. 107 (21): 213902. Bibcode:2015ApPhL.107u3902X. doi:10.1063/1.4936607. ISSN 0003-6951.
- ↑ Millimter-scale piezoelectric energy harvester
- ↑ ""Japan: Producing Electricity from Train Station Ticket Gates"". Archived from the original on 9 July 2007. Retrieved 18 June 2007.
- ↑ Powerleap tiles as piezoelectric energy harvesting machines
- ↑ "Commuter-generated electricity"
- ↑ "Energy Scavenging with Shoe-Mounted Piezoelectrics" (PDF). Archived from the original (PDF) on 9 April 2011. Retrieved 9 February 2010.
- ↑ Jeon, Y.B.; Sood, R.; Kim, S.-G. (2005). "MEMS power generator with transverse mode thin film PZT". Sensors and Actuators A: Physical. 122: 16–22. doi:10.1016/j.sna.2004.12.032.
- ↑ Ultra-wide bandwidth piezoelectric energy harvesting Archived 15 May 2016 at the Portuguese Web Archive
- ↑ Baker, Jessy; Roundy, Shad; Wright, Paul (2005). "Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks". 3rd International Energy Conversion Engineering Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2005-5617. ISBN 978-1-62410-062-8.
- ↑ Xu, Jia Wen; Liu, Yong Bing; Shao, Wei Wei; Feng, Zhihua (2012). "Optimization of a right-angle piezoelectric cantilever using auxiliary beams with different stiffness levels for vibration energy harvesting". Smart Materials and Structures (in English). 21 (6): 065017. Bibcode:2012SMaS...21f5017X. doi:10.1088/0964-1726/21/6/065017. ISSN 0964-1726. S2CID 110609918.
- ↑ Goldschmidtboeing, Frank; Woias, Peter (2008). "Characterization of different beam shapes for piezoelectric energy harvesting". Journal of Micromechanics and Microengineering (in English). 18 (10): 104013. Bibcode:2008JMiMi..18j4013G. doi:10.1088/0960-1317/18/10/104013. ISSN 0960-1317. S2CID 108840395.
- ↑ Zyga, Lisa (8 March 2018). "Energy harvester collects energy from sunlight and raindrops". phys.org. Retrieved 10 March 2018.
- ↑ "T-shirts that charge phones to be tested at UK's Glastonbury Festival". The Advertiser. 21 June 2011.
- ↑ "A shirt you wear can charge your phone!!! Wondering how?". GCC Business News.
- ↑ Jacques and Pierre Curie (1880) "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées" (Development, via compression, of electric polarization in hemihedral crystals with inclined faces), Bulletin de la Société minérologique de France, vol. 3, pages 90 – 93. Reprinted in: Jacques and Pierre Curie (1880) Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Comptes rendus ... , vol. 91, pages 294 – 295. See also: Jacques and Pierre Curie (1880) "Sur l'électricité polaire dans les cristaux hémièdres à faces inclinées" (On electric polarization in hemihedral crystals with inclined faces), Comptes rendus ... , vol. 91, pages 383 – 386.
- ↑ "Aqsa Aitbar, Director Media at Hyderabad Model United Nation". Archived from the original on 9 June 2015. Retrieved 3 May 2015.
- ↑ Abbasi, Aqsa. IPI Beta indexing, Piezoelectric Materials and Piezoelectric Smart roads
- ↑ "Aqsa Abbasi at 29th IEEEP students research seminar". MUET. Retrieved 9 July 2014.
- ↑ "Aqsa Aitbar, an Organizer of Synergy14' event 2014". MUET. Retrieved 9 July 2014.
- ↑ "Aqsa Abbasi in Mehran Techno-wizard convention 2013, MTC'13". MUET. Retrieved 9 July 2014.
- ↑ 44.0 44.1 44.2 44.3 Abbasi, Aqsa. "Application of Piezoelectric Materials and Piezoelectric Network for Smart Roads." International Journal of Electrical and Computer Engineering (IJECE) Vol.3, No.6 (2013), pp. 857–862.
- ↑ "Smart Highways and intelligent transportation". Archived from the original on 20 July 2014. Retrieved 9 July 2014.
- ↑ Lee, Felix Y.; Navid, Ashcon; Pilon, Laurent (2012). "Pyroelectric waste heat energy harvesting using heat conduction". Applied Thermal Engineering. 37: 30–37. doi:10.1016/j.applthermaleng.2011.12.034. S2CID 12022162.
- ↑ Olsen, Randall B.; Briscoe, Joseph M.; Bruno, David A.; Butler, William F. (1981). "A pyroelectric energy converter which employs regeneration". Ferroelectrics. 38 (1): 975–978. Bibcode:1981Fer....38..975O. doi:10.1080/00150198108209595.
- ↑ Olsen, R. B.; Bruno, D. A.; Briscoe, J. M.; Dullea, J. (1984). "Cascaded pyroelectric energy converter". Ferroelectrics. 59 (1): 205–219. Bibcode:1984Fer....59..205O. doi:10.1080/00150198408240091.
- ↑ Nguyen, Hiep; Navid, Ashcon; Pilon, Laurent (2010). "Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting". Applied Thermal Engineering. 30 (14–15): 2127–2137. doi:10.1016/j.applthermaleng.2010.05.022.
- ↑ Moreno, R.C.; James, B.A.; Navid, A.; Pilon, L. (2012). "Pyroelectric Energy Converter For Harvesting Waste Heat: Simulations versus Experiments". International Journal of Heat and Mass Transfer. 55 (15–16): 4301–4311. doi:10.1016/j.ijheatmasstransfer.2012.03.075.
- ↑ Fang, J.; Frederich, H.; Pilon, L. (2010). "Harvesting nanoscale thermal radiation using pyroelectric materials". Journal of Heat Transfer. 132 (9): 092701. doi:10.1115/1.4001634.
- ↑ Olsen, Randall B.; Bruno, David A.; Briscoe, Joseph M.; Jacobs, Everett W. (1985). "Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer". Journal of Applied Physics. 57 (11): 5036–5042. Bibcode:1985JAP....57.5036O. doi:10.1063/1.335280.
- ↑ A. Navid and L. Pilon (2011), "Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifuoroethylene) thin films", Smart Materials and Structures, vol. 20, no. 2, pp. 025012.
- ↑ F.Y. Lee, S. Goljahi, I. McKinley, C.S. Lynch, and L. Pilon (2012), "Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle", Smart Materials and Structures, vol. 21, no. 2, pp. 025021.
- ↑ "Pyroelectric Energy Scavenger". Archived from the original on 8 August 2008. Retrieved 7 August 2008.
- ↑ Fraunhofer Thermogenerator 1
- ↑ 15mW thermogenerator by Fraunhofer-Gesellschaft
- ↑ IEEE Xplore – The Doubler of Electricity Used as Battery Charger. Ieeexplore.ieee.org. Retrieved on 9 December 2013.
- ↑ "Energy Harvesting Technologies for IoT Edge Devices". Electronic Devices & Networks Annex. July 2018.
- ↑ 60.0 60.1 "Good vibes power tiny generator." BBC News. 5 July 2007.
- ↑ "Polymer Vibration-Powered Generator" Hindawi Publishing Corporation. 13 March 2012.
- ↑ Bibo, A.; Masana, R.; King, A.; Li, G.; Daqaq, M.F. (June 2012). "Electromagnetic ferrofluid-based energy harvester". Physics Letters A. 376 (32): 2163–2166. Bibcode:2012PhLA..376.2163B. doi:10.1016/j.physleta.2012.05.033.
- ↑ Bhatti, Sabpreet; Ma, Chuang; Liu, Xiaoxi; Piramanayagam, S. N. (2019). "Stress-Induced Domain Wall Motion in Fe Co-Based Magnetic Microwires for Realization of Energy Harvesting". Advanced Electronic Materials. 5: 1800467. doi:10.1002/aelm.201800467.
- ↑ Christian Bach. "Power Line Monitoring for Energy Demand Control, Application note 308" (PDF). EnOcean. Retrieved 1 June 2013.
- ↑ Yi Yang; Divan, D.; Harley, R. G.; Habetler, T. G. (2006). "Power line sensornet – a new concept for power grid monitoring". 2006 IEEE Power Engineering Society General Meeting. pp. 8 pp. doi:10.1109/PES.2006.1709566. ISBN 978-1-4244-0493-3. S2CID 42150653.
- ↑ The power within, by Bob Holmes, New Scientist, 25 August 2007
- ↑ K. MacVittie, J. Halamek, L. Halamakova, M. Southcott, W. Jemison, E. Katz, "From "Cyborg" Lobsters to a Pacemaker Powered by Implantable Biofuel Cells", Energy & Environmental Science, 2013, 6, 81–86
- ↑ "Voltree's Website"
- ↑ McGarry, Scott; Knight, Chris (28 September 2011). "The Potential for Harvesting Energy from the Movement of Trees". Sensors. 11 (10): 9275–9299. Bibcode:2011Senso..11.9275M. doi:10.3390/s111009275. PMC 3231266. PMID 22163695.
- ↑ McGarry, Scott; Knight, Chris (4 September 2012). "Development and Successful Application of a Tree Movement Energy Harvesting Device, to Power a Wireless Sensor Node". Sensors. 12 (9): 12110–12125. Bibcode:2012Senso..1212110M. CiteSeerX 10.1.1.309.8093. doi:10.3390/s120912110. PMC 3478830. S2CID 10736694.
- ↑ Wireless device converts "lost" microwave energy into electric power. KurzweilAI. Retrieved on 9 December 2013.
- ↑ Power-harvesting device converts microwave signals into electricity. Gizmag.com. Retrieved on 9 December 2013.
- ↑ Hawkes, A. M.; Katko, A. R.; Cummer, S. A. (2013). "A microwave metamaterial with integrated power harvesting functionality" (PDF). Applied Physics Letters. 103 (16): 163901. Bibcode:2013ApPhL.103p3901H. doi:10.1063/1.4824473. hdl:10161/8006.
- ↑ "Ocean Thermal Energy Conversion – Energy Explained, Your Guide to Understanding Energy – Energy Information Administration".
- ↑ Ma, Z., Wang, Y., Wang, S., & Yang, Y. (2016). Ocean thermal energy harvesting with phase change material for underwater glider. Applied Energy, 589.
- ↑ Wang, G. (2019). An Investigation of Phase Change Material (PCM)-Based Ocean Thermal Energy Harvesting. Virginia Polytechnic Institute and State University, Blacksburg.
- ↑ Wang, G., Ha, D. S., & Wand, K. G. (2019). A scalable environmental thermal energy harvester based on solid/liquid phase-change materials. Applied Energy, 1468-1480.
- ↑ Georgia tech Nanogenerator
- ↑ Noise harvesting
- ↑ X. Kang et al. Cost Minimization for Fading Channels With Energy Harvesting and Conventional Energy, in IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4586–4598, Aug. 2014.
- ↑ Verbelen, Yannick; Braeken, An; Touhafi, Abdellah (2014). "Towards a complementary balanced energy harvesting solution for low power embedded systems". Microsystem Technologies. 20 (4): 1007–1021. doi:10.1007/s00542-014-2103-1.
बाहरी कड़ियाँ
- Callendar, Hugh Longbourne (1911). . Encyclopædia Britannica (in English). Vol. 26 (11th ed.). pp. 814–821.