आइज़ेंस्टीन पूर्णांक: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Complex number whose mapping on a coordinate plane produces a triangular lattice}} | {{Short description|Complex number whose mapping on a coordinate plane produces a triangular lattice}} | ||
[[Image:Eisenstein integer lattice.png|thumb|191px| | [[Image:Eisenstein integer lattice.png|thumb|191px|समिश्र समतल में त्रिकोणीय जालक के प्रतिच्छेदन बिंदुओं के रूप में आइज़ेंस्टीन पूर्णांक]]गणित में, आइज़ेंस्टीन पूर्णांक (गोथोल्ड आइज़ेंस्टीन के बाद नामित), कभी-कभी यूलेरियन पूर्णांकों ([[लियोनहार्ड यूलर]] के बाद नामित) के रूप में भी जाने जाते हैं<ref name="euler-name" />, यह - | ||
:<math>z = a + b\omega ,</math> रूप की | :<math>z = a + b\omega ,</math> रूप की समिश्र संख्याएँ हैं | ||
जहां {{math|''a''}} और {{math|''b''}} [[पूर्णांक]] हैं और | जहां {{math|''a''}} और {{math|''b''}} [[पूर्णांक]] हैं और | ||
:<math>\omega = \frac{-1 + i\sqrt 3}{2} = e^{i2\pi/3}</math> | :<math>\omega = \frac{-1 + i\sqrt 3}{2} = e^{i2\pi/3}</math> | ||
[[एकता का घनमूल|एकता का]] एक प्रारंभिक (इसलिए अवास्तविक) [[एकता का घनमूल|घनमूल]] है। गौसियन पूर्णांकों के विपरीत, | [[एकता का घनमूल|एकता का]] एक प्रारंभिक (इसलिए अवास्तविक) [[एकता का घनमूल|घनमूल]] है। गौसियन पूर्णांकों के विपरीत, आइज़ेंस्टीन पूर्णांक [[जटिल विमान|समिश्र समतल]] में [[त्रिकोणीय जाली|त्रिकोणीय जालक]] बनाते हैं, जो समिश्र समतल में वर्ग जालक बनाते हैं। आइज़ेंस्टीन पूर्णांक [[गणनीय सेट|गणनीय रूप से अनंत सेट]] हैं। | ||
== गुण == | == गुण == | ||
आइज़ेंस्टीन पूर्णांक [[बीजगणितीय संख्या क्षेत्र]] <math>\mathbb{Q}(\omega)</math> - तीसरा [[साइक्लोटोमिक क्षेत्र|चक्रविक्षिप्त क्षेत्र]] में [[बीजगणितीय पूर्णांक|बीजगणितीय पूर्णांकों]] का क्रमविनिमेय वलय बनाते हैं। यह देखने के लिए कि आइज़ेंस्टीन पूर्णांक बीजगणितीय पूर्णांक हैं, ध्यान दें कि प्रत्येक{{nowrap| {{mvar| z {{=}} a + bω}} }} [[मोनिक बहुपद]] - | |||
:<math>z^2 - (2a - b)\;\!z + \left(a^2 - ab + b^2\right)~ | :<math>z^2 - (2a - b)\;\!z + \left(a^2 - ab + b^2\right)~</math> का एक मूल है। | ||
विशेष रूप से, {{mvar|ω}} समीकरण | विशेष रूप से, {{mvar|ω}} समीकरण <math>\omega^2 + \omega + 1 = 0~</math> को संतुष्ट करता है। | ||
दो आइज़ेंस्टीन पूर्णांकों {{nowrap| {{mvar| a + bω}} }} और {{nowrap| {{mvar|c + dω}} }} का गुणनफल | |||
:<math>\ | :<math>(a + b\;\!\omega) \;\! (c + d\;\!\omega)=(ac - bd) + (bc + ad - bd)\;\!\omega~</math> द्वारा स्पष्ट रूप से दिया गया है। | ||
आइज़ेंस्ताइन पूर्णांक का 2-मानक केवल इसका वर्गित मापांक है, और <math>{\left|a + b\;\!\omega\right|}^2 \,= \, {(a - \tfrac{1}{2} b)}^2 + \tfrac{3}{4} b^2 \, = \, a^2 - ab + b^2~,</math> द्वारा दिया जाता है, जो स्पष्ट रूप से धनात्मक साधारण (तर्कसंगत) पूर्णांक है। | |||
इसके अलावा, {{mvar|ω}} का [[जटिल संयुग्मन|समिश्र संयुग्म]] <math>\bar\omega = \omega^2~</math> को संतुष्ट करता है। | |||
आइज़ेंस्टीन अभाज्य दो प्रकार के होते हैं। सबसे पहले, साधारण [[अभाज्य संख्या]] (या परिमेय अभाज्य) जो 2 mod 3 के सर्वांगसम है, एक आइज़ेंस्टीन अभाज्य भी है। दूसरा, 3 और प्रत्येक परिमेय अभाज्य {{nowrap|1 mod 3}} के सर्वांगसम आइज़ेंस्टीन पूर्णांक {{math|''x'' + ''ωy''}} के मानक {{math|''x''<sup>2</sup> − ''xy'' + ''y''<sup>2</sup>}} के बराबर हैं। इस प्रकार, इस तरह के अभाज्य को {{math|(''x'' + ''ωy'')(''x'' + ''ω''<sup>2</sup>''y'')}} के रूप में गुणनखंड किया जा सकता है, और ये गुणनखंड आइज़ेंस्टीन अभाज्य हैं: ये सटीक रूप से आइज़ेंस्टीन पूर्णांक हैं जिनका मानदंड एक परिमेय अभाज्य है। | इस वलय में [[इकाइयों का समूह]] समिश्र समतल: <math>\left\{\pm 1, \pm\omega , \pm\omega^2 \right\}~,</math> मानक 1 के आइज़ेंस्टीन पूर्णांक में एकता के छठे मूल द्वारा गठित [[चक्रीय समूह]] है। | ||
== आइज़ेंस्टीन अभाज्य == | |||
[[Image:EisensteinPrimes-01.svg|right|thumb|सूक्ष्म आइज़ेंस्टीन अभाज्य।]]अगर {{math|''x''}} और {{math|''y''}} आइज़ेंस्टीन पूर्णांक हैं, हम कहते हैं कि {{math|''x''}} {{math|''y''}} को विभाजित करता है यदि कोई आइज़ेंस्टीन पूर्णांक {{math|''z''}} ऐसा है कि {{math|''y'' {{=}} ''zx''}} हो। गैर-इकाई आइज़ेंस्टीन पूर्णांक {{math|''x''}} को [[ईसेनस्टीन प्राइम|आइज़ेंस्टीन अभाज्य]] कहा जाता है अगर इसके केवल गैर-इकाई विभाजक {{math|''ux''}} के रूप में हों, जहाँ {{math|''u''}} छह इकाइयों में से कोई भी हो। | |||
आइज़ेंस्टीन अभाज्य दो प्रकार के होते हैं। सबसे पहले, साधारण [[अभाज्य संख्या]] (या परिमेय अभाज्य) जो 2 mod 3 के सर्वांगसम है, और एक आइज़ेंस्टीन अभाज्य भी है। दूसरा, 3 और प्रत्येक परिमेय अभाज्य {{nowrap|1 mod 3}} के सर्वांगसम आइज़ेंस्टीन पूर्णांक {{math|''x'' + ''ωy''}} के मानक {{math|''x''<sup>2</sup> − ''xy'' + ''y''<sup>2</sup>}} के बराबर हैं। इस प्रकार, इस तरह के अभाज्य को {{math|(''x'' + ''ωy'')(''x'' + ''ω''<sup>2</sup>''y'')}} के रूप में गुणनखंड किया जा सकता है, और ये गुणनखंड आइज़ेंस्टीन अभाज्य हैं: ये सटीक रूप से आइज़ेंस्टीन पूर्णांक हैं जिनका मानदंड एक परिमेय अभाज्य है। | |||
== [[यूक्लिडियन डोमेन]] == | == [[यूक्लिडियन डोमेन]] == | ||
आइज़ेंस्टीन पूर्णांकों का वलय यूक्लिडियन डोमेन बनाता है जिसका मानदंड {{math|''N''}} वर्ग मापांक द्वारा दिया गया है, जैसा कि नीचे दिया गया है: | |||
:<math>N(a+b\,\omega) = a^2 - a b + b^2. </math> | :<math>N(a+b\,\omega) = a^2 - a b + b^2. </math> | ||
किसी भी भाज्य <math>\alpha</math> और भाजक <math>\beta\neq 0</math> पर लागू किया गया [[विभाजन एल्गोरिथ्म|विभाजन कलन विधि]], भाजक से छोटा भागफल <math>\kappa</math> और शेषफल <math>\rho</math> देता है, जो संतुष्ट करता है: | |||
<math>\alpha = \kappa \beta +\rho \ \ \text{ with }\ \ N(\rho) < N(\beta).</math> | |||
यहाँ <math>\alpha, \beta, \kappa, \rho</math> सभी आइज़ेंस्टीन पूर्णांक हैं। यह कलन विधि का तात्पर्य [[यूक्लिडियन एल्गोरिथ्म|यूक्लिडियन कलन विधि]] से है, जो यूक्लिड के लेम्मा और आइज़ेंस्टीन पूर्णांकों के अंकगणित के मौलिक प्रमेय को आइज़ेंस्टीन अभाज्य में सिद्ध करता है। | |||
यहाँ <math>\alpha, \beta, \kappa, \rho</math> सभी आइज़ेंस्टीन पूर्णांक हैं। यह | |||
एक विभाजन | एक विभाजन कलन विधि इस प्रकार है। पहले समिश्र संख्याओं के क्षेत्र में विभाजन करें, और भागफल को ω के संदर्भ में लिखें: | ||
: <math> \frac{\alpha}{\beta}\ =\ \tfrac{1}{\ |\beta|^2}\alpha\overline{\beta} \ =\ a+bi \ =\ a+\tfrac{1}{\sqrt3}b+\tfrac{2}{\sqrt3}b\omega,</math> | : <math> \frac{\alpha}{\beta}\ =\ \tfrac{1}{\ |\beta|^2}\alpha\overline{\beta} \ =\ a+bi \ =\ a+\tfrac{1}{\sqrt3}b+\tfrac{2}{\sqrt3}b\omega,</math> | ||
तर्कसंगत के लिए <math>a,b\in\mathbb{Q}</math>. फिर परिमेय गुणांकों को निकटतम पूर्णांक पर | तर्कसंगत के लिए <math>a,b\in\mathbb{Q}</math>. फिर परिमेय गुणांकों को निकटतम पूर्णांक पर पूर्णांकन करके आइज़ेंस्टीन पूर्णांक भागफल प्राप्त करें: | ||
:<math>\kappa = \left\lfloor a+\tfrac{1}{\sqrt3}b\right\rceil + \left\lfloor \tfrac{2}{\sqrt3}b\right\rceil\omega \ \ \text{ and }\ \ \rho = {\alpha} - \kappa\beta.</math> | :<math>\kappa = \left\lfloor a+\tfrac{1}{\sqrt3}b\right\rceil + \left\lfloor \tfrac{2}{\sqrt3}b\right\rceil\omega \ \ \text{ and }\ \ \rho = {\alpha} - \kappa\beta.</math> | ||
यहाँ <math>\lfloor x\rceil</math> किसी भी मानक [[गोलाई]]- | यहाँ <math>\lfloor x\rceil</math> किसी भी मानक [[गोलाई|पूर्णांकन]]-से-पूर्णांक फलन को निरूपित कर सकता है। | ||
कारण यह | कारण कि यह <math>N(\rho) < N(\beta)</math> को संतुष्ट करता है, जबकि अधिकांश अन्य [[द्विघात पूर्णांक]] वलयों के लिए अनुरूप प्रक्रिया विफल हो जाती है, इस प्रकार है। आदर्श <math>\mathbb{Z}[\omega]\beta =\mathbb Z\beta+\mathbb Z\omega\beta</math> के लिए मौलिक डोमेन , समिश्र तल पर अनुवाद द्वारा कार्य करता है, जो कि 60°–120° का समचतुर्भुज है जिसके कोने <math>0,\beta,\omega\beta, \beta+\omega\beta</math> है। कोई भी आइज़ेंस्टीन पूर्णांक α इस समांतर चतुर्भुज के अनुवादों में से एक के अंदर स्थित है, और भागफल <math>\kappa</math> इसके शीर्षों में से एक है। शेष α से इस शीर्ष तक वर्ग दूरी है, लेकिन हमारे कलन विधि में अधिकतम संभव दूरी केवल <math>\tfrac{\sqrt3}2 |\beta|</math> है, इसलिए <math>|\rho| \leq \tfrac{\sqrt3}2 |\beta|< |\beta|</math>. (<math>\kappa</math> को निकटतम कोना लेकर ρ का आकार थोड़ा कम किया जा सकता है।) | ||
== | == आइज़ेंस्टीन पूर्णांकों द्वारा {{math|C}} का भागफल == | ||
सभी आइज़ेंस्टीन पूर्णांक वाले [[जाली (समूह)|जालक (समूह)]] द्वारा समिश्र समतल {{math|'''C'''}} का भागफल वास्तविक आयाम 2 का [[जटिल टोरस|समिश्र टॉरस]] है। यह ऐसे सभी समिश्र टोरी के बीच अधिकतम [[समरूपता]] वाले दो तोरी में से एक है। यह टॉरस नियमित षट्भुज के विपरीत किनारों के तीन जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है। (अन्य अधिकतम सममित टॉरस गॉसियन पूर्णांकों के योगात्मक जालक द्वारा समिश्र समतल का भागफल है, और एक वर्ग मौलिक डोमेन के विपरीत पक्षों के दो जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है, जैसे कि {{nowrap|[0,1] × [0,1]}}.) | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 55: | Line 51: | ||
* हर्मिट स्थिरांक | * हर्मिट स्थिरांक | ||
* क्यूबिक पारस्परिकता | * क्यूबिक पारस्परिकता | ||
* लोनर की | * लोनर की टॉरस असमानता | ||
* [[हर्विट्ज़ चतुर्धातुक]] | * [[हर्विट्ज़ चतुर्धातुक]] | ||
* द्विघात पूर्णांक | * द्विघात पूर्णांक | ||
Line 69: | Line 65: | ||
* [http://mathworld.wolfram.com/EisensteinInteger.html Eisenstein Integer--from MathWorld] | * [http://mathworld.wolfram.com/EisensteinInteger.html Eisenstein Integer--from MathWorld] | ||
[[Category:Collapse templates|Eisenstein Integer]] | |||
[[Category:Created On 13/02/2023|Eisenstein Integer]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page|Eisenstein Integer]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Eisenstein Integer]] | |||
[[Category:Pages with empty portal template|Eisenstein Integer]] | |||
[[Category: | [[Category:Pages with script errors|Eisenstein Integer]] | ||
[[Category: | [[Category:Portal-inline template with redlinked portals|Eisenstein Integer]] | ||
[[Category:Short description with empty Wikidata description|Eisenstein Integer]] | |||
[[Category:Sidebars with styles needing conversion|Eisenstein Integer]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 17:29, 19 February 2023
गणित में, आइज़ेंस्टीन पूर्णांक (गोथोल्ड आइज़ेंस्टीन के बाद नामित), कभी-कभी यूलेरियन पूर्णांकों (लियोनहार्ड यूलर के बाद नामित) के रूप में भी जाने जाते हैं[1], यह -
- रूप की समिश्र संख्याएँ हैं
जहां a और b पूर्णांक हैं और
एकता का एक प्रारंभिक (इसलिए अवास्तविक) घनमूल है। गौसियन पूर्णांकों के विपरीत, आइज़ेंस्टीन पूर्णांक समिश्र समतल में त्रिकोणीय जालक बनाते हैं, जो समिश्र समतल में वर्ग जालक बनाते हैं। आइज़ेंस्टीन पूर्णांक गणनीय रूप से अनंत सेट हैं।
गुण
आइज़ेंस्टीन पूर्णांक बीजगणितीय संख्या क्षेत्र - तीसरा चक्रविक्षिप्त क्षेत्र में बीजगणितीय पूर्णांकों का क्रमविनिमेय वलय बनाते हैं। यह देखने के लिए कि आइज़ेंस्टीन पूर्णांक बीजगणितीय पूर्णांक हैं, ध्यान दें कि प्रत्येक z = a + bω मोनिक बहुपद -
- का एक मूल है।
विशेष रूप से, ω समीकरण को संतुष्ट करता है।
दो आइज़ेंस्टीन पूर्णांकों a + bω और c + dω का गुणनफल
- द्वारा स्पष्ट रूप से दिया गया है।
आइज़ेंस्ताइन पूर्णांक का 2-मानक केवल इसका वर्गित मापांक है, और द्वारा दिया जाता है, जो स्पष्ट रूप से धनात्मक साधारण (तर्कसंगत) पूर्णांक है।
इसके अलावा, ω का समिश्र संयुग्म को संतुष्ट करता है।
इस वलय में इकाइयों का समूह समिश्र समतल: मानक 1 के आइज़ेंस्टीन पूर्णांक में एकता के छठे मूल द्वारा गठित चक्रीय समूह है।
आइज़ेंस्टीन अभाज्य
अगर x और y आइज़ेंस्टीन पूर्णांक हैं, हम कहते हैं कि x y को विभाजित करता है यदि कोई आइज़ेंस्टीन पूर्णांक z ऐसा है कि y = zx हो। गैर-इकाई आइज़ेंस्टीन पूर्णांक x को आइज़ेंस्टीन अभाज्य कहा जाता है अगर इसके केवल गैर-इकाई विभाजक ux के रूप में हों, जहाँ u छह इकाइयों में से कोई भी हो।
आइज़ेंस्टीन अभाज्य दो प्रकार के होते हैं। सबसे पहले, साधारण अभाज्य संख्या (या परिमेय अभाज्य) जो 2 mod 3 के सर्वांगसम है, और एक आइज़ेंस्टीन अभाज्य भी है। दूसरा, 3 और प्रत्येक परिमेय अभाज्य 1 mod 3 के सर्वांगसम आइज़ेंस्टीन पूर्णांक x + ωy के मानक x2 − xy + y2 के बराबर हैं। इस प्रकार, इस तरह के अभाज्य को (x + ωy)(x + ω2y) के रूप में गुणनखंड किया जा सकता है, और ये गुणनखंड आइज़ेंस्टीन अभाज्य हैं: ये सटीक रूप से आइज़ेंस्टीन पूर्णांक हैं जिनका मानदंड एक परिमेय अभाज्य है।
यूक्लिडियन डोमेन
आइज़ेंस्टीन पूर्णांकों का वलय यूक्लिडियन डोमेन बनाता है जिसका मानदंड N वर्ग मापांक द्वारा दिया गया है, जैसा कि नीचे दिया गया है:
किसी भी भाज्य और भाजक पर लागू किया गया विभाजन कलन विधि, भाजक से छोटा भागफल और शेषफल देता है, जो संतुष्ट करता है:
यहाँ सभी आइज़ेंस्टीन पूर्णांक हैं। यह कलन विधि का तात्पर्य यूक्लिडियन कलन विधि से है, जो यूक्लिड के लेम्मा और आइज़ेंस्टीन पूर्णांकों के अंकगणित के मौलिक प्रमेय को आइज़ेंस्टीन अभाज्य में सिद्ध करता है।
एक विभाजन कलन विधि इस प्रकार है। पहले समिश्र संख्याओं के क्षेत्र में विभाजन करें, और भागफल को ω के संदर्भ में लिखें:
तर्कसंगत के लिए . फिर परिमेय गुणांकों को निकटतम पूर्णांक पर पूर्णांकन करके आइज़ेंस्टीन पूर्णांक भागफल प्राप्त करें:
यहाँ किसी भी मानक पूर्णांकन-से-पूर्णांक फलन को निरूपित कर सकता है।
कारण कि यह को संतुष्ट करता है, जबकि अधिकांश अन्य द्विघात पूर्णांक वलयों के लिए अनुरूप प्रक्रिया विफल हो जाती है, इस प्रकार है। आदर्श के लिए मौलिक डोमेन , समिश्र तल पर अनुवाद द्वारा कार्य करता है, जो कि 60°–120° का समचतुर्भुज है जिसके कोने है। कोई भी आइज़ेंस्टीन पूर्णांक α इस समांतर चतुर्भुज के अनुवादों में से एक के अंदर स्थित है, और भागफल इसके शीर्षों में से एक है। शेष α से इस शीर्ष तक वर्ग दूरी है, लेकिन हमारे कलन विधि में अधिकतम संभव दूरी केवल है, इसलिए . ( को निकटतम कोना लेकर ρ का आकार थोड़ा कम किया जा सकता है।)
आइज़ेंस्टीन पूर्णांकों द्वारा C का भागफल
सभी आइज़ेंस्टीन पूर्णांक वाले जालक (समूह) द्वारा समिश्र समतल C का भागफल वास्तविक आयाम 2 का समिश्र टॉरस है। यह ऐसे सभी समिश्र टोरी के बीच अधिकतम समरूपता वाले दो तोरी में से एक है। यह टॉरस नियमित षट्भुज के विपरीत किनारों के तीन जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है। (अन्य अधिकतम सममित टॉरस गॉसियन पूर्णांकों के योगात्मक जालक द्वारा समिश्र समतल का भागफल है, और एक वर्ग मौलिक डोमेन के विपरीत पक्षों के दो जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है, जैसे कि [0,1] × [0,1].)
यह भी देखें
- गॉसियन पूर्णांक
- चक्रीय क्षेत्र
- सिस्टोलिक ज्यामिति
- हर्मिट स्थिरांक
- क्यूबिक पारस्परिकता
- लोनर की टॉरस असमानता
- हर्विट्ज़ चतुर्धातुक
- द्विघात पूर्णांक
- डिक्सन अण्डाकार कार्य
टिप्पणियाँ
- ↑ Both Surányi, László (1997). Algebra. TYPOTEX. p. 73. and Szalay, Mihály (1991). Számelmélet. Tankönyvkiadó. p. 75. call these numbers "Euler-egészek", that is, Eulerian integers. The latter claims Euler worked with them in a proof.