कम्प्यूटेशनल यांत्रिकी: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 42: Line 42:
* [https://archive.today/20040518193805/http://www.santafe.edu/~cmg/compmech/pubs.htm Santa Fe Institute Comp Mech Publications]
* [https://archive.today/20040518193805/http://www.santafe.edu/~cmg/compmech/pubs.htm Santa Fe Institute Comp Mech Publications]


{{DEFAULTSORT:Computational Mechanics}}[[Category: कम्प्यूटेशनल विज्ञान]] [[Category: यांत्रिकी]] [[Category: अध्ययन के कम्प्यूटेशनल क्षेत्र]] [[Category: कम्प्यूटेशनल भौतिकी]]
{{DEFAULTSORT:Computational Mechanics}}


 
[[Category:Created On 19/01/2023|Computational Mechanics]]
 
[[Category:Lua-based templates|Computational Mechanics]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Computational Mechanics]]
[[Category:Created On 19/01/2023]]
[[Category:Pages with script errors|Computational Mechanics]]
[[Category:Vigyan Ready]]
[[Category:Short description with empty Wikidata description|Computational Mechanics]]
[[Category:Templates Vigyan Ready|Computational Mechanics]]
[[Category:Templates that add a tracking category|Computational Mechanics]]
[[Category:Templates that generate short descriptions|Computational Mechanics]]
[[Category:Templates using TemplateData|Computational Mechanics]]
[[Category:अध्ययन के कम्प्यूटेशनल क्षेत्र|Computational Mechanics]]
[[Category:कम्प्यूटेशनल भौतिकी|Computational Mechanics]]
[[Category:कम्प्यूटेशनल विज्ञान|Computational Mechanics]]
[[Category:यांत्रिकी|Computational Mechanics]]

Latest revision as of 20:30, 20 February 2023

कम्प्यूटेशनल यांत्रिकी (यांत्रिकी के सिद्धांतों) द्वारा शासित घटनाओं का अध्ययन करने के लिए कम्प्यूटेशनल विधियों के उपयोग से संबंधित अनुशासन है।[1] कम्प्यूटेशनल विज्ञान (जिसे वैज्ञानिक कंप्यूटिंग भी कहा जाता है) के उद्भव से पहले सैद्धांतिक और प्रायोगिक विज्ञान के अलावा "तीसरे तरीके" के रूप में, कम्प्यूटेशनल यांत्रिकी को व्यापक रूप से लागू यांत्रिकी का एक उप-अनुशासन माना जाता था। इसे अब कम्प्यूटेशनल विज्ञान के भीतर एक उप-विषय माना जाता है।

अवलोकन

कम्प्यूटेशनल यांत्रिकी (सीएम) अंतःविषय है। इसके तीन स्तंभ यांत्रिकी, गणित, कंप्यूटर विज्ञान और भौतिकी होते है।

यांत्रिकी

कम्प्यूटेशनल तरल गतिशीलता , कम्प्यूटेशनल थर्मोडायनामिक्स , कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स , कम्प्यूटेशनल ठोस यांत्रिकी सीएम के भीतर कई विशेषज्ञताओं में से कुछ होते है।

गणित

कम्प्यूटेशनल यांत्रिकी से संबंधित गणित के क्षेत्र आंशिक अंतर समीकरण, रैखिक बीजगणित और संख्यात्मक विश्लेषण है। प्रभुत्व के क्रम में उपयोग की जाने वाली सबसे लोकप्रिय संख्यात्मक विधियाँ परिमित तत्व, परिमित अंतर और सीमा तत्व विधियाँ है। ठोस यांत्रिकी में परिमित तत्व विधियाँ परिमित अंतर विधियों की तुलना में कहीं अधिक प्रचलित है, जबकि द्रव यांत्रिकी, ऊष्मप्रवैगिकी और विद्युत चुंबकत्व में परिमित अंतर विधियाँ लगभग समान रूप से लागू होती है। सीमा तत्व तकनीक सामान्यतः कम लोकप्रिय है, लेकिन उदाहरण के लिए ध्वनिकी अभियांत्रिकी सहित कुछ क्षेत्रों में इसकी एक जगह होती है।

कंप्यूटर विज्ञान

कंप्यूटिंग के संबंध में, कंप्यूटर प्रोग्रामिंग, कलन विधि और समानांतर कंप्यूटिंग सीएम में प्रमुख भूमिका निभाते है। कम्प्यूटेशनल यांत्रिकी सहित वैज्ञानिक समुदाय में सबसे व्यापक रूप से उपयोग किये जाने वाली प्रोग्रामिंग भाषा फोरट्रान है। हाल ही में, C++ की लोकप्रियता में वृद्धि हुई है। वैज्ञानिक कंप्यूटिंग समुदाय C++ को सामान्य भाषा के रूप में अपनाने में धीमा रहा है। गणितीय संगणनाओं को व्यक्त करने के अपने बहुत ही स्वाभाविक तरीके और इसकी अंतर्निहित प्रत्योक्षकरण क्षमताओं के कारण, मालिकाना भाषा/पर्यावरण MATLAB का भी व्यापक रूप से उपयोग किया जाता है, विशेष रूप से तेजी से अनुप्रयोग विकास और प्रतिरूप सत्यापन के लिए उपयोग किया जाता है।

प्रक्रिया

कम्प्यूटेशनल यांत्रिकी के क्षेत्र में वैज्ञानिक अपने लक्षित यांत्रिक प्रक्रिया का विश्लेषण करने के लिए कार्यों की एक सूची का अनुसरण करते है:

  1. भौतिक घटना का एक गणितीय प्रतिरूप बनाया जाता है। इसमें सामान्यतः आंशिक अंतर समीकरणों के संदर्भ में प्राकृतिक या अभियांत्रिकी प्रणाली को व्यक्त करना सम्मलित होता है। यह कदम एक जटिल प्रणाली को औपचारिक रूप देने के लिए भौतिकी का उपयोग करता है।
  2. गणितीय समीकरणों को उन रूपों में परिवर्तित किया जाता है जो डिजिटल संगणना के लिए उपयुक्त होते है। इस कदम को विवेकीकरण कहा जाता है क्योंकि इसमें मूल निरंतर प्रतिरूप से अनुमानित असतत प्रतिरूप बनाना सम्मलित होता है। विशेष रूप से, यह सामान्यतः एक आंशिक अंतर समीकरण (या उसकी एक प्रणाली) को बीजगणितीय समीकरणों की एक प्रणाली में अनुवादित करता है। इस चरण में सम्मलित प्रक्रियाओं का संख्यात्मक विश्लेषण के क्षेत्र में अध्ययन किया जाता है।
  3. कंप्यूटर प्रोग्राम प्रत्यक्ष विधियों (जो समाधान में परिणत होने वाली एकल चरण विधियाँ है) या पुनरावृत्ति विधियों (जो एक परीक्षण समाधान के साथ प्रारंभ होते है और क्रमिक शोधन द्वारा वास्तविक समाधान पर पहुँचते है) का उपयोग करके विखंडित समीकरणों को हल करने के लिए बनाए जाते है। समस्या की प्रकृति के आधार पर, इस स्तर पर सुपर कंप्यूटर या समांतर कंप्यूटर का उपयोग किया जाता है।
  4. गणितीय प्रतिरूप, संख्यात्मक प्रक्रियाएं और कंप्यूटर कोड या तो प्रयोगात्मक परिणामों या सरलीकृत प्रतिरूप का उपयोग करके सत्यापित किए जाते है जिनके लिए त्रुटिहीन विश्लेषणात्मक समाधान उपलब्ध होते है। बहुत बार, नई संख्यात्मक या कम्प्यूटेशनल तकनीकों को उनके परिणाम की मौजूदा अच्छी तरह से स्थापित संख्यात्मक विधियों के साथ तुलना करके सत्यापित किया जाता है। कई स्थितियों में, सतह समस्याएं भी उपलब्ध होती है। संख्यात्मक परिणामों की कल्पना भी करनी होती है और अक्सर परिणामों की भौतिक व्याख्या की जाती है।

अनुप्रयोग

कुछ उदाहरण जहां कम्प्यूटेशनल यांत्रिकी को व्यावहारिक उपयोग में लाया गया है, वाहन दुर्घटना सिमुलेशन, जलाशय अनुकरण, बायोमेकॅनिक्स, ग्लास निर्माण और सेमीकंडक्टर प्रतिरूप है।

जटिल प्रणालियां जो विश्लेषणात्मक तरीकों का उपयोग करके इलाज करना बहुत कठिन या असंभव होगा, कम्प्यूटेशनल यांत्रिकी द्वारा प्रदान किए गए उपकरणों का उपयोग करके सफलतापूर्वक अनुकरण किया गया है।

यह भी देखें

संदर्भ

  1. Jamshid Ghaboussi; Xiping Steven Wu (25 November 2016). Numerical Methods in Computational Mechanics. CRC Press. ISBN 978-1-315-35164-3.


बाहरी कड़ियाँ