कम्प्यूटेशनल यांत्रिकी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Application of mechanics using computational methods}} {{dablink|For the scientific journal, see Computational Mechanics (journal)|Computational Mechanic...")
 
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Application of mechanics using computational methods}}
{{Short description|Application of mechanics using computational methods}}
{{dablink|For the scientific journal, see [[Computational Mechanics (journal)|Computational Mechanics]].}}
'''कम्प्यूटेशनल यांत्रिकी''' (यांत्रिकी के सिद्धांतों) द्वारा शासित घटनाओं का अध्ययन करने के लिए कम्प्यूटेशनल विधियों के उपयोग से संबंधित अनुशासन है।<ref name="GhaboussiWu2016">{{cite book|author1=Jamshid Ghaboussi|author2=Xiping Steven Wu|title=Numerical Methods in Computational Mechanics|url=https://books.google.com/books?id=WuCVDQAAQBAJ&q=%22Computational+mechanics%22|date=25 November 2016|publisher=CRC Press|isbn=978-1-315-35164-3}}</ref> कम्प्यूटेशनल विज्ञान (जिसे वैज्ञानिक कंप्यूटिंग भी कहा जाता है) के उद्भव से पहले सैद्धांतिक और प्रायोगिक विज्ञान के अलावा "तीसरे तरीके" के रूप में, कम्प्यूटेशनल यांत्रिकी को व्यापक रूप से [[ लागू यांत्रिकी |लागू यांत्रिकी]] का एक उप-अनुशासन माना जाता था। इसे अब कम्प्यूटेशनल विज्ञान के भीतर एक उप-विषय माना जाता है।
{{more citations needed|date=June 2017}}
{{Cleanup|reason=The 'Overview' section needs to be properly formatted.|date=October 2016}}
कम्प्यूटेशनल [[ यांत्रिकी ]] यांत्रिकी के सिद्धांतों द्वारा शासित घटनाओं का अध्ययन करने के लिए कम्प्यूटेशनल तरीकों के उपयोग से संबंधित अनुशासन है।<ref name="GhaboussiWu2016">{{cite book|author1=Jamshid Ghaboussi|author2=Xiping Steven Wu|title=Numerical Methods in Computational Mechanics|url=https://books.google.com/books?id=WuCVDQAAQBAJ&q=%22Computational+mechanics%22|date=25 November 2016|publisher=CRC Press|isbn=978-1-315-35164-3}}</ref> सैद्धांतिक और प्रयोगात्मक विज्ञान के अलावा तीसरे तरीके के रूप में [[ कम्प्यूटेशनल विज्ञान ]] (जिसे वैज्ञानिक कंप्यूटिंग भी कहा जाता है) के उद्भव से पहले, कम्प्यूटेशनल यांत्रिकी को व्यापक रूप से [[ लागू यांत्रिकी ]] का एक उप-अनुशासन माना जाता था।अब इसे कम्प्यूटेशनल विज्ञान के भीतर एक उप-अनुशासन माना जाता है।


== अवलोकन ==
== अवलोकन ==
कम्प्यूटेशनल मैकेनिक्स (CM) अंतःविषय है।इसके तीन स्तंभ यांत्रिकी, [[ गणित ]] और [[ कंप्यूटर विज्ञान ]] और भौतिकी हैं।
कम्प्यूटेशनल यांत्रिकी (सीएम) अंतःविषय है। इसके तीन स्तंभ यांत्रिकी, [[ गणित |गणित,]] [[ कंप्यूटर विज्ञान |कंप्यूटर विज्ञान]] और भौतिकी होते है।


=== यांत्रिकी ===
=== यांत्रिकी ===
[[ कम्प्यूटेशनल तरल सक्रिय ]], [[ कम्प्यूटेशनल थर्मोडायनामिक्स ]], [[ कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स ]], कम्प्यूटेशनल [[ ठोस यांत्रिकी ]] सीएम के भीतर कई विशेषज्ञता हैं।
[[ कम्प्यूटेशनल तरल सक्रिय |कम्प्यूटेशनल तरल गतिशीलता]] , [[ कम्प्यूटेशनल थर्मोडायनामिक्स |कम्प्यूटेशनल थर्मोडायनामिक्स]] , [[ कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स |कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स]] , कम्प्यूटेशनल [[ ठोस यांत्रिकी |ठोस यांत्रिकी]] सीएम के भीतर कई विशेषज्ञताओं में से कुछ होते है।


=== गणित ===
=== गणित ===
कम्प्यूटेशनल यांत्रिकी से संबंधित गणित के क्षेत्र आंशिक अंतर समीकरण, रैखिक बीजगणित और [[ संख्यात्मक विश्लेषण ]] हैं।उपयोग किए जाने वाले सबसे लोकप्रिय संख्यात्मक तरीके परिमित तत्व विधि, [[ परिमित अंतर विधि ]] और सीमा तत्व विधि विधियों में प्रभुत्व के क्रम में हैं।ठोस यांत्रिकी में परिमित तत्व विधियाँ परिमित अंतर के तरीकों की तुलना में कहीं अधिक प्रचलित हैं, जबकि द्रव यांत्रिकी, थर्मोडायनामिक्स, और इलेक्ट्रोमैग्नेटिज्म में, परिमित अंतर के तरीके लगभग समान रूप से लागू होते हैं।सीमा तत्व तकनीक सामान्य रूप से कम लोकप्रिय है, लेकिन उदाहरण के लिए, ध्वनिकी इंजीनियरिंग सहित कुछ क्षेत्रों में एक जगह है।
कम्प्यूटेशनल यांत्रिकी से संबंधित गणित के क्षेत्र आंशिक अंतर समीकरण, रैखिक बीजगणित और [[ संख्यात्मक विश्लेषण |संख्यात्मक विश्लेषण]] है। प्रभुत्व के क्रम में उपयोग की जाने वाली सबसे लोकप्रिय संख्यात्मक विधियाँ परिमित तत्व, परिमित अंतर और सीमा तत्व विधियाँ है। ठोस यांत्रिकी में परिमित तत्व विधियाँ परिमित अंतर विधियों की तुलना में कहीं अधिक प्रचलित है, जबकि द्रव यांत्रिकी, ऊष्मप्रवैगिकी और विद्युत चुंबकत्व में परिमित अंतर विधियाँ लगभग समान रूप से लागू होती है। सीमा तत्व तकनीक सामान्यतः कम लोकप्रिय है, लेकिन उदाहरण के लिए ध्वनिकी अभियांत्रिकी सहित कुछ क्षेत्रों में इसकी एक जगह होती है।


=== कंप्यूटर विज्ञान ===
=== कंप्यूटर विज्ञान ===
कंप्यूटिंग के संबंध में, कंप्यूटर प्रोग्रामिंग, एल्गोरिदम और समानांतर कंप्यूटिंग सीएम में एक प्रमुख भूमिका निभाते हैं।कम्प्यूटेशनल यांत्रिकी सहित वैज्ञानिक समुदाय में सबसे व्यापक रूप से उपयोग की जाने वाली प्रोग्रामिंग भाषा, [[ फोरट्रान ]] है।हाल ही में, C ++ लोकप्रियता में वृद्धि हुई है।वैज्ञानिक कंप्यूटिंग समुदाय को लिंगुआ फ्रेंका के रूप में C ++ को अपनाने में धीमा रहा है।गणितीय संगणनाओं को व्यक्त करने के अपने बहुत ही प्राकृतिक तरीके के कारण, और इसकी अंतर्निहित दृश्य क्षमता, मालिकाना भाषा/पर्यावरण [[ MATLAB ]] का भी व्यापक रूप से उपयोग किया जाता है, विशेष रूप से तेजी से अनुप्रयोग विकास और मॉडल सत्यापन के लिए।
कंप्यूटिंग के संबंध में, कंप्यूटर प्रोग्रामिंग, कलन विधि और समानांतर कंप्यूटिंग सीएम में प्रमुख भूमिका निभाते है। कम्प्यूटेशनल यांत्रिकी सहित वैज्ञानिक समुदाय में सबसे व्यापक रूप से उपयोग किये जाने वाली प्रोग्रामिंग भाषा [[ फोरट्रान |फोरट्रान]] है। हाल ही में, C++ की लोकप्रियता में वृद्धि हुई है। वैज्ञानिक कंप्यूटिंग समुदाय C++ को सामान्य भाषा के रूप में अपनाने में धीमा रहा है। गणितीय संगणनाओं को व्यक्त करने के अपने बहुत ही स्वाभाविक तरीके और इसकी अंतर्निहित प्रत्योक्षकरण क्षमताओं के कारण, मालिकाना भाषा/पर्यावरण [[ MATLAB |MATLAB]] का भी व्यापक रूप से उपयोग किया जाता है, विशेष रूप से तेजी से अनुप्रयोग विकास और प्रतिरूप सत्यापन के लिए उपयोग किया जाता है।


== प्रक्रिया ==
== प्रक्रिया ==


कम्प्यूटेशनल यांत्रिकी के क्षेत्र के भीतर वैज्ञानिक अपने लक्ष्य यांत्रिक प्रक्रिया का विश्लेषण करने के लिए कार्यों की एक सूची का पालन करते हैं:
कम्प्यूटेशनल यांत्रिकी के क्षेत्र में वैज्ञानिक अपने लक्षित यांत्रिक प्रक्रिया का विश्लेषण करने के लिए कार्यों की एक सूची का अनुसरण करते है:


# भौतिक घटना का एक गणितीय मॉडल बनाया गया है।इसमें आमतौर पर आंशिक अंतर समीकरणों के संदर्भ में प्राकृतिक या इंजीनियरिंग प्रणाली को व्यक्त करना शामिल है।यह कदम एक जटिल प्रणाली को औपचारिक रूप देने के लिए भौतिकी का उपयोग करता है।
# भौतिक घटना का एक गणितीय प्रतिरूप बनाया जाता है। इसमें सामान्यतः आंशिक अंतर समीकरणों के संदर्भ में प्राकृतिक या अभियांत्रिकी प्रणाली को व्यक्त करना सम्मलित होता है। यह कदम एक जटिल प्रणाली को औपचारिक रूप देने के लिए भौतिकी का उपयोग करता है।
# गणितीय समीकरणों को उन रूपों में परिवर्तित किया जाता है जो डिजिटल संगणना के लिए उपयुक्त हैं।इस कदम को विवेकाधीन कहा जाता है क्योंकि इसमें मूल निरंतर मॉडल से एक अनुमानित असतत मॉडल बनाना शामिल है।विशेष रूप से, यह आम तौर पर एक आंशिक अंतर समीकरण (या उसके एक प्रणाली) को बीजगणितीय समीकरणों की एक प्रणाली में अनुवाद करता है।इस चरण में शामिल प्रक्रियाओं का अध्ययन संख्यात्मक विश्लेषण के क्षेत्र में किया जाता है।
# गणितीय समीकरणों को उन रूपों में परिवर्तित किया जाता है जो डिजिटल संगणना के लिए उपयुक्त होते है। इस कदम को विवेकीकरण कहा जाता है क्योंकि इसमें मूल निरंतर प्रतिरूप से अनुमानित असतत प्रतिरूप बनाना सम्मलित होता है। विशेष रूप से, यह सामान्यतः एक आंशिक अंतर समीकरण (या उसकी एक प्रणाली) को बीजगणितीय समीकरणों की एक प्रणाली में अनुवादित करता है। इस चरण में सम्मलित प्रक्रियाओं का संख्यात्मक विश्लेषण के क्षेत्र में अध्ययन किया जाता है।
# [[ कंप्यूटर प्रोग्राम ]] प्रत्यक्ष तरीकों (जो समाधान के परिणामस्वरूप एकल चरण विधियों हैं) या पुनरावृत्ति विधियों (जो परीक्षण समाधान के साथ शुरू करते हैं और क्रमिक शोधन द्वारा वास्तविक समाधान पर पहुंचते हैं) का उपयोग करके विवेकाधीन समीकरणों को हल करने के लिए बनाए जाते हैं।समस्या की प्रकृति के आधार पर, इस स्तर पर [[ सुपर कंप्यूटर ]] या समानांतर कंप्यूटिंग का उपयोग किया जा सकता है।
# [[ कंप्यूटर प्रोग्राम |कंप्यूटर प्रोग्राम]] प्रत्यक्ष विधियों (जो समाधान में परिणत होने वाली एकल चरण विधियाँ है) या पुनरावृत्ति विधियों (जो एक परीक्षण समाधान के साथ प्रारंभ होते है और क्रमिक शोधन द्वारा वास्तविक समाधान पर पहुँचते है) का उपयोग करके विखंडित समीकरणों को हल करने के लिए बनाए जाते है। समस्या की प्रकृति के आधार पर, इस स्तर पर [[ सुपर कंप्यूटर |सुपर कंप्यूटर]] या समांतर कंप्यूटर का उपयोग किया जाता है।
# गणितीय मॉडल, संख्यात्मक प्रक्रियाएं, और कंप्यूटर कोड को प्रयोगात्मक परिणामों या सरलीकृत मॉडल का उपयोग करके सत्यापित किया जाता है, जिसके लिए सटीक बंद-रूप अभिव्यक्ति उपलब्ध हैं।काफी बार, नई संख्यात्मक या कम्प्यूटेशनल तकनीकों को मौजूदा अच्छी तरह से स्थापित संख्यात्मक तरीकों के साथ उनके परिणाम की तुलना करके सत्यापित किया जाता है।कई मामलों में, बेंचमार्क समस्याएं भी उपलब्ध हैं।संख्यात्मक परिणामों की भी कल्पना की जानी चाहिए और अक्सर भौतिक व्याख्याएं परिणामों को दी जाएंगी।
# गणितीय प्रतिरूप, संख्यात्मक प्रक्रियाएं और कंप्यूटर कोड या तो प्रयोगात्मक परिणामों या सरलीकृत प्रतिरूप का उपयोग करके सत्यापित किए जाते है जिनके लिए त्रुटिहीन विश्लेषणात्मक समाधान उपलब्ध होते है। बहुत बार, नई संख्यात्मक या कम्प्यूटेशनल तकनीकों को उनके परिणाम की मौजूदा अच्छी तरह से स्थापित संख्यात्मक विधियों के साथ तुलना करके सत्यापित किया जाता है। कई स्थितियों में, सतह समस्याएं भी उपलब्ध होती है। संख्यात्मक परिणामों की कल्पना भी करनी होती है और अक्सर परिणामों की भौतिक व्याख्या की जाती है।


== अनुप्रयोग ==
== अनुप्रयोग ==


कुछ उदाहरण जहां कम्प्यूटेशनल यांत्रिकी को व्यावहारिक उपयोग के लिए रखा गया है, [[ क्रैश सिमुलेशन ]], [[ जलाशय अनुकरण ]], बायोमैकेनिक्स, ग्लास मैन्युफैक्चरिंग और सेमीकंडक्टर मॉडलिंग हैं।
कुछ उदाहरण जहां कम्प्यूटेशनल यांत्रिकी को व्यावहारिक उपयोग में लाया गया है, वाहन [[ क्रैश सिमुलेशन |दुर्घटना सिमुलेशन]], [[ जलाशय अनुकरण |जलाशय अनुकरण]], बायोमेकॅनिक्स, ग्लास निर्माण और सेमीकंडक्टर प्रतिरूप है।


जटिल प्रणालियाँ{{which|date=February 2020}} कम्प्यूटेशनल यांत्रिकी द्वारा प्रदान किए गए उपकरणों का उपयोग करके विश्लेषणात्मक तरीकों का उपयोग करके इसका इलाज करना बहुत मुश्किल या असंभव होगा।
जटिल प्रणालियां जो विश्लेषणात्मक तरीकों का उपयोग करके इलाज करना बहुत कठिन या असंभव होगा, कम्प्यूटेशनल यांत्रिकी द्वारा प्रदान किए गए उपकरणों का उपयोग करके सफलतापूर्वक अनुकरण किया गया है।


== यह भी देखें ==
== यह भी देखें ==
Line 45: Line 42:
* [https://archive.today/20040518193805/http://www.santafe.edu/~cmg/compmech/pubs.htm Santa Fe Institute Comp Mech Publications]
* [https://archive.today/20040518193805/http://www.santafe.edu/~cmg/compmech/pubs.htm Santa Fe Institute Comp Mech Publications]


{{DEFAULTSORT:Computational Mechanics}}[[Category: कम्प्यूटेशनल विज्ञान]] [[Category: यांत्रिकी]] [[Category: अध्ययन के कम्प्यूटेशनल क्षेत्र]] [[Category: कम्प्यूटेशनल भौतिकी]]
{{DEFAULTSORT:Computational Mechanics}}


 
[[Category:Created On 19/01/2023|Computational Mechanics]]
 
[[Category:Lua-based templates|Computational Mechanics]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Computational Mechanics]]
[[Category:Created On 19/01/2023]]
[[Category:Pages with script errors|Computational Mechanics]]
[[Category:Short description with empty Wikidata description|Computational Mechanics]]
[[Category:Templates Vigyan Ready|Computational Mechanics]]
[[Category:Templates that add a tracking category|Computational Mechanics]]
[[Category:Templates that generate short descriptions|Computational Mechanics]]
[[Category:Templates using TemplateData|Computational Mechanics]]
[[Category:अध्ययन के कम्प्यूटेशनल क्षेत्र|Computational Mechanics]]
[[Category:कम्प्यूटेशनल भौतिकी|Computational Mechanics]]
[[Category:कम्प्यूटेशनल विज्ञान|Computational Mechanics]]
[[Category:यांत्रिकी|Computational Mechanics]]

Latest revision as of 20:30, 20 February 2023

कम्प्यूटेशनल यांत्रिकी (यांत्रिकी के सिद्धांतों) द्वारा शासित घटनाओं का अध्ययन करने के लिए कम्प्यूटेशनल विधियों के उपयोग से संबंधित अनुशासन है।[1] कम्प्यूटेशनल विज्ञान (जिसे वैज्ञानिक कंप्यूटिंग भी कहा जाता है) के उद्भव से पहले सैद्धांतिक और प्रायोगिक विज्ञान के अलावा "तीसरे तरीके" के रूप में, कम्प्यूटेशनल यांत्रिकी को व्यापक रूप से लागू यांत्रिकी का एक उप-अनुशासन माना जाता था। इसे अब कम्प्यूटेशनल विज्ञान के भीतर एक उप-विषय माना जाता है।

अवलोकन

कम्प्यूटेशनल यांत्रिकी (सीएम) अंतःविषय है। इसके तीन स्तंभ यांत्रिकी, गणित, कंप्यूटर विज्ञान और भौतिकी होते है।

यांत्रिकी

कम्प्यूटेशनल तरल गतिशीलता , कम्प्यूटेशनल थर्मोडायनामिक्स , कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स , कम्प्यूटेशनल ठोस यांत्रिकी सीएम के भीतर कई विशेषज्ञताओं में से कुछ होते है।

गणित

कम्प्यूटेशनल यांत्रिकी से संबंधित गणित के क्षेत्र आंशिक अंतर समीकरण, रैखिक बीजगणित और संख्यात्मक विश्लेषण है। प्रभुत्व के क्रम में उपयोग की जाने वाली सबसे लोकप्रिय संख्यात्मक विधियाँ परिमित तत्व, परिमित अंतर और सीमा तत्व विधियाँ है। ठोस यांत्रिकी में परिमित तत्व विधियाँ परिमित अंतर विधियों की तुलना में कहीं अधिक प्रचलित है, जबकि द्रव यांत्रिकी, ऊष्मप्रवैगिकी और विद्युत चुंबकत्व में परिमित अंतर विधियाँ लगभग समान रूप से लागू होती है। सीमा तत्व तकनीक सामान्यतः कम लोकप्रिय है, लेकिन उदाहरण के लिए ध्वनिकी अभियांत्रिकी सहित कुछ क्षेत्रों में इसकी एक जगह होती है।

कंप्यूटर विज्ञान

कंप्यूटिंग के संबंध में, कंप्यूटर प्रोग्रामिंग, कलन विधि और समानांतर कंप्यूटिंग सीएम में प्रमुख भूमिका निभाते है। कम्प्यूटेशनल यांत्रिकी सहित वैज्ञानिक समुदाय में सबसे व्यापक रूप से उपयोग किये जाने वाली प्रोग्रामिंग भाषा फोरट्रान है। हाल ही में, C++ की लोकप्रियता में वृद्धि हुई है। वैज्ञानिक कंप्यूटिंग समुदाय C++ को सामान्य भाषा के रूप में अपनाने में धीमा रहा है। गणितीय संगणनाओं को व्यक्त करने के अपने बहुत ही स्वाभाविक तरीके और इसकी अंतर्निहित प्रत्योक्षकरण क्षमताओं के कारण, मालिकाना भाषा/पर्यावरण MATLAB का भी व्यापक रूप से उपयोग किया जाता है, विशेष रूप से तेजी से अनुप्रयोग विकास और प्रतिरूप सत्यापन के लिए उपयोग किया जाता है।

प्रक्रिया

कम्प्यूटेशनल यांत्रिकी के क्षेत्र में वैज्ञानिक अपने लक्षित यांत्रिक प्रक्रिया का विश्लेषण करने के लिए कार्यों की एक सूची का अनुसरण करते है:

  1. भौतिक घटना का एक गणितीय प्रतिरूप बनाया जाता है। इसमें सामान्यतः आंशिक अंतर समीकरणों के संदर्भ में प्राकृतिक या अभियांत्रिकी प्रणाली को व्यक्त करना सम्मलित होता है। यह कदम एक जटिल प्रणाली को औपचारिक रूप देने के लिए भौतिकी का उपयोग करता है।
  2. गणितीय समीकरणों को उन रूपों में परिवर्तित किया जाता है जो डिजिटल संगणना के लिए उपयुक्त होते है। इस कदम को विवेकीकरण कहा जाता है क्योंकि इसमें मूल निरंतर प्रतिरूप से अनुमानित असतत प्रतिरूप बनाना सम्मलित होता है। विशेष रूप से, यह सामान्यतः एक आंशिक अंतर समीकरण (या उसकी एक प्रणाली) को बीजगणितीय समीकरणों की एक प्रणाली में अनुवादित करता है। इस चरण में सम्मलित प्रक्रियाओं का संख्यात्मक विश्लेषण के क्षेत्र में अध्ययन किया जाता है।
  3. कंप्यूटर प्रोग्राम प्रत्यक्ष विधियों (जो समाधान में परिणत होने वाली एकल चरण विधियाँ है) या पुनरावृत्ति विधियों (जो एक परीक्षण समाधान के साथ प्रारंभ होते है और क्रमिक शोधन द्वारा वास्तविक समाधान पर पहुँचते है) का उपयोग करके विखंडित समीकरणों को हल करने के लिए बनाए जाते है। समस्या की प्रकृति के आधार पर, इस स्तर पर सुपर कंप्यूटर या समांतर कंप्यूटर का उपयोग किया जाता है।
  4. गणितीय प्रतिरूप, संख्यात्मक प्रक्रियाएं और कंप्यूटर कोड या तो प्रयोगात्मक परिणामों या सरलीकृत प्रतिरूप का उपयोग करके सत्यापित किए जाते है जिनके लिए त्रुटिहीन विश्लेषणात्मक समाधान उपलब्ध होते है। बहुत बार, नई संख्यात्मक या कम्प्यूटेशनल तकनीकों को उनके परिणाम की मौजूदा अच्छी तरह से स्थापित संख्यात्मक विधियों के साथ तुलना करके सत्यापित किया जाता है। कई स्थितियों में, सतह समस्याएं भी उपलब्ध होती है। संख्यात्मक परिणामों की कल्पना भी करनी होती है और अक्सर परिणामों की भौतिक व्याख्या की जाती है।

अनुप्रयोग

कुछ उदाहरण जहां कम्प्यूटेशनल यांत्रिकी को व्यावहारिक उपयोग में लाया गया है, वाहन दुर्घटना सिमुलेशन, जलाशय अनुकरण, बायोमेकॅनिक्स, ग्लास निर्माण और सेमीकंडक्टर प्रतिरूप है।

जटिल प्रणालियां जो विश्लेषणात्मक तरीकों का उपयोग करके इलाज करना बहुत कठिन या असंभव होगा, कम्प्यूटेशनल यांत्रिकी द्वारा प्रदान किए गए उपकरणों का उपयोग करके सफलतापूर्वक अनुकरण किया गया है।

यह भी देखें

संदर्भ

  1. Jamshid Ghaboussi; Xiping Steven Wu (25 November 2016). Numerical Methods in Computational Mechanics. CRC Press. ISBN 978-1-315-35164-3.


बाहरी कड़ियाँ