वोल्टेज-गेटेड आयन चैनल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:


== रचनातंत्र ==
== रचनातंत्र ==
[[पोटेशियम चैनल]] के [[एक्स - रे क्रिस्टलोग्राफी]] संरचनात्मक अध्ययनों से पता चला है कि, जब झिल्ली पर एक [[संभावित अंतर]] प्रस्तुत किया जाता है, तो संबंधित [[विद्युत क्षेत्र]] पोटेशियम चैनल में एक गठनात्मक परिवर्तन को प्रेरित करता है। वोल्टेज-गेटेड आयन चैनल  सामान्यतः  इस तरह से व्यवस्थित कई सबयूनिट्स से बने होते हैं, जिसमें एक केंद्रीय छिद्र होता है, जिसके माध्यम से आयन अपने इलेक्ट्रोकेमिकल ग्रेडियेंट की यात्रा कर सकते हैं।चैनल आयन-विशिष्ट होते हैं, हालांकि समान आकार और आवेशित आयन कभी-कभी उनके माध्यम से यात्रा कर सकते हैं। वोल्टेज-गेटेड आयन चैनलों की कार्यक्षमता को इसकी तीन मुख्य असतत इकाइयों के लिए जिम्मेदार ठहराया जाता है: वोल्टेज सेंसर, छिद्र या संचालन मार्ग और गेट। [3]Na+, K+, और Ca2+ चैनल एक केंद्रीय छिद्र के चारों ओर व्यवस्थित चार ट्रांसमेम्ब्रेन डोमेन से बने होते हैं; अधिकांश Na+ और Ca2+ चैनलों के मामले में ये चार डोमेन एकल α-सबयूनिट का हिस्सा हैं, जबकि अधिकांश K+ चैनलों में चार α-सबयूनिट हैं, जिनमें से प्रत्येक एक ट्रांसमेम्ब्रेन डोमेन का योगदान देता है। [4] गठनात्मक परिवर्तन चैनल प्रोटीन के आकार को पर्याप्त रूप से विकृत करता है जैसे कि गुहा, या चैनल, झिल्ली के पार प्रवाह या प्रवाह को अनुमति देने के लिए खुलता है। आयनों का यह संचलन उनके सांद्रण प्रवणता के बाद कोशिका झिल्ली को विध्रुवित करने के लिए पर्याप्त विद्युत प्रवाह (बिजली) उत्पन्न करता है।
[[पोटेशियम चैनल]] के [[एक्स - रे क्रिस्टलोग्राफी]] संरचनात्मक अध्ययनों से पता चला है कि, जब झिल्ली पर एक [[संभावित अंतर]] प्रस्तुत किया जाता है, तो संबंधित [[विद्युत क्षेत्र]] पोटेशियम चैनल में एक गठनात्मक परिवर्तन को प्रेरित करता है। वोल्टेज-गेटेड आयन चैनल  सामान्यतः  इस तरह से व्यवस्थित कई सब यूनिटों से बने होते हैं, जिसमें एक केंद्रीय छिद्र होता है, जिसके माध्यम से आयन अपने इलेक्ट्रोकेमिकल ग्रेडियेंट की यात्रा कर सकते हैं।चैनल आयन-विशिष्ट होते हैं, हालांकि समान आकार और आवेशित आयन कभी-कभी उनके माध्यम से यात्रा कर सकते हैं। वोल्टेज-गेटेड आयन चैनलों की कार्यक्षमता को इसकी तीन मुख्य असतत इकाइयों के लिए जिम्मेदार ठहराया जाता है: वोल्टेज सेंसर, छिद्र या संचालन मार्ग और गेट। [3]Na+, K+, और Ca2+ चैनल एक केंद्रीय छिद्र के चारों ओर व्यवस्थित चार ट्रांसमेम्ब्रेन डोमेन से बने होते हैं; अधिकांश Na+ और Ca2+ चैनलों के मामले में ये चार डोमेन एकल α-सबयूनिट का हिस्सा हैं, जबकि अधिकांश K+ चैनलों में चार α-सबयूनिट हैं, जिनमें से प्रत्येक एक ट्रांसमेम्ब्रेन डोमेन का योगदान देता है। [4] मेम्ब्रेन-स्पैनिंग सेगमेंट, निर्दिष्ट एस1 -एस 6 , सभी विशेष कार्यों के साथ अल्फा हेलिकॉप्टर का रूप लेते हैं। पाँचवाँ और छठा ट्रांसमेम्ब्रेन सेगमेंट (एस 5 और एस 6 ) और पोर लूप आयन चालन की प्रमुख भूमिका निभाते हैं, जिसमें चैनल के गेट और पोर शामिल होते हैं, जबकि एस1 -एस4 वोल्टेज-सेंसिंग क्षेत्र के रूप में काम करते हैं। [3] चारों उपइकाइयां एक जैसी या एक दूसरे से भिन्न हो सकती हैं। चार केंद्रीय α-सब यूनिटों के अतिरिक्त , ऑक्सीडोरडक्टेस गतिविधि के साथ नियामक β-सब यूनिटों भी होते हैं, जो कोशिका झिल्ली की आंतरिक सतह पर स्थित होते हैं और झिल्ली को पार नहीं करते हैं, और जो α-सब यूनिटों के साथ सहसंयोजित होते हैं अंतर्द्रव्यी जालिका। [5] गठनात्मक परिवर्तन चैनल प्रोटीन के आकार को पर्याप्त रूप से विकृत करता है जैसे कि गुहा, या चैनल, झिल्ली के पार प्रवाह या प्रवाह को अनुमति देने के लिए खुलता है। आयनों का यह संचलन उनके सांद्रण प्रवणता के बाद कोशिका झिल्ली को विध्रुवित करने के लिए पर्याप्त विद्युत प्रवाह (बिजली) उत्पन्न करता है।


वोल्ल्टेज-गेटेड सोडियम चैनल और वोल्टेज पर निर्भर कैल्शियम चैनल चार समरूप अनुक्षेत्र वाले एकल पॉलीपेप्टाइड से बने होते हैं। प्रत्येक अनुक्षेत्र में अल्फा  प्रेरण कुंडली प्रसारित 6 झिल्ली होते हैं। इन  प्रेरण कुंडली में से एक, एस4 , वोल्टेज संवेदनशील  प्रेरण कुंडली है।<ref name="pmid20869590">{{cite journal | vauthors = Catterall WA | title = Ion channel voltage sensors: structure, function, and pathophysiology | journal = Neuron | volume = 67 | issue = 6 | pages = 915–28 | year = 2010 | pmid = 20869590 | pmc = 2950829 | doi = 10.1016/j.neuron.2010.08.021 }}</ref> एस4 अनुभाग  में कई सकारात्मक चार्ज होते हैं जैसे कि कोशिका के बाहर एक उच्च सकारात्मक चार्ज चैनल को बंद स्थिति में रखते हुए  प्रेरण कुंडली को पीछे हटा देता है।
वोल्ल्टेज-गेटेड सोडियम चैनल और वोल्टेज पर निर्भर कैल्शियम चैनल चार समरूप अनुक्षेत्र वाले एकल पॉलीपेप्टाइड से बने होते हैं। प्रत्येक अनुक्षेत्र में अल्फा  प्रेरण कुंडली प्रसारित 6 झिल्ली होते हैं। इन  प्रेरण कुंडली में से एक, एस4 , वोल्टेज संवेदनशील  प्रेरण कुंडली है।<ref name="pmid20869590">{{cite journal | vauthors = Catterall WA | title = Ion channel voltage sensors: structure, function, and pathophysiology | journal = Neuron | volume = 67 | issue = 6 | pages = 915–28 | year = 2010 | pmid = 20869590 | pmc = 2950829 | doi = 10.1016/j.neuron.2010.08.021 }}</ref> एस4 अनुभाग  में कई सकारात्मक चार्ज होते हैं जैसे कि कोशिका के बाहर एक उच्च सकारात्मक चार्ज चैनल को बंद स्थिति में रखते हुए  प्रेरण कुंडली को पीछे हटा देता है।
Line 32: Line 32:
हालांकि वोल्टेज-गेटेड आयन चैनल  सामान्यतः झिल्ली विध्रुवण द्वारा सक्रिय होते हैं, कुछ चैनल, जैसे कि [[आवक-शुद्ध करनेवाला पोटेशियम आयन चैनल]], इसके अतिरिक्त [[अतिध्रुवीकरण (जीव विज्ञान)]] द्वारा सक्रिय होते हैं।
हालांकि वोल्टेज-गेटेड आयन चैनल  सामान्यतः झिल्ली विध्रुवण द्वारा सक्रिय होते हैं, कुछ चैनल, जैसे कि [[आवक-शुद्ध करनेवाला पोटेशियम आयन चैनल]], इसके अतिरिक्त [[अतिध्रुवीकरण (जीव विज्ञान)]] द्वारा सक्रिय होते हैं।


गेट को चैनलों के वोल्टेज संवेदनशील क्षेत्रों में युग्मित माना जाता है और ऐसा प्रतीत होता है कि आयन प्रवाह में एक यांत्रिक बाधा है।<ref>{{cite journal | vauthors = Yellen G | title = The moving parts of voltage-gated ion channels | journal = Quarterly Reviews of Biophysics | volume = 31 | issue = 3 | pages = 239–95 | date = August 1998 | pmid = 10384687 | doi=10.1017/s0033583598003448| s2cid = 2605660 }}</ref> जबकि एस 6 अनुक्षेत्र इस बाधा के रूप में कार्य करने वाले खंड के रूप में सहमत हो गया है, इसकी सटीक संरचना  अज्ञात है। संभावित व्याख्याओं में सम्मिलित हैं: एस 6 खंड एक कैंची जैसी हरकत करता है जिससे आयनों को प्रवाहित होने की अनुमति मिलती है,<ref>{{cite journal | vauthors = Perozo E, Cortes DM, Cuello LG | title = Structural rearrangements underlying K<sup>+</sup>-channel activation gating | journal = Science | volume = 285 | issue = 5424 | pages = 73–8 | date = July 1999 | pmid = 10390363 | doi=10.1126/science.285.5424.73| s2cid = 26775433 | url = https://semanticscholar.org/paper/bc64d2d3108021a606c133d276a2d2d0ea80173d }}</ref> चैनल के माध्यम से आयनों के गुजरने की अनुमति देते हुए एस 6 खंड दो खंडों में टूट जाता है,<ref name="Jiang_2002">{{cite journal | vauthors = Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R | title = कैल्शियम-गेटेड पोटेशियम चैनल की क्रिस्टल संरचना और तंत्र| journal = Nature | volume = 417 | issue = 6888 | pages = 515–22 | date = May 2002 | pmid = 12037559 | doi = 10.1038/417515a | bibcode = 2002Natur.417..515J | s2cid = 205029269 }}</ref> या एस 6 चैनल गेट के रूप में ही काम कर रहा है। रेफरी>{{cite journal | vauthors = Webster SM, Del Camino D, Dekker JP, Yellen G | title = हाई-एफ़िनिटी मेटल ब्रिज द्वारा परिभाषित शेकर के<sup>+</sup> चैनलों में इंट्रासेल्युलर गेट ओपनिंग| journal = Nature | volume = 428 | issue = 6985 | pages = 864–8 | date = April 2004 | pmid = 15103379 | doi = 10.1038/nature02468 | bibcode = 2004Natur.428..864W | s2cid = 1329210 }}<nowiki></ref></nowiki> संरचना  जिसके द्वारा एस4 खंड का संचलन एस 6 को प्रभावित करता है अभी भी अज्ञात है, हालांकि यह सिद्धांत है कि एक एस4 -S5 लिंकर है जिसका संचलन एस 6 को खोलने की अनुमति देता है।<ref name="Bezanilla_2005" />
गेट को चैनलों के वोल्टेज संवेदनशील क्षेत्रों में युग्मित माना जाता है और ऐसा प्रतीत होता है कि आयन प्रवाह में एक यांत्रिक बाधा है।<ref>{{cite journal | vauthors = Yellen G | title = The moving parts of voltage-gated ion channels | journal = Quarterly Reviews of Biophysics | volume = 31 | issue = 3 | pages = 239–95 | date = August 1998 | pmid = 10384687 | doi=10.1017/s0033583598003448| s2cid = 2605660 }}</ref> जबकि एस 6 अनुक्षेत्र इस बाधा के रूप में कार्य करने वाले खंड के रूप में सहमत हो गया है, इसकी सटीक संरचना  अज्ञात है। संभावित व्याख्याओं में सम्मिलित हैं: एस 6 खंड एक कैंची जैसी हरकत करता है जिससे आयनों को प्रवाहित होने की अनुमति मिलती है,<ref>{{cite journal | vauthors = Perozo E, Cortes DM, Cuello LG | title = Structural rearrangements underlying K<sup>+</sup>-channel activation gating | journal = Science | volume = 285 | issue = 5424 | pages = 73–8 | date = July 1999 | pmid = 10390363 | doi=10.1126/science.285.5424.73| s2cid = 26775433 | url = https://semanticscholar.org/paper/bc64d2d3108021a606c133d276a2d2d0ea80173d }}</ref> चैनल के माध्यम से आयनों के गुजरने की अनुमति देते हुए एस 6 खंड दो खंडों में टूट जाता है,<ref name="Jiang_2002">{{cite journal | vauthors = Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R | title = कैल्शियम-गेटेड पोटेशियम चैनल की क्रिस्टल संरचना और तंत्र| journal = Nature | volume = 417 | issue = 6888 | pages = 515–22 | date = May 2002 | pmid = 12037559 | doi = 10.1038/417515a | bibcode = 2002Natur.417..515J | s2cid = 205029269 }}</ref> या एस 6 चैनल गेट के रूप में ही काम कर रहा है। रेफरी>{{cite journal | vauthors = Webster SM, Del Camino D, Dekker JP, Yellen G | title = हाई-एफ़िनिटी मेटल ब्रिज द्वारा परिभाषित शेकर के<sup>+</sup> चैनलों में इंट्रासेल्युलर गेट ओपनिंग| journal = Nature | volume = 428 | issue = 6985 | pages = 864–8 | date = April 2004 | pmid = 15103379 | doi = 10.1038/nature02468 | bibcode = 2004Natur.428..864W | s2cid = 1329210 }}<nowiki></ref></nowiki> संरचना  जिसके द्वारा एस4 खंड का संचलन एस 6 को प्रभावित करता है अभी भी अज्ञात है, हालांकि यह सिद्धांत है कि एक एस4 -एस 5 लिंकर है जिसका संचलन एस 6 को खोलने की अनुमति देता है।<ref name="Bezanilla_2005" />


खोलने के बाद मिलीसेकंड के भीतर आयन चैनलों की निष्क्रियता होती है। निष्क्रियता को एक अंत:कोशिका गेट द्वारा मध्यस्थ माना जाता है जो कोशिका के अंदर छिद्र के उद्घाटन को नियंत्रित करता है।<ref>{{cite journal | vauthors = Armstrong CM | title = Sodium channels and gating currents | journal = Physiological Reviews | volume = 61 | issue = 3 | pages = 644–83 | date = July 1981 | pmid = 6265962 | doi = 10.1152/physrev.1981.61.3.644 }}</ref> इस गेट को [[गेंद और श्रृंखला निष्क्रियता]] के रूप में तैयार किया गया है। निष्क्रियता के दौरान, श्रृंखला अपने आप में मुड़ जाती है और गेंद चैनल के माध्यम से आयनों के प्रवाह को अवरुद्ध कर देती है।<ref>{{cite journal | vauthors = Vassilev P, Scheuer T, Catterall WA | title = Inhibition of inactivation of single sodium channels by a site-directed antibody | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 86 | issue = 20 | pages = 8147–51 | date = October 1989 | pmid = 2554301 | doi=10.1073/pnas.86.20.8147 | pmc=298232| bibcode = 1989PNAS...86.8147V | doi-access = free }}</ref> तेजी से निष्क्रियता सीधे एस4 अनुभाग  के इंट्रामेम्ब्रेन मूवमेंट के कारण होने वाली सक्रियता से जुड़ी है,<ref name="Bénitah_1999">{{cite journal | vauthors = Bénitah JP, Chen Z, Balser JR, Tomaselli GF, Marbán E | title = सोडियम चैनल ताकना की आणविक गतिशीलता गेटिंग के साथ बदलती है: पी-सेगमेंट गतियों और निष्क्रियता के बीच बातचीत| journal = The Journal of Neuroscience | volume = 19 | issue = 5 | pages = 1577–85 | date = March 1999 | pmid = 10024345 | pmc = 6782169 | doi = 10.1523/JNEUROSCI.19-05-01577.1999 }}</ref> हालांकि एस4 की गति और निष्क्रियता द्वार के जुड़ाव को जोड़ने वाली क्रियाविधि अज्ञात है।
खोलने के बाद मिलीसेकंड के भीतर आयन चैनलों की निष्क्रियता होती है। निष्क्रियता को एक अंत:कोशिका गेट द्वारा मध्यस्थ माना जाता है जो कोशिका के अंदर छिद्र के उद्घाटन को नियंत्रित करता है।<ref>{{cite journal | vauthors = Armstrong CM | title = Sodium channels and gating currents | journal = Physiological Reviews | volume = 61 | issue = 3 | pages = 644–83 | date = July 1981 | pmid = 6265962 | doi = 10.1152/physrev.1981.61.3.644 }}</ref> इस गेट को [[गेंद और श्रृंखला निष्क्रियता]] के रूप में तैयार किया गया है। निष्क्रियता के दौरान, श्रृंखला अपने आप में मुड़ जाती है और गेंद चैनल के माध्यम से आयनों के प्रवाह को अवरुद्ध कर देती है।<ref>{{cite journal | vauthors = Vassilev P, Scheuer T, Catterall WA | title = Inhibition of inactivation of single sodium channels by a site-directed antibody | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 86 | issue = 20 | pages = 8147–51 | date = October 1989 | pmid = 2554301 | doi=10.1073/pnas.86.20.8147 | pmc=298232| bibcode = 1989PNAS...86.8147V | doi-access = free }}</ref> तेजी से निष्क्रियता सीधे एस4 अनुभाग  के इंट्रामेम्ब्रेन मूवमेंट के कारण होने वाली सक्रियता से जुड़ी है,<ref name="Bénitah_1999">{{cite journal | vauthors = Bénitah JP, Chen Z, Balser JR, Tomaselli GF, Marbán E | title = सोडियम चैनल ताकना की आणविक गतिशीलता गेटिंग के साथ बदलती है: पी-सेगमेंट गतियों और निष्क्रियता के बीच बातचीत| journal = The Journal of Neuroscience | volume = 19 | issue = 5 | pages = 1577–85 | date = March 1999 | pmid = 10024345 | pmc = 6782169 | doi = 10.1523/JNEUROSCI.19-05-01577.1999 }}</ref> हालांकि एस4 की गति और निष्क्रियता द्वार के जुड़ाव को जोड़ने वाली क्रियाविधि अज्ञात है।
Line 52: Line 52:
===पोटेशियम (K+) चैनल ===
===पोटेशियम (K+) चैनल ===


वोल्टेज-गेटेड पोटेशियम चैनल वोल्टेज-गेटेड चैनलों का सबसे बड़ा और सबसे विविध वर्ग है, जिसमें 100 से अधिक एन्कोडिंग मानव वंशाणु हैं। इस प्रकार के चैनल अपने गेटिंग गुणों में महत्वपूर्ण रूप से भिन्न होते हैं; कुछ बेहद धीरे-धीरे निष्क्रिय हो रहे हैं और अन्य बहुत तेज़ी से निष्क्रिय हो रहे हैं। सक्रियण समय में यह अंतर क्रिया संभावित फायरिंग की अवधि और दर को प्रभावित करता है, जिसका अक्षतंतु के साथ-साथ अन्तर्ग्रथनी संचरण पर विद्युत चालन पर महत्वपूर्ण प्रभाव पड़ता है। पोटेशियम चैनल अन्य चैनलों से संरचना में भिन्न होते हैं, जिसमें उनमें चार अलग-अलग पॉलीपेप्टाइड सबयूनिट्स होते हैं, जबकि अन्य चैनलों में चार समरूप अनुक्षेत्र होते हैं, लेकिन एक पॉलीपेप्टाइड इकाई पर होते हैं। <ref name="Sands_2005" />
वोल्टेज-गेटेड पोटेशियम चैनल वोल्टेज-गेटेड चैनलों का सबसे बड़ा और सबसे विविध वर्ग है, जिसमें 100 से अधिक एन्कोडिंग मानव वंशाणु हैं। इस प्रकार के चैनल अपने गेटिंग गुणों में महत्वपूर्ण रूप से भिन्न होते हैं; कुछ बेहद धीरे-धीरे निष्क्रिय हो रहे हैं और अन्य बहुत तेज़ी से निष्क्रिय हो रहे हैं। सक्रियण समय में यह अंतर क्रिया संभावित फायरिंग की अवधि और दर को प्रभावित करता है, जिसका अक्षतंतु के साथ-साथ अन्तर्ग्रथनी संचरण पर विद्युत चालन पर महत्वपूर्ण प्रभाव पड़ता है। पोटेशियम चैनल अन्य चैनलों से संरचना में भिन्न होते हैं, जिसमें उनमें चार अलग-अलग पॉलीपेप्टाइड सब यूनिटों होते हैं, जबकि अन्य चैनलों में चार समरूप अनुक्षेत्र होते हैं, लेकिन एक पॉलीपेप्टाइड इकाई पर होते हैं। <ref name="Sands_2005" />





Revision as of 12:15, 22 February 2023

Subunits of ion channels in membrane.png
Each of the four homologous domains makes up one subunit of the ion channel. The S4 voltage-sensing segments (marked with + symbols) are shown as charged.
Identifiers
SymbolVIC
Pfam clanCL0030
TCDB1.A.1
OPM superfamily8
OPM protein2a79
आयनों को लाल घेरे द्वारा दर्शाया गया है। झिल्ली के दोनों ओर आयनों की विभिन्न सांद्रता द्वारा एक ढाल का प्रतिनिधित्व किया जाता है। आयन चैनल की खुली रचना कोशिका झिल्ली के पार आयनों के स्थानांतरण की अनुमति देती है, जबकि बंद रचना नहीं करती है।

वोल्टेज-गेटेड [[आयन चैनल]] ट्रांसमेम्ब्रेन प्रोटीन का एक वर्ग है जो आयन चैनल बनाते हैं जो चैनल के पास विद्युत झिल्ली क्षमता में परिवर्तन से सक्रिय होते हैं। झिल्ली क्षमता चैनल प्रोटीन की रचना को बदल देती है, उनके खुलने और बंद होने को नियंत्रित करती है। कोशिका झिल्लियां सामान्यतः आयनों के लिए अभेद्य होती हैं, इस प्रकार उन्हें झिल्ली के माध्यम से ट्रांसमेम्ब्रेन प्रोटीन चैनलों के माध्यम से प्रसारित करना चाहिए। उत्तेजक कोशिकाओं जैसे तंत्रिका और मांसपेशियों के ऊतकों में उनकी महत्वपूर्ण भूमिका होती है, जिससे वोल्टेज घटाव को उत्तेजित करने के जवाब में तेजी से और समन्वित विध्रुवण की अनुमति मिलती है। अक्षतंतु के साथ और अंतर्ग्रथन पर पाए जाने वाले, वोल्टेज-गेटेड आयन चैनल विद्युत संकेतों को प्रत्यक्ष रूप से प्रसारित करते हैं। वोल्टेज-गेटेड आयन-चैनल सामान्यतः आयन-विशिष्ट होते हैंऔर सोडियम (Na+), पोटेशियम (K+), कैल्शियम (Ca2+), और क्लोराइड (Cl−) आयनों के लिए विशिष्ट चैनल की पहचान की गई है। [1] चैनलों का खुलना और बंद होना आयन की सघनता में बदलाव के कारण शुरू होता है, और इसलिए कोशिका झिल्ली के किनारों के बीच आवेश प्रवणता होती है। [2]

रचनातंत्र

पोटेशियम चैनल के एक्स - रे क्रिस्टलोग्राफी संरचनात्मक अध्ययनों से पता चला है कि, जब झिल्ली पर एक संभावित अंतर प्रस्तुत किया जाता है, तो संबंधित विद्युत क्षेत्र पोटेशियम चैनल में एक गठनात्मक परिवर्तन को प्रेरित करता है। वोल्टेज-गेटेड आयन चैनल सामान्यतः इस तरह से व्यवस्थित कई सब यूनिटों से बने होते हैं, जिसमें एक केंद्रीय छिद्र होता है, जिसके माध्यम से आयन अपने इलेक्ट्रोकेमिकल ग्रेडियेंट की यात्रा कर सकते हैं।चैनल आयन-विशिष्ट होते हैं, हालांकि समान आकार और आवेशित आयन कभी-कभी उनके माध्यम से यात्रा कर सकते हैं। वोल्टेज-गेटेड आयन चैनलों की कार्यक्षमता को इसकी तीन मुख्य असतत इकाइयों के लिए जिम्मेदार ठहराया जाता है: वोल्टेज सेंसर, छिद्र या संचालन मार्ग और गेट। [3]Na+, K+, और Ca2+ चैनल एक केंद्रीय छिद्र के चारों ओर व्यवस्थित चार ट्रांसमेम्ब्रेन डोमेन से बने होते हैं; अधिकांश Na+ और Ca2+ चैनलों के मामले में ये चार डोमेन एकल α-सबयूनिट का हिस्सा हैं, जबकि अधिकांश K+ चैनलों में चार α-सबयूनिट हैं, जिनमें से प्रत्येक एक ट्रांसमेम्ब्रेन डोमेन का योगदान देता है। [4] मेम्ब्रेन-स्पैनिंग सेगमेंट, निर्दिष्ट एस1 -एस 6 , सभी विशेष कार्यों के साथ अल्फा हेलिकॉप्टर का रूप लेते हैं। पाँचवाँ और छठा ट्रांसमेम्ब्रेन सेगमेंट (एस 5 और एस 6 ) और पोर लूप आयन चालन की प्रमुख भूमिका निभाते हैं, जिसमें चैनल के गेट और पोर शामिल होते हैं, जबकि एस1 -एस4 वोल्टेज-सेंसिंग क्षेत्र के रूप में काम करते हैं। [3] चारों उपइकाइयां एक जैसी या एक दूसरे से भिन्न हो सकती हैं। चार केंद्रीय α-सब यूनिटों के अतिरिक्त , ऑक्सीडोरडक्टेस गतिविधि के साथ नियामक β-सब यूनिटों भी होते हैं, जो कोशिका झिल्ली की आंतरिक सतह पर स्थित होते हैं और झिल्ली को पार नहीं करते हैं, और जो α-सब यूनिटों के साथ सहसंयोजित होते हैं अंतर्द्रव्यी जालिका। [5] गठनात्मक परिवर्तन चैनल प्रोटीन के आकार को पर्याप्त रूप से विकृत करता है जैसे कि गुहा, या चैनल, झिल्ली के पार प्रवाह या प्रवाह को अनुमति देने के लिए खुलता है। आयनों का यह संचलन उनके सांद्रण प्रवणता के बाद कोशिका झिल्ली को विध्रुवित करने के लिए पर्याप्त विद्युत प्रवाह (बिजली) उत्पन्न करता है।

वोल्ल्टेज-गेटेड सोडियम चैनल और वोल्टेज पर निर्भर कैल्शियम चैनल चार समरूप अनुक्षेत्र वाले एकल पॉलीपेप्टाइड से बने होते हैं। प्रत्येक अनुक्षेत्र में अल्फा प्रेरण कुंडली प्रसारित 6 झिल्ली होते हैं। इन प्रेरण कुंडली में से एक, एस4 , वोल्टेज संवेदनशील प्रेरण कुंडली है।[1] एस4 अनुभाग में कई सकारात्मक चार्ज होते हैं जैसे कि कोशिका के बाहर एक उच्च सकारात्मक चार्ज चैनल को बंद स्थिति में रखते हुए प्रेरण कुंडली को पीछे हटा देता है।

सामान्य तौर पर, आयन चैनल का वोल्टेज संवेदनशील भाग ट्रांसमेम्ब्रेन क्षमता में परिवर्तन का पता लगाने के लिए जिम्मेदार होता है जो चैनल के खुलने या बंद होने को उत्तेजित करता है। माना जाता है कि एस1 -4 अल्फा हेलिकॉप्टर सामान्यतः इस भूमिका को निभाते हैं। पोटेशियम और सोडियम चैनलों में, वोल्टेज-संवेदनशील एस 4 हेलिकॉप्टरों में दोहराए गए रूपांकनों में सकारात्मक रूप से आवेशित लाइसिन या आर्जिनिन अवशेष होते हैं।[2]अपनी विश्राम अवस्था में, प्रत्येक एस4 प्रेरण कुंडली का आधा कोशिका कोशिका द्रव्य के संपर्क में होता है। विध्रुवण होने पर, एस4 अनुक्षेत्र पर सकारात्मक रूप से चार्ज किए गए अवशेष झिल्ली की अंतःप्रद्रव्य सतह की ओर बढ़ते हैं। ऐसा माना जाता है कि झिल्ली विध्रुवण के जवाब में चैनल सक्रियण पर बाह्य विलायक की ओर बढ़ते हुए गेटिंग करंट के लिए पहले 4 आर्गिनिन खाते हैं। इन प्रोटीन-बाध्य धनात्मक आवेशों के 10-12 का संचलन एक परिवर्तनकारी परिवर्तन को उत्तेजित करता है जो चैनल को खोलता है।[3]सटीक संरचना जिसके द्वारा यह आंदोलन होता है, वर्तमान में सहमत नहीं है, हालांकि विहित, ट्रांसपोर्टर, पैडल और मुड़ मॉडल वर्तमान सिद्धांतों के उदाहरण हैं।Cite error: Closing </ref> missing for <ref> tag चूहे के मस्तिष्क पोटेशियम चैनलों में ज्वालामुखी-निवास आर्कीबैक्टीरिया की एक प्रजाति से पैडल क्षेत्र की आनुवांशिक इंजीनियरिंग का परिणाम पूरी तरह कार्यात्मक आयन चैनल में होता है, जब तक कि पूरे अक्षुण्ण पैडल को बदल दिया जाता है।[4] यह प्रतिरुपकता इस क्षेत्र के कार्य का अध्ययन करने के लिए सरल और सस्ती मॉडल प्रणाली का उपयोग करने की अनुमति देती है, बीमारी में इसकी भूमिका, और इसके व्यवहार के औषधीय नियंत्रण को खराब विशेषता, महंगी, और/या तैयारियों का अध्ययन करना मुश्किल है।[5]

हालांकि वोल्टेज-गेटेड आयन चैनल सामान्यतः झिल्ली विध्रुवण द्वारा सक्रिय होते हैं, कुछ चैनल, जैसे कि आवक-शुद्ध करनेवाला पोटेशियम आयन चैनल, इसके अतिरिक्त अतिध्रुवीकरण (जीव विज्ञान) द्वारा सक्रिय होते हैं।

गेट को चैनलों के वोल्टेज संवेदनशील क्षेत्रों में युग्मित माना जाता है और ऐसा प्रतीत होता है कि आयन प्रवाह में एक यांत्रिक बाधा है।[6] जबकि एस 6 अनुक्षेत्र इस बाधा के रूप में कार्य करने वाले खंड के रूप में सहमत हो गया है, इसकी सटीक संरचना अज्ञात है। संभावित व्याख्याओं में सम्मिलित हैं: एस 6 खंड एक कैंची जैसी हरकत करता है जिससे आयनों को प्रवाहित होने की अनुमति मिलती है,[7] चैनल के माध्यम से आयनों के गुजरने की अनुमति देते हुए एस 6 खंड दो खंडों में टूट जाता है,[8] या एस 6 चैनल गेट के रूप में ही काम कर रहा है। रेफरी>Webster SM, Del Camino D, Dekker JP, Yellen G (April 2004). "हाई-एफ़िनिटी मेटल ब्रिज द्वारा परिभाषित शेकर के+ चैनलों में इंट्रासेल्युलर गेट ओपनिंग". Nature. 428 (6985): 864–8. Bibcode:2004Natur.428..864W. doi:10.1038/nature02468. PMID 15103379. S2CID 1329210.</ref> संरचना जिसके द्वारा एस4 खंड का संचलन एस 6 को प्रभावित करता है अभी भी अज्ञात है, हालांकि यह सिद्धांत है कि एक एस4 -एस 5 लिंकर है जिसका संचलन एस 6 को खोलने की अनुमति देता है।[2]

खोलने के बाद मिलीसेकंड के भीतर आयन चैनलों की निष्क्रियता होती है। निष्क्रियता को एक अंत:कोशिका गेट द्वारा मध्यस्थ माना जाता है जो कोशिका के अंदर छिद्र के उद्घाटन को नियंत्रित करता है।[9] इस गेट को गेंद और श्रृंखला निष्क्रियता के रूप में तैयार किया गया है। निष्क्रियता के दौरान, श्रृंखला अपने आप में मुड़ जाती है और गेंद चैनल के माध्यम से आयनों के प्रवाह को अवरुद्ध कर देती है।[10] तेजी से निष्क्रियता सीधे एस4 अनुभाग के इंट्रामेम्ब्रेन मूवमेंट के कारण होने वाली सक्रियता से जुड़ी है,[11] हालांकि एस4 की गति और निष्क्रियता द्वार के जुड़ाव को जोड़ने वाली क्रियाविधि अज्ञात है।

विभिन्न प्रकार

सोडियम (Na+) चैनल

सोडियम चैनलों में कई अलग-अलग प्रकार के कोशिका में समान कार्यात्मक गुण होते हैं। जबकि सोडियम चैनलों के लिए दस मानव वंशाणु एन्कोडिंग की पहचान की गई है, उनका कार्य सामान्यतः प्रजातियों और विभिन्न प्रकार के कोशिका के बीच संरक्षित होता है।[11]


कैल्शियम (Ca2+) चैनल

मानव कैल्शियम चैनलों के लिए सोलह अलग-अलग पहचाने गए जीनों के साथ, इस प्रकार का चैनल कोशिका प्रकारों के बीच कार्य में भिन्न होता है। कैल्शियम चैनल | Ca2+ चैनल Na की तरह ही संभावित कार्रवाई उत्पन्न करते हैं कुछ न्यूरॉन्स में चैनल। वे रासायनिक अन्तर्ग्रथन | प्री-सिनैप्टिक तंत्रिका अंत में एक्सोसाइटोसिस में भी भूमिका निभाते हैं। अधिकांश कोशिकाओं में, Ca2+ चैनल इंट्रासेल्यूलर Ca2+ सांद्रता को नियंत्रित करने में अपनी भूमिका के कारण विभिन्न प्रकार की जैव रासायनिक प्रक्रियाओं को नियंत्रित करते हैं ।[8]


पोटेशियम (K+) चैनल

वोल्टेज-गेटेड पोटेशियम चैनल वोल्टेज-गेटेड चैनलों का सबसे बड़ा और सबसे विविध वर्ग है, जिसमें 100 से अधिक एन्कोडिंग मानव वंशाणु हैं। इस प्रकार के चैनल अपने गेटिंग गुणों में महत्वपूर्ण रूप से भिन्न होते हैं; कुछ बेहद धीरे-धीरे निष्क्रिय हो रहे हैं और अन्य बहुत तेज़ी से निष्क्रिय हो रहे हैं। सक्रियण समय में यह अंतर क्रिया संभावित फायरिंग की अवधि और दर को प्रभावित करता है, जिसका अक्षतंतु के साथ-साथ अन्तर्ग्रथनी संचरण पर विद्युत चालन पर महत्वपूर्ण प्रभाव पड़ता है। पोटेशियम चैनल अन्य चैनलों से संरचना में भिन्न होते हैं, जिसमें उनमें चार अलग-अलग पॉलीपेप्टाइड सब यूनिटों होते हैं, जबकि अन्य चैनलों में चार समरूप अनुक्षेत्र होते हैं, लेकिन एक पॉलीपेप्टाइड इकाई पर होते हैं। [12]


क्लोराइड (Cl) चैनल

क्लोराइड चैनल सभी प्रकार के न्यूरॉन्स में उपस्थित होते हैं। उत्तेजना को नियंत्रित करने की मुख्य जिम्मेदारी के साथ, क्लोराइड चैनल कोशिका रेस्टिंग क्षमता के रखरखाव में योगदान करते हैं और कोशिका वॉल्यूम को विनियमित करने में मदद करते हैं।[13]


प्रोटोन (H+) चैनल

वोल्टेज-गेटेड प्रोटॉन चैनल हाइड्रोजन आयनों द्वारा हाइड्रोनियम के रूप में मध्यस्थता वाली धाराओं को ले जाते हैं, और पीएच-निर्भर तरीके से विध्रुवण द्वारा सक्रिय होते हैं।प्रोटॉन (H+) चैनल विशेष हैं: वे अन्य आयनों के विरुद्ध प्रोटॉन का चयन करते हैं जो एक लाख गुना अधिक प्रचुर मात्रा में हैं। अभी तक केवल कुछ प्रोटॉन चैनलों की पहचान की गई है। यहां, हम वोल्टेज-गेटेड "पेसमेकर" चैनल, एचसीएनएल1 के एक परिवार की पहचान करते हैं, जो प्रोटॉन के लिए उत्कृष्ट रूप से चयनात्मक हैं। HCNL1 हाइपरपोलराइजेशन के दौरान सक्रिय होता है और प्रोटॉन को कोशिकाकाय में ले जाता है। आश्चर्यजनक रूप से, प्रोटॉन चैनल के वोल्टेज-सेंसिंग डोमेन के माध्यम से व्याप्त होते हैं, जबकि पोर डोमेन गैर-कार्यात्मक होता है। वे कोशिकाओं से अम्ल को हटाने का कार्य करते हैं।[14][15][16]


फाइलोजेनेटिक्स

जीवाणुओं में अभिव्यक्त प्रोटीनों के फाइलोजेनेटिक्स अध्ययन से वोल्टेज-गेटेड सोडियम चैनलों के प्रोटीन सुपरफैमिली के अस्तित्व का पता चला।[17] बाद के अध्ययनों से पता चला है कि विभिन्न प्रकार के अन्य आयन चैनल और ट्रांसपोर्टर फाईलोजेनेटिक रूप से वोल्टेज-गेटेड आयन चैनलों से संबंधित हैं, जिनमें आंतरिक रूप से सुधार करने वाले K+ चैनल, राइनोडाइन-इनोसिटोल 1,4,5-ट्राइफॉस्फेट अनुग्राही Ca2+ चैनल सम्मिलित हैं। पॉलीसिस्टिन केशन चैनल, ग्लूटामेट-गेटेड आयन चैनल, कैल्शियम-निर्भर क्लोराइड चैनल, मोनोवालेंट केशन: प्रोटॉन प्रतिगम , टाइप 1, और पोटेशियम ट्रांसपोर्टर्स। [22]


यह भी देखें

संदर्भ

  1. Catterall WA (2010). "Ion channel voltage sensors: structure, function, and pathophysiology". Neuron. 67 (6): 915–28. doi:10.1016/j.neuron.2010.08.021. PMC 2950829. PMID 20869590.
  2. 2.0 2.1 Cite error: Invalid <ref> tag; no text was provided for refs named Bezanilla_2005
  3. Cite error: Invalid <ref> tag; no text was provided for refs named MCB_2000
  4. Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ (November 2007). "Portability of paddle motif function and pharmacology in voltage sensors". Nature. 450 (7168): 370–5. Bibcode:2007Natur.450..370A. doi:10.1038/nature06266. PMC 2709416. PMID 18004375.
  5. Long SB, Tao X, Campbell EB, MacKinnon R (November 2007). "Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment". Nature. 450 (7168): 376–82. Bibcode:2007Natur.450..376L. doi:10.1038/nature06265. PMID 18004376. S2CID 4320272.
  6. Yellen G (August 1998). "The moving parts of voltage-gated ion channels". Quarterly Reviews of Biophysics. 31 (3): 239–95. doi:10.1017/s0033583598003448. PMID 10384687. S2CID 2605660.
  7. Perozo E, Cortes DM, Cuello LG (July 1999). "Structural rearrangements underlying K+-channel activation gating". Science. 285 (5424): 73–8. doi:10.1126/science.285.5424.73. PMID 10390363. S2CID 26775433.
  8. 8.0 8.1 Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (May 2002). "कैल्शियम-गेटेड पोटेशियम चैनल की क्रिस्टल संरचना और तंत्र". Nature. 417 (6888): 515–22. Bibcode:2002Natur.417..515J. doi:10.1038/417515a. PMID 12037559. S2CID 205029269.
  9. Armstrong CM (July 1981). "Sodium channels and gating currents". Physiological Reviews. 61 (3): 644–83. doi:10.1152/physrev.1981.61.3.644. PMID 6265962.
  10. Vassilev P, Scheuer T, Catterall WA (October 1989). "Inhibition of inactivation of single sodium channels by a site-directed antibody". Proceedings of the National Academy of Sciences of the United States of America. 86 (20): 8147–51. Bibcode:1989PNAS...86.8147V. doi:10.1073/pnas.86.20.8147. PMC 298232. PMID 2554301.
  11. 11.0 11.1 Bénitah JP, Chen Z, Balser JR, Tomaselli GF, Marbán E (March 1999). "सोडियम चैनल ताकना की आणविक गतिशीलता गेटिंग के साथ बदलती है: पी-सेगमेंट गतियों और निष्क्रियता के बीच बातचीत". The Journal of Neuroscience. 19 (5): 1577–85. doi:10.1523/JNEUROSCI.19-05-01577.1999. PMC 6782169. PMID 10024345.
  12. Cite error: Invalid <ref> tag; no text was provided for refs named Sands_2005
  13. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A, McNamara JO, Williams SM (2001). "Voltage-Gated Ion Channels". तंत्रिका विज्ञान (2nd ed.). Sunderland, Mass: Sinauer Associates. ISBN 978-0-87893-742-4.</रेफरी> चैनल का खुलना और बंद होना आयन की सघनता में बदलाव के कारण शुरू होता है, और इसलिए सेल मेम्ब्रेन के किनारों के बीच चार्ज ग्रेडिएंट होता है। रेफरी>Catterall WA (April 2000). "आयनिक धाराओं से आणविक तंत्र तक: वोल्टेज-गेटेड सोडियम चैनलों की संरचना और कार्य". Neuron (in English). 26 (1): 13–25. doi:10.1016/S0896-6273(00)81133-2. PMID 10798388.</रेफरी>

    संरचना

    एक केंद्रीय छिद्र के गठन को दर्शाने वाले चार सजातीय डोमेन की रचना
    वोल्टेज-गेटेड आयन चैनल आम तौर पर इस तरह से व्यवस्थित कई सबयूनिट्स से बने होते हैं, जिसमें एक केंद्रीय छिद्र होता है, जिसके माध्यम से आयन अपने विद्युत रासायनिक ढाल की यात्रा कर सकते हैं। चैनल आयन-विशिष्ट होते हैं, हालांकि समान आकार और आवेशित आयन कभी-कभी उनके माध्यम से यात्रा कर सकते हैं। वोल्टेज-गेटेड आयन चैनलों की कार्यक्षमता को इसकी तीन मुख्य असतत इकाइयों के लिए जिम्मेदार ठहराया गया है: वोल्टेज सेंसर, छिद्र या संचालन मार्ग और गेट।<ref name="Bezanilla_2005">Bezanilla F (March 2005). "वोल्टेज-गेटेड आयन चैनल". IEEE Transactions on NanoBioscience. 4 (1): 34–48. doi:10.1109/tnb.2004.842463. PMID 15816170. S2CID 8212388.</रेफरी> द+, के+, और सीए2+ चैनल एक केंद्रीय छिद्र के चारों ओर व्यवस्थित चार ट्रांसमेम्ब्रेन डोमेन से बने होते हैं; अधिकांश Na के मामले में ये चार डोमेन एकल α-सबयूनिट का हिस्सा हैं+ और सीए2+ चैनल, जबकि अधिकांश K में चार α-सबयूनिट हैं, जिनमें से प्रत्येक एक ट्रांसमेम्ब्रेन डोमेन का योगदान देता है+ चैनल।<ref name="MCB_2000">Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "Section 21.3, Molecular Properties of Voltage-Gated Ion Channels". आणविक कोशिका जीव विज्ञान (4th ed.). New York: Scientific American Books. ISBN 978-0-7167-3136-8.</रेफरी> झिल्ली-फैले हुए खंड, नामित एस1-एस6, सभी विशेष कार्यों के साथ अल्फा हेलिक्स का रूप लेते हैं। पाँचवाँ और छठा ट्रांसमेम्ब्रेन सेगमेंट (S5 और S6) और पोर लूप आयन चालन की प्रमुख भूमिका निभाते हैं, जिसमें चैनल के गेट और पोर शामिल होते हैं, जबकि S1-S4 वोल्टेज-सेंसिंग क्षेत्र के रूप में काम करते हैं।चारों उपइकाइयां एक जैसी या एक दूसरे से भिन्न हो सकती हैं। चार केंद्रीय α-सबयूनिट्स के अलावा, ऑक्सीडोरडक्टेस गतिविधि के साथ नियामक β-सबयूनिट्स भी होते हैं, जो कोशिका झिल्ली की आंतरिक सतह पर स्थित होते हैं और झिल्ली को पार नहीं करते हैं, और जो α-सबयूनिट्स के साथ सहसंयोजित होते हैं अन्तः प्रदव्ययी जलिका।<ref>Gulbis JM, Mann S, MacKinnon R (June 1999). "Structure of a voltage-dependent K+ channel beta subunit". Cell. 97 (7): 943–52. doi:10.1016/s0092-8674(00)80805-3. PMID 10399921.
  14. Cherny, V.V.; Markin, V.S.; DeCoursey, T.E. (1995), "The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient", Journal of General Physiology (published June 1995), vol. 105, no. 6, pp. 861–896, doi:10.1085/jgp.105.6.861, PMC 2216954, PMID 7561747
  15. DeCoursey, T.E. (2003), "Voltage-gated proton channels and other proton transfer pathways", Physiological Reviews, vol. 83, no. 2, pp. 475–579, doi:10.1152/physrev.00028.2002, OCLC 205658168, PMID 12663866
  16. Ramsey, I. Scott; Mokrab, Younes; Carvacho, Ingrid; Sands, Zara A.; Sansom, Mark S.P.; Clapham, David E. (2010). "An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1". Nature Structural & Molecular Biology. 17 (7): 869–875. doi:10.1038/nsmb.1826. PMC 4035905. PMID 20543828.
  17. Koishi R, Xu H, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (March 2004). "A superfamily of voltage-gated sodium channels in bacteria". The Journal of Biological Chemistry. 279 (10): 9532–8. doi:10.1074/jbc.M313100200. PMID 14665618.


बाहरी संबंध