अंतत: एबेलियन समूह: Difference between revisions
(→इतिहास) |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Commutative group where every element is the sum of elements from one finite subset}} | {{short description|Commutative group where every element is the sum of elements from one finite subset}} | ||
अमूर्त बीजगणित में, [[एबेलियन समूह]] <math>(G,+)</math> परिमित रूप से उत्पन्न तब कहा जाता है यदि <math>G</math> में अधिक तत्व <math>x_1,\dots,x_s</math> उपलब्ध हैं और ऐसा है कि <math>G</math> के सभी <math>x</math> में <math>x</math> को <math>x = n_1x_1 + n_2x_2 + \cdots + n_sx_s</math> के रूप में लिखा जा सकता है कुछ [[पूर्णांक]] <math>n_1,\dots, n_s</math> के लिए इस सन्दर्भ में, | अमूर्त बीजगणित में, [[एबेलियन समूह]] <math>(G,+)</math> परिमित रूप से उत्पन्न तब कहा जाता है यदि <math>G</math> में अधिक तत्व <math>x_1,\dots,x_s</math> उपलब्ध हैं और ऐसा है कि <math>G</math> के सभी <math>x</math> में <math>x</math> को <math>x = n_1x_1 + n_2x_2 + \cdots + n_sx_s</math> के रूप में लिखा जा सकता है कुछ [[पूर्णांक]] <math>n_1,\dots, n_s</math> के लिए इस सन्दर्भ में, कहते हैं कि समुच्चय <math>\{x_1,\dots, x_s\}</math>, <math>G</math> का उत्पादक समुच्चय है या <math>x_1,\dots, x_s</math> , <math>G</math> का उत्पादन करता है। | ||
प्रत्येक परिमित एबेलियन समूह सूक्ष्म रूप से उत्पन्न होता है। सूक्ष्म रूप से उत्पन्न एबेलियन समूहों को पूरी तरह से वर्गीकृत किया जा सकता है। | प्रत्येक परिमित एबेलियन समूह सूक्ष्म रूप से उत्पन्न होता है। सूक्ष्म रूप से उत्पन्न एबेलियन समूहों को पूरी तरह से वर्गीकृत किया जा सकता है। | ||
Line 15: | Line 15: | ||
=== वर्गीकरण === | === वर्गीकरण === | ||
परिमित रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय को दो तरह से | परिमित रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय को दो तरह से संदर्भित किया सकता है, परिमित एबेलियन समूहों के मौलिक प्रमेय के दो रूपों का सामान्यीकरण प्रमेय, दोनों रूपों के एक प्रमुख आदर्श क्षेत्र पर सूक्ष्म रूप से उत्पन्न अनुखंड के लिए संरचना प्रमेय को सामान्यीकृत करता है, जो आगे के सामान्यीकरणों को स्वीकार करता है। | ||
प्राथमिक अपघटन सूत्रीकरण बताता है कि प्रत्येक सूक्ष्म रूप से उत्पन्न एबेलियन समूह G, प्राथमिक [[चक्रीय समूह]] और अनंत चक्रीय समूहों के प्रत्यक्ष योग के समरूप है। एक [[प्राथमिक चक्रीय समूह]] वह है जिसके समूह का क्रम एक [[अभाज्य संख्या]] का बल है। अर्थात अंतिम रूप से उत्पन्न एबेलियन समूह | प्राथमिक अपघटन सूत्रीकरण बताता है कि प्रत्येक सूक्ष्म रूप से उत्पन्न एबेलियन समूह G, प्राथमिक [[चक्रीय समूह]] और अनंत चक्रीय समूहों के प्रत्यक्ष योग के समरूप है। एक [[प्राथमिक चक्रीय समूह]] वह है जिसके समूह का क्रम एक [[अभाज्य संख्या]] का बल है। अर्थात अंतिम रूप से उत्पन्न एबेलियन समूह |
Revision as of 09:59, 15 February 2023
अमूर्त बीजगणित में, एबेलियन समूह परिमित रूप से उत्पन्न तब कहा जाता है यदि में अधिक तत्व उपलब्ध हैं और ऐसा है कि के सभी में को के रूप में लिखा जा सकता है कुछ पूर्णांक के लिए इस सन्दर्भ में, कहते हैं कि समुच्चय , का उत्पादक समुच्चय है या , का उत्पादन करता है।
प्रत्येक परिमित एबेलियन समूह सूक्ष्म रूप से उत्पन्न होता है। सूक्ष्म रूप से उत्पन्न एबेलियन समूहों को पूरी तरह से वर्गीकृत किया जा सकता है।
उदाहरण
- पूर्णांक, , परिमित एबेलियन समूह हैं।
- प्रमापीय अंकगणित पूर्णांक सापेक्ष , , एक परिमित एबेलियन समूह हैं।
- परिमित रूप से उत्पन्न एबेलियन समूहों का कोई भी प्रत्यक्ष योग पुनः परिमित रूप से उत्पन्न एबेलियन समूह है।
- प्रत्येक जालक समूह एक परिमित रूप से उत्पन्न मुक्त आबेलीयन समूह बनाता है।
समरूपता के अंत तक कोई अन्य उदाहरण नहीं हैं। विशेष रूप से, परिमेय संख्याओं का समूह पूर्ण रूप से उत्पन्न नहीं होता है:[1] यदि परिमेय संख्याएँ, प्राकृतिक संख्या के सभी हर के लिए सहअभाज्य संख्या है तब , के द्वारा उत्पन्न नहीं किया जा सकता. समूह गैर-शून्य परिमेय संख्याये भी अंतिम रूप से उत्पन्न नहीं होती है। इसके अतिरिक्त वास्तविक संख्याओं के समूह और गुणन के अंतर्गत शून्येतर वास्तविक संख्याएँ भी पूर्ण रूप से उत्पन्न नहीं होते हैं।[1][2]
वर्गीकरण
परिमित रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय को दो तरह से संदर्भित किया सकता है, परिमित एबेलियन समूहों के मौलिक प्रमेय के दो रूपों का सामान्यीकरण प्रमेय, दोनों रूपों के एक प्रमुख आदर्श क्षेत्र पर सूक्ष्म रूप से उत्पन्न अनुखंड के लिए संरचना प्रमेय को सामान्यीकृत करता है, जो आगे के सामान्यीकरणों को स्वीकार करता है।
प्राथमिक अपघटन सूत्रीकरण बताता है कि प्रत्येक सूक्ष्म रूप से उत्पन्न एबेलियन समूह G, प्राथमिक चक्रीय समूह और अनंत चक्रीय समूहों के प्रत्यक्ष योग के समरूप है। एक प्राथमिक चक्रीय समूह वह है जिसके समूह का क्रम एक अभाज्य संख्या का बल है। अर्थात अंतिम रूप से उत्पन्न एबेलियन समूह
- के समरूपी होगा
जहाँ n ≥ 0 एक एबेलियन समूह की कोटि है `और संख्याएँ q1, ...,qn अभाज्य संख्याओं की घातें हैं। विशेष रूप से, G परिमित है यदि और केवल यदि n = 0. n, q के मान1, ..., Q सूचकांकों को पुनर्व्यवस्थित करने तक G द्वारा विशिष्ट रूप से निर्धारित किया जाता है, अर्थात, इस तरह के अपघटन के रूप में G का प्रतिनिधित्व करने का केवल एक तरीका है।
इस कथन का प्रमाण परिमित आबेली समूह के लिए आधार प्रमेय का उपयोग करता है: प्रत्येक परिमित आबेली समूह प्राथमिक चक्रीय समूहों का प्रत्यक्ष योग है। G के घुमाव वाले उपसमूह को tG के रूप में निरूपित करें। फिर, G/tG घुमाव -मुक्त आबेली समूह है और इस प्रकार यह मुक्त आबेली है। tG, G का प्रत्यक्ष योग है, जिसका अर्थ है कि G समुच्चय एक उपसमूह F उपस्थित है। , जहां . F भी मुक्त आबेली है। चूँकि tG परिमित रूप से उत्पन्न होता है और tG के प्रत्येक अवयव की परिमित कोटि होती है, tG परिमित होता है। परिमित एबेलियन समूह के आधार प्रमेय द्वारा, tG को प्राथमिक चक्रीय समूहों के प्रत्यक्ष योग के रूप में लिखा जा सकता है।
अपरिवर्तनीय कारक अपघटन
हम किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह G को प्रत्यक्ष योग के रूप में भी लिख सकते हैं
जहां K1, K2 को विभाजित करता है जो बाद में k3 को विभाजित करता है और इसी तरह ku तक विभाजन चलता रहता है , रैंक n और अपरिवर्तनीय कारक k1, ..., ku, G द्वारा विशिष्ट रूप से निर्धारित किया जाता है तथा अपरिवर्तनीय कारकों का क्रम समूह समरूपता को निर्धारित करता है।
समानता
ये वर्णन चीनी शेष प्रमेय के परिणामस्वरूप समान हैं, यदि j और k सहअभाज्य हैं तो इसका अर्थ है।
इतिहास
मौलिक प्रमेय का इतिहास और श्रेय इस तथ्य से जटिल है कि यह सिद्ध हो गया था की जब समूह सिद्धांत अच्छी तरह से स्थापित नहीं था तो अनिवार्य रूप से आधुनिक परिणाम और प्रमाण, सदैव एक विशिष्ट प्रकरण द्बवारा बताए जाते थे। संक्षेप में कहे तो परिमित प्रकरण का प्रारंभिक रूप 1801 में सिद्ध हुआ था, जबकि परिमित प्रकरण क्रोनेकर द्वारा 1870 में सिद्ध हुआ था, और समूह-सैद्धांतिक शब्दों में फ्रोबेनियस और स्टिकेलबर्गर 1878 में कहा गया कि सूक्ष्म रूप से प्रस्तुत संदर्भो को स्मिथ द्वारा सामान्य रूप से हल किया और प्रायः इसका श्रेय 1861 में स्मिथ को दिया जाता है।[3]
समूह सिद्धांतकार लेज़्लो फुच्स कहते हैं:[3]
जहां तक परिमित एबेलियन समूहों पर मौलिक प्रमेय का संबंध है, यह स्पष्ट नहीं है कि इसकी उत्पत्ति का पता लगाने के लिए समय में कितने पहले जाना होगा। मौलिक प्रमेय को उसके वर्तमान रूप में बनाने और सिद्ध करने में अत्यधिक समय लगा .. .
लियोपोल्ड क्रोनकर द्वारा समूह-सैद्धांतिक प्रमाण का उपयोग करके परिमित एबेलियन समूहों के लिए मौलिक प्रमेय को सिद्ध किया गया था [4] प्रायः इसे समूह-सैद्धांतिक शब्दों में बताए बिना;[5] क्रोनकर के प्रमाण की एक आधुनिक प्रस्तुति में दी गई थी , इसने कार्ल फ्रेडरिक गॉस के अंकगणितीय शोध 1801 ई० के परिणाम को सामान्यीकृत किया, जिसने द्विघात रूपों को वर्गीकृत किया था ; क्रोनकर ने गॉस के इस परिणाम को संदर्भित किया जिस प्रमेय को 1878 में फर्डिनेंड जॉर्ज फ्रोबेनियस और लुडविग स्टिकेलबर्गर द्वारा समूहों की भाषा में कहा गया और सिद्ध किया गया था।[6][7] 1882 में क्रोनकर के छात्र यूजीन नेट द्वारा एक अन्य समूह-सैद्धांतिक सूत्रीकरण दिया गया था।[8][9] हेनरी जॉन स्टीफन स्मिथ द्वारा अंतिम रूप से प्रस्तुत एबेलियन समूहों के लिए मौलिक प्रमेय सिद्ध किया गया था,[3] जो पूर्णांक मैट्रिसेस के रूप में एबेलियन समूहों की परिमित प्रस्तुतियों के अनुरूप है। यह एक प्रमुख आदर्श क्षेत्र पर सूक्ष्मता से प्रस्तुत अनुखण्ड के लिए सामान्य है,और स्मिथ द्वारा सामान्य रूप से प्रस्तुत किए गए एबेलियन समूहों को वर्गीकृत करने के अनुरूप है।
अंतिम रूप से उत्पन्न एबेलियन समूहों के लिए मौलिक प्रमेय को हेनरी पॉइनकेयर द्वारा मैट्रिक्स प्रमाण का उपयोग करते हुए सिद्ध किया गया था जो प्रमुख आदर्श क्षेत्र के लिए सामान्यीकरण करता है। यह संगणन के संदर्भ में किया गया था।
सजातीय परिसर, विशेष रूप से परिसरों के आयाम की बेट्टी संख्या और घुमाव गुणांक, जहां बेट्टी संख्या मुक्त भाग के रैंक से मेल खाती है, और घुमाव गुणांक, घुमाव वाले भाग के अनुरूप है।[4]
एमी नोथेर द्वारा क्रोनेकर के प्रमाण को अंतिम रूप से उत्पन्न एबेलियन समूहों के लिए सामान्यीकृत किया गया था।.[4]
परिणाम
मौलिक प्रमेय में अंतिम रूप से उत्पन्न एबेलियन समूह परिमित रैंक के मुक्त एबेलियन समूह और परिमित एबेलियन समूह का प्रत्यक्ष योग है। परिमित एबेलियन समूह G का घुमाव उपसमूह है। G की रैंक को G के घुमाव-मुक्त भाग की रैंक के रूप में परिभाषित किया गया है; उपरोक्त सूत्रों में यह केवल n संख्या है।
मौलिक प्रमेय का एक परिणाम यह है कि सभी अंतिम रूप से उत्पन्न घुमाव-मुक्त एबेलियन समूह है। यहाँ अंतिम रूप से उत्पन्न स्थिति आवश्यक है: घुमाव मुक्त है लेकिन मुक्त एबेलियन नहीं है।
अंतिम रूप से उत्पन्न एबेलियन समूह का प्रत्येक उपसमूह और कारक समूह पुनः सूक्ष्म रूप से उत्पन्न एबेलियन होता है। अंतिम रूप से उत्पन्न एबेलियन समूह, समूह समरूपता के साथ मिलकर एक एबेलियन श्रेणी बनाते हैं जो कि एबेलियन समूहों की श्रेणी है।
गैर-संकुचित रूप से उत्पन्न एबेलियन समूह
ध्यान दें कि परिमित रैंक का प्रत्येक एबेलियन समूह अंतिम रूप से उत्पन्न नहीं होता है; रैंक 1 समूह का उदाहरण है, और रैंक -0 समूह की अनंत समुच्चय प्रतियों के प्रत्यक्ष योग द्वारा दिया गया है।
यह भी देखें
- जॉर्डन-होल्डर प्रमेय में रचना श्रृंखला एक गैर-अबेलियन सामान्यीकरण है।
टिप्पणियाँ
- ↑ 1.0 1.1 Silverman & Tate (1992), p. 102
- ↑ de la Harpe (2000), p. 46
- ↑ 3.0 3.1 Fuchs, László (2015) [Originally published 1958]. Abelian Groups. p. 85. ISBN 978-3-319-19422-6.
- ↑ 4.0 4.1 4.2 Stillwell, John (2012). "5.2 The Structure Theorem for Finitely Generated". Classical Topology and Combinatorial Group Theory. p. 175.
- ↑ Wussing, Hans (2007) [1969]. Die Genesis des abstrackten Gruppenbegriffes. Ein Beitrag zur Entstehungsgeschichte der abstrakten Gruppentheorie [The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory.]. p. 67.
- ↑ G. Frobenius, L. Stickelberger, Uber Grubben von vertauschbaren Elementen, J. reine u. angew. Math., 86 (1878), 217-262.
- ↑ Wussing (2007), pp. 234–235
- ↑ Substitutionentheorie und ihre Anwendung auf die Algebra, Eugen Netto, 1882
- ↑ Wussing (2007), pp. 234–235
संदर्भ
- Smith, Henry J. Stephen (1861). "On systems of linear indeterminate equations and congruences". Phil. Trans. R. Soc. Lond. 151 (1): 293–326. doi:10.1098/rstl.1861.0016. JSTOR 108738. S2CID 110730515. Reprinted (pp. 367–409) in The Collected Mathematical Papers of Henry John Stephen Smith, Vol. I, edited by J. W. L. Glaisher. Oxford: Clarendon Press (1894), xcv+603 pp.
- Silverman, Joseph H.; Tate, John Torrence (1992). Rational points on elliptic curves. Undergraduate Texts in Mathematics. Springer. ISBN 978-0-387-97825-3.
- de la Harpe, Pierre (2000). Topics in geometric group theory. Chicago lectures in mathematics. University of Chicago Press. ISBN 978-0-226-31721-2.