आधार (टोपोलॉजी): Difference between revisions

From Vigyanwiki
No edit summary
Line 146: Line 146:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:15, 22 February 2023

गणित में, टोपोलॉजी (संरचना) के लिए आधार (या आधार) τ एक टोपोलॉजिकल स्पेस का (X, τ) समुच्चयों का परिवार है के खुले समुच्चयों का X ऐसा है कि टोपोलॉजी का हर खुला समुच्चय कुछ उप समुच्चय के संघ स्थापित करें के बराबर है | उप-परिवार . उदाहरण के लिए, वास्तविक संख्या रेखा में सभी खुले अंतरालों का समुच्चय यूक्लिडियन टोपोलॉजी का आधार है क्योंकि प्रत्येक विवृत्त अंतराल एक विवृत्त समुच्चय होता है, और प्रत्येक विवृत्त उपसमुच्चय भी खुले अंतराल के कुछ परिवार के संघ के रूप में लिखा जा सकता है।

आधार पूरे टोपोलॉजी में सर्वव्यापी हैं। एक टोपोलॉजी के लिए बेस में समुच्चय, जो कहलाते हैं मूलभूत खुले समुच्चय, मनमाने ढंग से खुले समुच्चयों की तुलना में प्रायः वर्णन करना और उपयोग करना आसान होता है।[1] निरंतर कार्य और अभिसरण (टोपोलॉजी) जैसी कई महत्वपूर्ण टोपोलॉजिकल परिभाषाओं की जांच मनमाने ढंग से खुले समुच्चयों के बजाय केवल मूल खुले समुच्चयों का उपयोग करके की जा सकती है। कुछ टोपोलॉजी में विशिष्ट उपयोगी गुणों के साथ खुले समुच्चय का आधार होता है जो ऐसी टोपोलॉजिकल परिभाषाओं की जाँच को आसान बना सकता है।

समुच्चय के उप समुच्चय के सभी परिवार नहीं एक टोपोलॉजी के लिए एक आधार तैयार करें . नीचे दी गई कुछ शर्तों के तहत, उप समुच्चय का परिवार एक (अद्वितीय) टोपोलॉजी के लिए आधार बनाएगा , सबफैमिली के सभी संभावित यूनियनों को लेकर प्राप्त किया गया। टोपोलॉजी को परिभाषित करने के लिए समुच्चय के ऐसे परिवारों का प्रायः उपयोग किया जाता है। आधारों से संबंधित एक कमजोर धारणा एक टोपोलॉजी के लिए उप-आधार की है। टोपोलॉजी के आधार भी पड़ोस के ठिकानों से निकटता से संबंधित हैं।

परिभाषा और मूलभूत गुण

टोपोलॉजिकल स्पेस दिया गया , आधार[2][3][4][5] (या आधार)[6] टोपोलॉजी (संरचना) के लिए (के लिए एक आधार भी कहा जाता है यदि टोपोलॉजी को समझा जाए) समुच्चयों का परिवार है खुले समुच्चयों का ऐसा कि टोपोलॉजी के हर खुले समुच्चय को कुछ उपपरिवारों के मिलन के रूप में दर्शाया जा सकता है .[note 1] के तत्व बेसिक ओपन समुच्चय कहलाते हैं।

समान रूप से, एक परिवार के उप समुच्चय का टोपोलॉजी का आधार है यदि और केवल यदि और हर खुले समुच्चय के लिए में और बिंदु कुछ मूलभूत खुला समुच्चय है ऐसा है कि .

उदाहरण के लिए, वास्तविक रेखा में सभी खुले अंतरालों का संग्रह वास्तविक संख्याओं पर मानक टोपोलॉजी के लिए आधार बनाता है। अधिक सामान्यतः एक मीट्रिक स्थान में के अंक के बारे में सभी खुली गेंदों का संग्रह टोपोलॉजी के लिए एक आधार बनाता है।

सामान्य तौर पर, एक सामयिक स्थान अनेक आधार हो सकते हैं। संपूर्ण टोपोलॉजी हमेशा अपने लिए एक आधार होता है (अर्थात, का आधार है ). वास्तविक रेखा के लिए, सभी खुले अंतरालों का संग्रह टोपोलॉजी का आधार है। उदाहरण के लिए, तर्कसंगत अंतराल के साथ सभी खुले अंतरालों का संग्रह, या तर्कहीन अंत बिंदुओं के साथ सभी खुले अंतरालों का संग्रह। ध्यान दें कि दो अलग-अलग आधारों के लिए सामान्य रूप से मूलभूत खुला समुच्चय होना आवश्यक नहीं है। अंतरिक्ष के सामयिक गुणों में से एक इसकी टोपोलॉजी के लिए आधार की न्यूनतम प्रमुखता है, जिसे वजन कहा जाता है और निरूपित . उपरोक्त उदाहरणों से, वास्तविक रेखा में गणनीय भार होता है।

यदि टोपोलॉजी का आधार है एक स्थान का , यह निम्नलिखित गुणों को संतुष्ट करता है:[7][3]:(बी1) के तत्व आवरण (टोपोलॉजी) , यानी, हर बिंदु के किसी तत्व से संबंधित है .

(B2) प्रत्येक के लिए और हर बिंदु , कुछ मौजूद है ऐसा है कि .

संपत्ति (B1) इस तथ्य से मेल खाती है कि एक खुला समुच्चय है; संपत्ति (B2) इस तथ्य से मेल खाती है कि एक खुला समुच्चय है।

इसके विपरीत मान लीजिए बिना किसी टोपोलॉजी के सिर्फ एक समुच्चय है और के उपसमुच्चय का परिवार है संतोषजनक गुण (B1) और (B2) है। तब यह उत्पन्न होने वाली टोपोलॉजी के लिए एक आधार है। अधिक सटीक, चलो के सभी उपसमूहों का परिवार हो जो कि उप-परिवारों के संघ हैं तब पर एक टोपोलॉजी है और का आधार है .[7][8]

(स्केच: एक टोपोलॉजी को परिभाषित करता है क्योंकि यह निर्माण द्वारा मनमाना संघों के तहत स्थिर है, यह परिमित चौराहों के तहत स्थिर है (B2), इसमें शामिल है द्वारा (B1), और इसमें खाली उपपरिवार के मिलन के रूप में खाली समुच्चय शामिल है . परिवार तब के लिए एक आधार है निर्माण द्वारा है। समुच्चय के ऐसे परिवार एक टोपोलॉजी को परिभाषित करने का एक बहुत ही सामान्य तरीका है।

सामान्य तौर पर, यदि एक समुच्चय है और के उप समुच्चय का मनमाना संग्रह है , एक (अद्वितीय) सबसे छोटी टोपोलॉजी है पर युक्त . (यह टोपोलॉजी सभी टोपोलॉजी का प्रतिच्छेदन (समुच्चय थ्योरी) है युक्त ।) टोपोलॉजी द्वारा उत्पन्न टोपोलॉजी कहलाती है , और के लिए उप आधार कहलाता है . टोपोलॉजी के तत्वों के परिमित चौराहों के सभी मनमाने संघों के समुच्चय के रूप में भी वर्णित किया जा सकता है . (सबबेस के बारे में लेख देखें।) अब, यदि गुणों (B1) और (B2) को भी संतुष्ट करता है, जिसके द्वारा उत्पन्न टोपोलॉजी चौराहों को लिए बिना सरल तरीके से वर्णित किया जा सकता है: के तत्वों के सभी संघों का समुच्चय है (और के लिए आधार है उस मामले में)।

हालत (B2) की जांच करने का प्रायः आसान तरीका होता है। यदि किन्हीं दो तत्वों का प्रतिच्छेदन का ही एक अंग है या खाली है, तो स्थिति (B2) स्वत: संतुष्ट हो जाती है (लेकर ). उदाहरण के लिए, समतल पर यूक्लिडियन टोपोलॉजी एक आधार के रूप में क्षैतिज और ऊर्ध्वाधर पक्षों के साथ सभी खुले आयतों के समुच्चय को स्वीकार करती है, और ऐसे दो मूलभूत खुले समुच्चयों का एक गैर-रिक्त चौराहा भी एक मूलभूत खुला समुच्चय है। लेकिन उसी टोपोलॉजी के लिए एक अन्य आधार सभी खुली डिस्क का संग्रह है; और यहाँ पूर्ण (B2) शर्त आवश्यक है।

खुले समुच्चयों के संग्रह का एक उदाहरण जो आधार नहीं है, समुच्चय है रूपों के सभी अर्ध-अनंत अंतरालों की और साथ . द्वारा उत्पन्न टोपोलॉजी सभी खुले अंतराल शामिल हैं , इस तरह वास्तविक रेखा पर मानक टोपोलॉजी उत्पन्न करता है। लेकिन टोपोलॉजी के लिए केवल एक उप-आधार है, आधार नहीं: एक परिमित खुला अंतराल का कोई तत्व नहीं है (समतुल्य रूप से, गुण (B2) धारण नहीं करता है)।

उदाहरण

समुच्चय Γ सभी खुले अंतरालों में यूक्लिडियन टोपोलॉजी के लिए एक आधार बनाता है .

समुच्चय के उप समुच्चय का एक गैर-खाली परिवार X जो दो या दो से अधिक समुच्चयों के परिमित चौराहों के अंतर्गत बंद है, जिसे पाई-सिस्टम कहा जाता हैπ-सिस्टम चालू X, अनिवार्य रूप से एक टोपोलॉजी के लिए एक आधार है X यदि और केवल यदि यह कवर करता है X. परिभाषा के अनुसार, प्रत्येक सिग्मा-बीजगणित|σ-बीजगणित, प्रत्येक फ़िल्टर (समुच्चय सिद्धांत) (और इसलिए विशेष रूप से, प्रत्येक प्रतिवेश प्रणाली), और प्रत्येक टोपोलॉजिकल स्पेस टोपोलॉजी एक आवरण है π-प्रणाली और इसलिए एक टोपोलॉजी के लिए एक आधार भी। वास्तव में, यदि Γ एक फिल्टर चालू है X तब { ∅ } ∪ Γ पर एक टोपोलॉजी है X और Γ इसका एक आधार है। टोपोलॉजी के लिए एक आधार को परिमित चौराहों के तहत बंद नहीं करना पड़ता है और कई नहीं होते हैं। लेकिन फिर भी, कई टोपोलॉजी उन आधारों द्वारा परिभाषित की जाती हैं जो परिमित चौराहों के तहत भी बंद हैं। उदाहरण के लिए, निम्नलिखित परिवारों में से प्रत्येक के उपसमुच्चय परिमित चौराहों के नीचे बंद है और इसलिए प्रत्येक कुछ टोपोलॉजी के लिए आधार बनाता है :

  • समुच्चय Γ सभी बाध्य खुले अंतरालों में से पर सामान्य यूक्लिडियन टोपोलॉजी उत्पन्न करता है .
  • समुच्चय Σ सभी परिबद्ध बंद अंतरालों में से पर असतत टोपोलॉजी उत्पन्न करता है और इसलिए यूक्लिडियन टोपोलॉजी इस टोपोलॉजी का एक उप समुच्चय है। यह इस तथ्य के बावजूद है कि Γ का उपसमुच्चय नहीं है Σ. नतीजतन, द्वारा उत्पन्न टोपोलॉजी Γ, जो कि यूक्लिडियन टोपोलॉजी है , टोपोलॉजी द्वारा उत्पन्न टोपोलॉजी की तुलना है Σ. वास्तव में, यह सख्ती से मोटा है क्योंकि Σ गैर-खाली कॉम्पैक्ट समुच्चय शामिल हैं जो यूक्लिडियन टोपोलॉजी में कभी खुले नहीं होते हैं।
  • समुच्चय Γ सभी अंतरालों में Γ जैसे कि अंतराल के दोनों समापन बिंदु परिमेय संख्याएँ समान टोपोलॉजी उत्पन्न करती हैं Γ. यह सच रहता है यदि प्रतीक का प्रत्येक उदाहरण Γ द्वारा प्रतिस्थापित किया जाता है Σ.
  • Σ = { [r, ∞) : r } एक टोपोलॉजी उत्पन्न करता है जो टोपोलॉजी द्वारा उत्पन्न टोपोलॉजी की तुलना में टोपोलॉजी की तुलना करता है Σ. का कोई तत्व नहीं Σ यूक्लिडियन टोपोलॉजी में खुला है .
  • Γ = { (r, ∞) : r } एक ऐसी टोपोलॉजी उत्पन्न करता है जो यूक्लिडियन टोपोलॉजी और इसके द्वारा उत्पन्न टोपोलॉजी दोनों की तुलना में सख्त है Σ. समुच्चय Σ और Γ अलग हैं, लेकिन फिर भी Γ द्वारा उत्पन्न टोपोलॉजी का एक उप समुच्चय है Σ.

आधार के संदर्भ में परिभाषित वस्तुएं

  • पूरी तरह से ऑर्डर किए गए समुच्चय पर आदेश टोपोलॉजी आधार के रूप में ओपन-इंटरवल-जैसे समुच्चय के संग्रह को स्वीकार करती है।
  • मीट्रिक स्थान में सभी खुली गेंदों का संग्रह टोपोलॉजी के लिए आधार बनाता है।
  • असतत टोपोलॉजी में आधार के रूप में सभी सिंगलटन (गणित) का संग्रह है।
  • एक [[दूसरा गणनीय स्थान]] वह है जिसका एक गणनीय आधार है।

रिंग के स्पेक्ट्रम पर जरिस्की टोपोलॉजी में एक आधार होता है जिसमें खुले समुच्चय होते हैं जिनमें विशिष्ट उपयोगी गुण होते हैं। इस टोपोलॉजी के सामान्य आधार के लिए, मूलभूत खुले समुच्चयों का प्रत्येक परिमित चौराहा एक मूलभूत खुला समुच्चय है।

  • जारिस्की की टोपोलॉजी वह टोपोलॉजी है जिसमें बीजगणितीय समुच्चय बंद समुच्चय के रूप में होते हैं। इसका एक आधार है जो एफाइन बीजगणितीय हाइपरसर्फेस के समुच्चय पूरक द्वारा बनाया गया है।
  • रिंग के स्पेक्ट्रम (प्रमुख आदर्श का समुच्चय) के ज़ारिस्की टोपोलॉजी का एक आधार ऐसा होता है कि प्रत्येक तत्व में सभी प्राइम आइडियल्स होते हैं जिनमें रिंग का कोई तत्व नहीं होता है।

प्रमेय

  • टोपोलॉजी एक टोपोलॉजी की तुलना में टोपोलॉजी की तुलना है यदि और केवल यदि प्रत्येक के लिए और प्रत्येक मूलभूत खुला समुच्चय का युक्त , का एक मूलभूत खुला समुच्चय है युक्त और में समाहित है .
  • यदि टोपोलॉजी के आधार हैं फिर सभी कार्टेशियन उत्पाद का संग्रह प्रत्येक के साथ उत्पाद टोपोलॉजी का आधार है एक अनंत उत्पाद के मामले में, यह अभी भी लागू होता है, सिवाय इसके कि सभी मूल तत्वों के अलावा सभी को संपूर्ण स्थान होना चाहिए।
  • होने देना के लिए आधार हो और जाने का एक सामयिक स्थान हो . फिर यदि हम के प्रत्येक तत्व को प्रतिच्छेद करते हैं साथ , समुच्चय का परिणामी संग्रह उप-स्थान के लिए एक आधार है .
  • यदि कोई फलन के हर मूलभूत खुले समुच्चय को मैप करता है के एक खुले समुच्चय में , यह एक खुला नक्शा है। इसी तरह, यदि एक बेसिक ओपन समुच्चय का हर प्रीइमेज में खुला है , तब निरंतरता (टोपोलॉजी) है।
  • टोपोलॉजिकल स्पेस के लिए एक आधार है यदि और केवल यदि के तत्वों का उपसंग्रह किसमें है पर एक स्थानीय आधार बनाएँ , किसी भी बिंदु के लिए .

बंद समुच्चय के लिए आधार

बंद समुच्चय अंतरिक्ष की टोपोलॉजी का वर्णन करने में समान रूप से कुशल हैं। इसलिए, टोपोलॉजिकल स्पेस के बंद समुच्चय के लिए आधार की दोहरी धारणा है। एक टोपोलॉजिकल स्पेस दिया गया समुच्चय का एक परिवार बंद समुच्चय बंद समुच्चय के लिए एक आधार बनाते हैं यदि और केवल प्रत्येक बंद समुच्चय के लिए और प्रत्येक बिंदु अंदर नही का एक तत्व मौजूद है युक्त लेकिन युक्त नहीं एक परिवार के बंद समुच्चय के लिए एक आधार है यदि और केवल यदि इसकी dual में वह परिवार है के सदस्यों के पूरक (समुच्चय सिद्धांत) का , के खुले समुच्चय के लिए एक आधार है होने देना के बंद समुच्चय के लिए आधार बनें तब

  1. प्रत्येक के लिए संगठन के कुछ उपपरिवार का प्रतिच्छेदन है (यानी, किसी के लिए अंदर नही वहाँ कुछ युक्त और युक्त नहीं ).

किसी समुच्चय के उप समुच्चय का कोई भी संग्रह इन गुणों को संतुष्ट करना एक टोपोलॉजी के बंद समुच्चय के लिए आधार बनाता है इस टोपोलॉजी के बंद समुच्चय सदस्यों के चौराहे हैं कुछ मामलों में खुले समुच्चय के बजाय बंद समुच्चय के लिए आधार का उपयोग करना अधिक सुविधाजनक होता है। उदाहरण के लिए, एक स्थान पूरी तरह से नियमित है यदि और केवल यदि शून्य समुच्चय बंद समुच्चय के लिए आधार बनाते हैं। किसी भी टोपोलॉजिकल स्पेस को देखते हुए शून्य समुच्चय कुछ टोपोलॉजी के बंद समुच्चयों के लिए आधार बनाते हैं यह टोपोलॉजी बेहतरीन पूरी तरह से नियमित टोपोलॉजी होगी मूल की तुलना में मोटा। इसी तरह, ए पर जरिस्की टोपोलॉजीn को बंद समुच्चयों के आधार के रूप में बहुपद कार्यों के शून्य समुच्चयों को लेकर परिभाषित किया गया है।

वेट और करैक्टर

हम में स्थापित धारणाओं के साथ काम करेंगे (Engelking 1989, p. 12, pp. 127-128).

X को एक टोपोलॉजिकल स्पेस फिक्स करें। यहाँ, एक 'नेटवर्क' एक परिवार है समुच्चयों की संख्या, जिसके लिए, x वाले सभी बिंदुओं और खुले पड़ोस U के लिए, में B मौजूद है जिसके लिए ध्यान दें कि, आधार के विपरीत, नेटवर्क में समुच्चय खुले होने की आवश्यकता नहीं है।

हम वज़न को परिभाषित करते हैं, w(X), आधार की न्यूनतम कार्डिनैलिटी के रूप में; हम नेटवर्क भार को परिभाषित करते हैं, nw(X), एक नेटवर्क की न्यूनतम कार्डिनैलिटी के रूप में; एक बिंदु का चरित्र, एक्स में एक्स के लिए पड़ोस के आधार की न्यूनतम कार्डिनैलिटी के रूप में; और X का 'चरित्र' होना

चरित्र और वजन की गणना करने का बिंदु यह बताने में सक्षम होना है कि किस प्रकार के आधार और स्थानीय आधार मौजूद हो सकते हैं। हमारे पास निम्नलिखित तथ्य हैं:

  • nw(X) ≤ w(X)।
  • यदि X असतत है, तो w(X) = nw(X) = |X|.
  • यदि X हॉसडॉर्फ है, तो nw(X) परिमित है यदि और केवल यदि X परिमित असतत है।
  • यदि बी एक्स का आधार है तो आधार है आकार का
  • यदि N, X में x के लिए एक पड़ोस का आधार है, तो एक पड़ोस का आधार है आकार का
  • यदि एक सतत अनुमान है, तो nw(Y) ≤ w(X). (बस वाई-नेटवर्क पर विचार करें एक्स के प्रत्येक आधार बी के लिए।)
  • यदि हॉसडॉर्फ है, तो एक कमजोर हॉसडॉर्फ टोपोलॉजी मौजूद है ताकि तो एक उदाहरण, यदि X भी कॉम्पैक्ट है, तो ऐसी टोपोलॉजी मेल खाती है और इसलिए हमारे पास पहले तथ्य के साथ संयुक्त है, nw(X) = w(X)।
  • यदि कॉम्पैक्ट मेट्रिजेबल स्पेस से हॉसडॉर्फ स्पेस तक एक सतत प्रक्षेपण मानचित्र, फिर वाई कॉम्पैक्ट मेट्रिजेबल है।

अंतिम तथ्य f(X) कॉम्पैक्ट हौसडॉर्फ होने से आता है, और इसलिए (चूंकि कॉम्पैक्ट मेट्रिज़ेबल स्पेस आवश्यक रूप से दूसरे काउंटेबल हैं); साथ ही तथ्य यह है कि कॉम्पैक्ट हौसडॉर्फ रिक्त स्थान मेट्रिजेबल हैं, यदि वे दूसरे गणनीय हैं। (उदाहरण के लिए, इसका एक अनुप्रयोग यह है कि हॉसडॉर्फ अंतरिक्ष में प्रत्येक पथ कॉम्पैक्ट मेट्रिजेबल है।)

खुले समुच्चयों की बढ़ती श्रृंखला

उपरोक्त संकेतन का उपयोग करते हुए, मान लीजिए कि w(X) ≤ κ कुछ अनंत कार्डिनल हैं। फिर लंबाई ≥ κ के खुले समुच्चयों के सख्ती से बढ़ते अनुक्रम (समान रूप से बंद समुच्चयों के सख्ती से घटते क्रम) मौजूद नहीं हैं+.

इसे देखने के लिए (पसंद के स्वयंसिद्ध के बिना), ठीक करें

खुले समुच्चय के आधार के रूप में। और प्रति विपरीत मान लीजिए, वह
खुले समुच्चयों का सख्ती से बढ़ता क्रम था। इसका मतलब यह है
के लिए
हम कुछ यू खोजने के लिए आधार का उपयोग कर सकते हैंγयू में एक्स के साथγ⊆ वीα. इस प्रकार हम एक मानचित्र, f : κ को अच्छी तरह से परिभाषित कर सकते हैं+ → κ प्रत्येक α की मैपिंग कम से कम γ जिसके लिए Uγ⊆ वीαऔर मिलता है
यह मानचित्र अंतःक्षेपी है, अन्यथा इसमें α < β होगा जिसमें f(α) = f(β) = γ होगा, जिसका अर्थ आगे U होगाγ⊆ वीαबल्कि मिलते भी हैं
जो एक विरोधाभास है। लेकिन इससे यह पता चलेगा कि κ+ ≤ κ, एक विरोधाभास।

यह भी देखें

टिप्पणियाँ

  1. The empty set, which is always open, is the union of the empty family.


संदर्भ

  1. Adams & Franzosa 2009, pp. 46–56.
  2. Willard, Definition 5.1
  3. 3.0 3.1 Engelking, p. 12
  4. Bourbaki, Definition 6, p. 21
  5. Arkhangel'skii & Ponomarev, p. 40
  6. Dugundji, Definition 2.1, p. 64
  7. 7.0 7.1 Willard, Theorem 5.3
  8. Engelking, Proposition 1.2.1


ग्रन्थसूची

  • Adams, Colin; Franzosa, Robert (2009). Introduction to Topology: Pure and Applied. New Delhi: Pearson Education. ISBN 978-81-317-2692-1. OCLC 789880519.
  • Arkhangel'skij, A.V.; Ponomarev, V.I. (1984). Fundamentals of general topology: problems and exercises. Mathematics and Its Applications. Vol. 13. Translated from the Russian by V. K. Jain. Dordrecht: D. Reidel Publishing. Zbl 0568.54001.
  • Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1. OCLC 18588129.
  • Dugundji, James (1966). Topology. Boston: Allyn and Bacon. ISBN 978-0-697-06889-7. OCLC 395340485.
  • Engelking, Ryszard (1989). General topology. Berlin: Heldermann Verlag. ISBN 3-88538-006-4.
  • Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.